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Abstract: The scientific and wider interest in the relationship between atmospheric temperature

(T) and concentration of carbon dioxide ([CO2]) has been enormous. According to the commonly

assumed causality link, increased [CO2] causes a rise in T. However, recent developments cast doubts

on this assumption by showing that this relationship is of the hen-or-egg type, or even unidirectional

but opposite in direction to the commonly assumed one. These developments include an advanced

theoretical framework for testing causality based on the stochastic evaluation of a potentially causal

link between two processes via the notion of the impulse response function. Using, on the one hand,

this framework and further expanding it and, on the other hand, the longest available modern time

series of globally averaged T and [CO2], we shed light on the potential causality between these two

processes. All evidence resulting from the analyses suggests a unidirectional, potentially causal link

with T as the cause and [CO2] as the effect. That link is not represented in climate models, whose

outputs are also examined using the same framework, resulting in a link opposite the one found

when the real measurements are used.

Keywords: causality; causal systems; stochastics; impulse response function; geophysics;

hydrology; climate

Science is generated by and devoted to free inquiry: the idea that any hypothesis, no matter
how strange, deserves to be considered on its merits. The suppression of uncomfortable
ideas may be common in religion and politics, but it is not the path to knowledge; it
has no place in the endeavor of science. We do not know in advance who will discover
fundamental new insights.

Carl Sagan [1]

1. Introduction

A recent (2020) study [2] examining data from measurements of temperature (T) and
atmospheric concentration of carbon dioxide ([CO2]) challenged the conventional, and
well established, wisdom that increased [CO2] causes an increase in temperature. The
study examined whether the commonly assumed causal chain is supported by data or,
alternatively, whether a hen-or-egg (HOE) causal relationship is more plausible. The phrase

“hen or egg” (originally in Greek,
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) was first used in a philosophical context by
Plutarch [3] to describe situations in which it is not clear which of two interrelated events
or processes is the cause and which the effect.

The study examined a case where the causal link is not between two events but
between two processes, represented as stochastic processes. Denoting these processes as
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x(t) and y(t) (where we follow the Dutch notational convention of underlining stochastic
variables), in a typical causal system, denoted as x → y , earlier realizations of x(t) affect
the current realization of y(t). In an HOE causal system, earlier realizations of x(t) affect the
current realization of y(t), but also earlier realizations of y(t) affect the current realization
of x(t).

In terms of its applications, the study used global temperature data from satellites
(University of Alabama in Huntsville—UAH) and ground-based (CRUTEM.4.6.0.0 global T
2 m land temperature) and [CO2] data at several sites (Mauna Loa, HI, USA; Barrow, AK,
USA; South Pole; global average) with monthly time steps for the period 1980–2019. An
innovative element of this study was that it explained the reasons why using the original
T and [CO2] data series yielded spurious results, and it proposed using the changes
(differences in time) thereof instead. We note that differencing is of very common use
in economics literature (e.g., [4,5]). In particular, for the [CO2] it proposed taking the
logarithm before differencing (something resembling techniques used in economics [5]) and
thus the time series that were correlated were ∆T and ∆ln[CO2], where the differences are
taken over 12 months. By studying lagged correlations of the two, the study asserted that,
while both causality directions exist, the results support the hypothesis that the dominant
direction is T → CO2. Changes in [CO2] follow changes in T by about six months on
a monthly scale or about one year on an annual scale. In turn, the study attempted to
interpret this mechanism by referring to biochemical reactions, since at higher temperatures
soil respiration, and hence CO2 emission, increases.

In a subsequent (2022) two-paper study, Koutsoyiannis et al. [6,7] developed a more
complete theoretical framework by revisiting causality over the entire knowledge tree,
from philosophy to science and to scientific and technological application. By reviewing
various approaches to causality, the study located several problems in identifying causal
links. Hence, the study developed the theoretical background of a stochastic approach
to causality, with the objective of formulating necessary conditions that are operationally
useful in identifying or falsifying causality claims. It also developed an effective algorithm
applicable to large-scale open systems, which are neither controllable nor repeatable. The
proposed framework was illustrated and showcased in a number of case studies, some
of which were controlled synthetic examples and others real-world ones arising from
interesting scientific problems in geophysics and, in particular, hydrology and climatology.
The relationship of globally averaged temperature with [CO2] concentration (again in terms
of differences ∆T and ∆ln[CO2] over 12 months) was included in the thirty case studies
presented. In brief, the related analyses pointed to the following (quoting from [7]):

Clearly, the results [. . .] suggest a (mono-directional) potentially causal system with
T as the cause and [CO2] as the effect. Hence the common perception that increasing
[CO2] causes increased T can be excluded as it violates the necessary condition for this
causality direction.

[. . .] in other words, it is the increase of temperature that caused increased CO2 concen-
tration. Though this conclusion may sound counterintuitive at first glance, because it
contradicts common perception [. . .], in fact it is reasonable. The temperature increase
began at the end of the Little Ice Period, in the early nineteenth century, when human
CO2 emissions were negligible [. . .].

However, the scope of that study [6,7] was to formulate a general methodology for the
detection of causality—in particular, necessary conditions thereof—rather than to study a
specific system in detail. Therefore, no detailed modeling was made in the case studies,
including the hydrological and climatic applications. However, given the enormous interest
in the T-[CO2] relationship, here we will go deeper into this.

Specifically, this paper, after summarizing the methodology (Section 2) and the data
used (Section 3), focuses on the latter relationship with the following objectives:
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1. To expand the time frame of the investigation backward and forward by exploiting
the longest available data series (Section 4).

2. To check whether seasonality, as reflected in different phases of [CO2] time series at
different latitudes, plays any role that could modify or possibly reverse the detected
causality relationship (Section 5).

3. To propose and apply a method for investigating the effect of the timescale in causality
detection (Section 6).

4. To extend the methodology for disambiguating cases in which the type of causality,
HOE or unidirectional, is not quite clear (Section 7).

5. To exploit the methodology in defining a type of data analysis that, regardless of the
detection of causality per se, could shed light on modeling performance by comparing
observational data with model results (Section 8).

6. To discuss possible extensions of the scope of the methodology, i.e., from detecting
possible causality to building a more detailed model of stochastic type (Section 9).

7. To provide logical support for the findings by revisiting the carbon balance in the
atmosphere (Appendix A.1) and investigating additional processes that may have
caused increases in temperature (Appendices A.2–A.4).

2. Summary of the Stochastic Approach to Causality

The methodology in [6,7] is based on the impulse response function (IRF) between two
processes x(t), y(t), denoted as g(h) where h denotes time lag, based on the convolution

y(t) =

∞
∫

−∞

g(h)x(t − h)dh + v(t) (1)

where v(t) is another stochastic process representing the part that is not explained by the
causal link. To see that the function g(h) is the impulse response function (IRF) of the
system (x(t), y(t)), we set v(t) ≡ 0 and x(t) = δ(t) (the Dirac delta function, representing
an impulse of infinite amplitude at t = 0 and attaining the value of 0 for t 6= 0), and we
readily get y(t) = g(t).

On the other hand, if we set g(h) = b δ(h − h0) (with constant b and h0), which means
that the IRF is zero for every lag except for the specific lag h0, then Equation (1) becomes
y(t) = bx(t − h0) + v(t). This special case is equivalent to simply correlating y(t) with
x(t − h0) at any time instance t. It is easy to find (cf. linear regression) that in this case the
multiplicative constant b is the correlation coefficient of y(t) and x(t − h0) multiplied by
the ratio of the standard deviations of the two processes. In general, however, we expect
that the actual g(h) is not a Dirac delta function but a continuous one over some domain.
Thus, the IRF is a much more powerful tool than correlation as it integrates the correlations
in the entire spectrum of lags.

For any two processes x(t) and y(t), Equation (1) has infinitely many solutions in terms
of the function g(h) and the process v(t). An obvious and trivial one is g(h) ≡ 0, y(t) ≡ v(t).
The sought solution is the one that corresponds to the minimum variance of v(t), called the
least-squares solution. Equivalently, this solution maximizes the explained variance ratio:

e := 1 −
γυ

γy
(2)

where γυ and γy denote the variances of the processes v(t) and y(t), respectively. (This is
similar as in the correlation at a single time lag.) If the attained maximum e is close to zero,
this will mean that the two processes are uncorrelated and thus no causality condition can
exist between them (a non-causal system).

Otherwise, we may assume, without loss of generality, that processes x(t) and y(t)
are positively correlated (i.e., an increase in x(t) would result in an increase in y(t)). In
the opposite case (if the processes are negatively correlated), by multiplying one of the
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two series by −1 we make the correlation positive. Therefore, we impose a nonnegativity
constraint for the sought IRF,

g(h) ≥ 0 (3)

In the estimation of IRF, we may also impose a roughness constraint,

E ≤ E0 (4)

where E is the roughness of the IRF determined in terms of the second derivative of g(h):

E :=

∞
∫

−∞

(g′′ (h))2dh (5)

Further justification for the two constraints is provided in [6].
In applications, the continuous time representation is replaced by a discrete time one,

the IRF becomes a sequence of values gj, where j denotes the time lag, the infinite range of
the time lag h becomes a finite window of time lag j, specified in the interval [−J, J], the
integrals are replaced by sums, and the true values of statistics are replaced by estimates.
Furthermore, the roughness E is standardized as

ε :=
E

8∑
J
j=−J g2

j

(6)

where ε ranges in (0,1) for nonnegative gj. The determination of the IRF ordinates gj is thus
formulated as a constrained optimization problem, whose numerical solution is always
possible, simple and fast, and can be attained even by commonly available solvers, e.g., in
commercial or open source spreadsheet software.

We note that in applications, each of the directions x → y and y → x is investigated
separately, as there is no symmetry (or antisymmetry) in the produced IRFs in the two
directions. When we refer to direction y → x we mean that we interchange the time series
x and y and still estimate the IRF in the same way, as described in our equations in which
the direction x → y is assumed.

In applications investigating causality, we start by assuming a potentially hen-or-egg
(HOE) causal model with a fixed number of weights gj, j = −J, . . . , 0, . . . J, where in most
of the cases studied in [7] the value J = 20 was adopted, and this is also followed here.
Depending on the results of the estimation procedure, if e is non-negligible, the system is
deemed:

• Potentially HOE causal if we have gj > 0 for both some positive and some negative
lags j,

• Potentially causal if gj = 0 for all j < 0, and
• Potentially anticausal if gj = 0 for all j > 0

Note that anticausal means that the actual causality direction is opposite to that as-
sumed. These three cases are graphically illustrated in Figure 1. The adverb “potentially” in
the above characterizations highlights the fact that the conditions tested provide necessary
but not sufficient conditions for causality.

In a potentially causal (or anticausal) system, the time order is explicitly reflected in
the above characterizations. In a potentially HOE causal system, the time order needs to be
clarified by defining the principal direction. The most natural indices for this are: (a) the
time lag hc maximizing the absolute value of cross-covariance; (b) the mean (time average)
µh of the function g(h); and (c) the median h1/2 of the function g(h). We note that hc,
which was the basis in the original study [2], is completely independent from the g(h). The
other two, µh and h1/2, depend on the g(h) that is determined. However, extensive analyses
in [7] showed that their estimation is quite robust; for example, the use of the roughness
constraint, while affecting the resulting g(h), practically does not affect the values of µh and
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h1/2. In general, the characteristic lags µh and h1/2 do not differ substantially from each
other, and any of them could be chosen for further use. Here we prefer to note both, as well
as hc, as they all provide useful information about the relationship of the two processes
(like in the case of using both mean and median in the characterization of the probability
distribution of a single variable).
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Figure 1. Explanatory sketch for the definition of the different potential causality types. For each
graph, the mean µh is also plotted with a dashed line.

Needless to say, the literature offers a spectrum of alternative methods for estimating
an IRF, using different tools such as auto- and cross-correlations functions [8,9], power
spectra and cross-spectra based on the Fourier transform [10] or on a wavelet transform [11],
as well as principal component analysis [12]. The method described above has some
advantages over these alternatives, as it is a direct method that can work with time series of
observations per se, rather than transformations thereof, being easily understandable and
reproducible by any reader using simple computational means. Additionally, it is more
reliable as it avoids using uncertain estimates of autocorrelation functions or their more
uncertain transformations, such as the power spectrum, i.e., the Fourier transform of the
autocorrelation function. Note that here we also used autocorrelation, but only to validate
and confirm our results—not in the estimation procedure.

Additionally, as detailed in [6], our method differs conceptually and computationally
from the so-called “Granger causality” [13,14] (a misnomer, as the method does not infer
causality but prediction) and more recently reformulated in the study of Moraffah et al. [15],
which also discusses other similar methods. Finally, our method has substantial differences
from a framework proposed by Pearl and collaborators [16–18] as again discussed in detail
in [6].

3. Data and Case Studies

To explore the T-[CO2] relationship, case studies #23 and #24 in [7] used satellite-based
temperature series (UAH) for the lower troposphere and [CO2] data from Mauna Loa.
Temperature data of the other two satellite levels for the troposphere were also examined,
where the results were very similar to those reported for case studies #23 and #24.
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Here we present additional case studies, listed in Table 1. In addition to the satellite-
based temperature series in [7], here we use surface data (at 2 m) from the NCEP/NCAR
Reanalysis 1 by the National Centers for Environmental Prediction (NCEP) and the National
Center for Atmospheric Research (NCAR) [19], which are publicly available. The temporal
coverage of the NCEP/NCAR Reanalysis 1 includes data collected four times daily to
provide daily and monthly values from 1948 to the present at a horizontal resolution of
1.88◦ (∼210 km at the equator). It uses a state-of-the-art analysis and forecast system to
perform data assimilation using observations and a numerical weather prediction model.
The data assimilation and the model used are identical to the global system implemented
operationally at NCEP, except for the horizontal resolution. A large subset of the data is
available as daily and monthly averages.

Table 1. Main case studies and resulting summary indices. ∆t is the time step of differencing;
hc is the time lag maximizing the cross-covariance cyx(h), or equivalently the cross-correlation

ryx(h) := cyx(h)/
√

cxx(0)cyy(0); µh is the mean (time average) of the function g(h); h1/2 is the

median of the function g(h); e is the explained variance ratio; and ε is the roughness ratio. The case
studies #1 and #2 are contained in [7] as case studies #23 and #24 and are included in the table only
for comparison.

Case System # Direction hc µh h1/2 ryx(hc) e ε

Monthly timescale, varying ∆t

T: UAH; [CO2] : Mauna Loa, 1979–2020 (from [7]),
∆t = 1 year

1 ∆T → ∆ln[CO2] 5 7.70 6.35 0.48 0.31 1.3 × 10–5 *

2 ∆ln[CO2] → ∆T –5 –5.67 –5.49 0.48 0.23 7.3 × 10–4 *

T: NCEP/NCAR; [CO2] : Mauna Loa, 1958–2021,
∆t = 1 year

3 ∆T → ∆ln[CO2] 8 7.75 6.86 0.56 0.34 3.1 × 10–4 *

4 ∆ln[CO2] → ∆T –8 −6.31 –6.30 0.56 0.23 4.4 × 10–3 *

As #3 and #4, ∆t = 2 years
5 ∆T → ∆ln[CO2] 8 8.19 7.08 0.57 0.31 3.4 × 10–4 *

6 ∆ln[CO2] → ∆T –8 −6.31 –6.31 0.57 0.21 4.5 × 10–3 *

As #3 and #4, ∆t = 4 years 7 ∆T → ∆ln[CO2] 9 10.65 10.32 0.53 0.29 1.0 × 10–4 *

8 ∆ln[CO2] → ∆T –9 −6.28 –6.28 0.53 0.14 3.8 × 10–3 *

As #3 and #4, ∆t = 8 years 9 ∆T → ∆ln[CO2] 8 11.00 11.00 0.47 0.27 5.6 × 10–5 *

10 ∆ln[CO2] → ∆T –8 −6.55 –6.54 0.47 0.11 3.6 × 10–3 *

As #3 and #4, ∆t = 16 years
11 ∆T → ∆ln[CO2] 6 11.74 12.15 0.45 0.31 3.4 × 10–5 *

12 ∆T → ∆ln[CO2] 6 9.98 11.13 0.45 0.33 7.6 × 10–6

13 ∆ln[CO2] → ∆T –6 −6.33 –6.31 0.45 0.12 7.7 × 10–3 *

T: NCEP/NCAR; [CO2] : South Pole, 1975–2021,
∆t = 1 year

14 ∆T → ∆ln[CO2] 10 9.76 8.91 0.40 0.35 2.0 × 10–4 *

15 ∆ln[CO2] → ∆T –10 –8.51 –8.35 0.40 0.18 1.1 × 10–3 *

Annual timescale,∆t = 1 year

T: CMIP6 mean, SSP2-4.5; [CO2]: SSP2-4.5, 1850–2100,
w/o roughness constraint

16 ∆T → ∆ln[CO2] 0 –3.75 –6.20 0.36 0.90 0.095
17 ∆ln[CO2] → ∆T 0 9.95 15.30 0.36 0.15 0.46

As #16 and #17 but for 1850–2021
18 ∆T → ∆ln[CO2] 0 –6.23 –8.58 0.31 0.72 0.10
19 ∆ln[CO2] → ∆T 0 16.18 16.16 0.31 0.10 0.295

As #16 and #17 but with roughness constraint 20 ∆T → ∆ln[CO2] 0 –3.65 –5.55 0.36 0.84 3.5 × 10–5

21 ∆ln[CO2] → ∆T 0 6.86 1.63 0.36 0.13 7.7 × 10–3

As #18 and #19 but with roughness constraint 22 ∆T → ∆ln[CO2] 0 –7.34 –8.99 0.31 0.64 8.3 × 10–5

23 ∆ln[CO2] → ∆T 0 11.26 14.77 0.31 0.13 9.4 × 10–3

* The roughness was calculated without considering the second derivative at zero.

For CO2 concentration, in addition to the Mauna Loa data set, which we updated to
include the latest measurements of more than one year, we also added the South Pole data
set compiled by the US National Oceanic and Atmospheric Administration (NOAA). The
measurements began in 1975 and are taken for two cases, flask and in situ, of which we
used the former on a mean monthly basis, except in a few cases of missing data where we
filled in with in situ data.

Some of the analyses presented here refer to climate model outputs. Here we used the
mean (CMIP6 mean) of the output series of the Coupled Model Intercomparison Project
(CMIP6) averaged over the globe. The model outputs also go back to the past, extending
over the time period of 1850–2100. When we studied past behaviors, we used the data
up to 2021, as in the other case studies, but in some cases, we also used the entire data
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set up to 2100. In the latter case, among the scenarios provided, we used Scenario Shared
Socio-Economic Pathways 245 (SSP2-4.5, [20]).

The [CO2] time series used in climate models for scenario SSP2-4.5 have also been
retrieved and analyzed. We note, though, that these time series are given on an annual
timescale, unlike all other data that are provided on a monthly scale.

To check whether the results of our methodology would change if we chose any
particular member of the ensemble instead of the mean, we also retrieved outputs from a
single model, namely the UK Earth System Model (UKESM1 [21]). For the sake of brevity
of this paper, we give this latter analysis (whose results eventually do not differ from those
of the CMIP6 mean) in the Supplementary Information (and therefore we do not list it in
Table 1). The main case studies in which these data were used are summarized in Table 1,
along with the summary indices of gj that are related to potential causality. The details of
the case studies are given in the following sections. In all of them, we started by assuming
a potentially hen-or-egg (HOE) causal model with a fixed number of weights gj, namely 41
(i.e., J = 20, as in [7]).

Additional case studies examining additional data sets have also been performed but
are kept out of the body of the paper and contained in Appendices A.2–A.4. All data used
are available online for free and the related links are given in the Data availability section.

4. Investigating the Maximum Time Span That Modern Data Allow

The longest time series of systematic [CO2] measurements is that of Mauna Loa, which
began in 1958. The global temperature at 2 m of the NCEP/NCAR reanalysis series goes
back to 1948 and thus allows studying the T-[CO2] relationship for the period 1958–2022
(two additional decades of data in comparison to those studied in [7]).

As seen in Table 1, this provided better characteristics than the UAH/Mauna Loa case
examined in [7]: maximum cross correlation ryx(hc) = 0.56 against 0.48; explained variance
e = 34% against 31%, at time lags greater than or equal to those in [7] (close to 8 months).
As seen in Figure 2, again, we have a potentially causal system with the directionality
being ∆T → ∆ln[CO2] , while the possible causality ∆ln[CO2] → ∆T can be excluded as
not satisfying the necessary condition of time precedence.
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Figure 2. IRFs for temperature–CO2 concentration based on the NCEP/NCAR Reanalysis tempera-
ture at 2 m and Mauna Loa [CO2] time series, respectively—case studies #3 (left; ∆T → ∆ln[CO2] ;
potentially causal system) and #4 (right; ∆ln[CO2] → ∆T ; potentially anticausal system).
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5. Investigating the Possible Effect of Seasonality

To enrich our results and also check whether seasonality, as reflected in different
phases of [CO2] time series at different latitudes, could modify or possibly reverse the
detected causality relationship, we have conducted an additional analysis with the South
Pole [CO2] measurements, which began in 1975.

As seen in Table 1, this again provided better characteristics than the UAH/Mauna
Loa case examined in [7] in terms of explained variance (e = 35% against 31%) and time lags
higher than in [7] (close to 10 months). As seen in Figure 3, again, we have a potentially
causal system with the directionality being ∆T → ∆ln[CO2] , while again the possible
causality ∆ln[CO2] → ∆T can be excluded as not satisfying the necessary condition of
time precedence.
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Figure 3. IRFs for temperature–CO2 concentration based on the NCEP/NCAR Reanalysis temper-
ature at 2 m and the South Pole time series, respectively—case studies #14 (left; ∆T → ∆ln[CO2] ;
potentially causal system) and #15 (right; ∆ln[CO2] → ∆T ; potentially anticausal system).

Summarizing the two case studies in Sections 4 and 5—and similarly to what we
found in [7]—we note that:

• The system T-[CO2] appears to be potentially causal (unidirectional) in the direction
∆T → ∆ln[CO2] , rather than hen-or-egg causal.

• All characteristic time lags (hc, µh, h1/2) are positive in the direction ∆T → ∆ln[CO2]
(ranging from about 7 to about 10 months), and negative in the direction ∆ln[CO2] → ∆T .

• The explained variance ratio is greater in the direction ∆T → ∆ln[CO2] (about 1/3)
than in the direction ∆ln[CO2] → ∆T (around 1/5).

6. On the Timescale of Validity of Results

Overall, our results in this paper are those allowed by the available data at the time
periods and timescales resolved by those data—more than 6 decades at the monthly scale.
What would happen at other times—or if the data sets were longer and would resolve
intermediate or even longer timescales—we cannot tell. The climate system is too complex
to allow for hasty generalizations.

One may not exclude the case that the timescale of analysis is important in a detected
potential causality relationship and that the latter would change if the timescale changed.
This raises the question: up to which timescale does the validity of certain results hold?
Certainly, this timescale is a fraction (not greater than 1/2) of the length of the time
series. An indication can be obtained by inspecting the empirical cross-covariance function
and how this compares with the theoretical one. As shown in [6], the latter (cyx(h) :=
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cov
[

y(t + h), x(t)
]

) for lag h, is related to the autocovariance function of x, cxx(h) :=

cov[x(t + h), x(t)], by:

cyx(h) =

∞
∫

−∞

g(a)cxx(h − a)da (7)

Thus, cyx(h) can be estimated from the IRF and the empirical cxx(h) from the data.
Figure 4 shows the autocorrelation and cross-correlation functions (which are covariances
standardized by standard deviations). For the ∆T → ∆ln[CO2] case (i.e., case study #3;
upper panels of Figure 4), the reconstructed cross-correlation function, calculated from the
IRF (seen in Figure 2) and the empirical autocorrelation function of temperature (seen in the
upper left panel of Figure 4) using the discretized version of equation (7), agrees well with
the empirical function for time lags up to ±10 years, i.e., spanning 20 years (1/3 of the series
length). As time lag has an equivalence relationship with timescale [22], we may conclude
that the potential causality relationship detected is valid for timescales of two decades. For
comparison, the lower panels of Figure 4 show the reverse case, ∆ln[CO2] → ∆T , (case
study #4), where there is no longer good agreement between empirical and reconstructed
cross-correlation, which provides additional support for the claim that the true causality
link is ∆T → ∆ln[CO2] .

A final observation in Figure 4 is the appearance of six peaks in 20 years, which may
be interpreted as indicating a quasi-periodic behavior with an average period of 3.33 years,
i.e., much different from the annual. However, this does not reflect periodicity but rather
antipersistence imposed by the differencing operation, which necessarily results in some
negative autocorrelations [23].

A more direct technique to deal with timescales is to average the time series on
aggregate timescales and again investigate the causality relationships on these scales. This
technique could detect whether a similar relationship holds for the larger timescales. In our
case, since we are differencing the process, taking the average at a timescale k is equivalent to
taking a difference for a time step k (notice that (x2 − x1) + (x3 − x2) + . . . + (xk+1 − xk) =
xk+1 − x1). Therefore, to increase the timescales it suffices to increase the time step of
differencing. In Figure 2, this was 1 year. Now we increase the time step of differencing,
replacing the 1-year step with 2, 4, 8 and 16 years. The results are shown in Figure 5
and in Table 1 (case studies #5 to #13). They are essentially the same, except that, as the
differencing time step increases, the explained variance slightly decreases (from 0.34 down
to 0.27) in the direction ∆T → ∆ln[CO2] , and is again much higher than that in the direction
∆ln[CO2] → ∆T . The time lags increase in the former direction and are again negative in
the latter direction.

A characteristic pattern is that, as the time step increases, so does the rightmost
ordinate of the IRF, g20. This behavior, i.e., the increasing limb of gj beyond some time lag,
has been explained in [7] and is an artifact of an insufficient (small) window of time lag
for determining IRF. Thus, it suggests that a higher J should be used. It is quite reasonable
to expect that if the differencing time step increases, so should the window size do. In
particular, it is interesting to observe that in the lowest panel of Figure 5, corresponding
to a differencing time step of 16 years, while the time window of IRF is only 40 months (a
little more than 3 years), the IRF is a monotonously increasing function. Apparently, this is
an artifact due to the too small window of time lag. In such a case, it is also reasonable to
expect some nonnegative estimates of IRF ordinates for negative lags, even if the system is
unidirectionally causal. Indeed, this has appeared in the case of a differencing time step of
16 years, even though the lowest panel of Figure 5 shows the purely unidirectional version
of the IRF. This may create some ambiguity in the identification of causality, which we
analyze and resolve in the next section.
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Figure 4. (Left column) Empirical autocorrelation function for the period 1958–2021 and for monthly
timescale of (upper) the NCEP/NCAR ∆T time series and (lower) the ∆ln[CO2] time series for Mauna
Loa. (Right column) Empirical cross-correlation function of the two time series (continuous lines
in blue), compared with those reconstructed from the IRF and the autocorrelation function on the
left panel using the discretized version of Equation (7) (dashed line), for case studies (upper) #3 and
(lower) #4.
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Figure 5. Cont.
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Figure 5. IRFs for temperature–CO2 concentration based on the NCEP/NCAR Reanalysis tempera-
ture at 2 m and Mauna Loa time series, respectively, as in Figure 2, but for differencing time steps
equal (from upper to lower) 2, 4, 8 and 16 years; left: ∆T → ∆ln[CO2] (potentially causal system);
right: ∆ln[CO2] → ∆T (potentially anticausal system).

7. Possible Ambiguities and Disambiguation

In some applications, the detection of the type of causality, unidirectional or HOE, is
direct, but in other cases, it may be more difficult. This is illustrated in Figure 6. The left
panel is equivalent to that of Figure 2 (left) but not neglecting some very small ordinates
gj that originally the algorithm produced for negative j. The right panel is equivalent to
that of Figure 5 (bottom left) but letting the optimization algorithm produce gj for negative
j, which in this particular case seem not negligible. Both figure panels refer to the same
processes with the differencing time step being 1 and 16 years for the left and right panels,
respectively. For the 16-year step, in comparison to the IRF of Figure 5, which explains a
fraction 0.31 of the variance, that of Figure 6 yields a slightly higher explained variance,
0.325, while it has some small weights at negative lags. Should we conclude then that
it indicates a potential HOE, rather than unidirectional, causality? Even if our reply is
affirmative, it is important to note that the characteristic lags are again positive, suggesting
a principal direction ∆T → ∆ln[CO2] .

However, the reply is not necessarily affirmative. The explained variance of 0.31 is
associated with 21 IRF ordinates, while that of 0.325 is associated with 41 IRF ordinates. Is
it reasonable to accept 20 additional parameters for an increase in the explained variance
of 0.015?

Arguably, it is more reasonable in this case to change from a symmetric to a non-
symmetric window of time lag. Hence, we use a window of length 21 and slide it so that
the lowest nonzero time lag vary from −20 to 0. Only the case where this is 0 denotes a
potential unidirectional causality, where all 20 other cases correspond to potential HOE
causality. The resulting IRFs are plotted in Figure 7, while the fraction of explained variance
is plotted in Figure 8 as a function of the lowest nonzero time lag. It may be noticed that
the curve for the lowest time lag 0 is different from Figure 5 (bottom left). In particular, the
ordinate at 0 is higher in Figure 7, thus producing a concave shape of IFR. This is a result of
the fact that the window length is fixed, while the lowest ordinate no longer contributes to
the roughness (no second derivative can be determined for the lowest point and thus the
algorithm can increase the ordinate at 0 at no cost). In turn, the explained variance further
increased to 0.327.
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Clearly, the result of this investigation is a unidirectional, rather than HOE, potential
causality, as the explained variance reaches its maximum when the lowest j is 0.
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Figure 6. IRFs for temperature–CO2 concentration based on the NCEP/NCAR Reanalysis tempera-
ture at 2 m and Mauna Loa time series, respectively, also enabling negative lags (HOE) for causality
direction ∆T → ∆ln[CO2] and for differencing time step of 1 year (left, corresponding to Figure 2,
left) and 16 years (right, corresponding to Figure 5, bottom left).
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Figure 7. IRFs for temperature–CO2 concentration based on the NCEP/NCAR Reanalysis temper-
ature at 2 m and Mauna Loa time series, for 21 time lags, differencing time step of 16 years and
direction ∆T → ∆ln[CO2] . The lowest nonzero lag of each IRF is marked at the upper-right end of
its curve.
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Figure 8. Explained variance and median of IRF as a function of the lowest nonzero lag of the IRFs in
Figure 7 for the investigation of Section 7.

8. Comparing Observational Data with Model Results

Investigation of causality in systems that can be isolated from the environment is gen-
erally based on experiments. These are typically performed in laboratories and presuppose
control actions (intervention) by the experimenter. In the absence of such intervention, it
has long been regarded that we cannot say what causes what (Strotz and Wold, 1960 [24]).
In complex systems, such as Earth’s climatic system, experimentation is impossible. Yet it is
a widespread belief that climate models are faithful representations of the climatic system
and hence offer the possibility of so-called in silico experimentation (Hannart et al. [25]).
Furthermore, it has been claimed (Hannart and Naveau [26]) that “in silico experimentation
[is] the only option” and that “the increasing realism of climate system models renders such an in
silico approach plausible”. Such claims are epistemologically problematic. A hypothetical
“causality” that is incorporated in any model, particularly of a complex system, is not
necessarily identical to natural causality. In addition, the agreement of climate model
outputs with reality has been questioned (e.g., [27–31]).

Our methodology can help with this epistemological problem in two ways. First, it pro-
vides a different option to test causality, showing that the so-called in silico experimentation
is not the only option as claimed. Second, it can additionally test whether there is indeed
realism in the representation of causality of the climatic system by the climate models. As
already stated in the Introduction, our methodology, regardless of the detection of causality
per se, can define a type of data analysis that could shed light on modeling performance by
comparing observational data with model results. This is particularly useful in the case of
climate modeling. In other words, it could help in verifying or falsifying the commonly
accepted theory, which is incorporated in the climate models.

Specifically, we can test whether the climate model results are consistent with the
findings of our T-[CO2] causality analysis, which is based on measurements. To this aim, we
use climate model outputs as specified in Section 3, in the case studies #16 to #23 detailed
in Table 1. Numerical results of our analysis are shown in Table 1, and graphical depictions
of IRFs are shown in Figure 9 for the cases in which no roughness constraint is used and in
Figure 10 for the cases in which the roughness constraint is used.

Unfortunately, and unlike the [CO2] time series of measurements, which are available
on a monthly scale, the SSP2 [CO2] data series is provided on an annual scale. Therefore,
case studies #16 to #23 had to be made on an annual scale. If we did the analysis for the
period 1958–2021, as in case studies #3 and #4 (NCEP/NCAR Reanalysis temperature at
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2 m; and Mauna Loa [CO2] time series), the annual data would be too few to support
estimation of the IRFs (63 data values to estimate 41 coefficients). Therefore, in case studies
#16 to #23 we extended the period back to 1850, which is covered by the climate model
outputs. We performed separate analyses for the periods 1850–2100 (entire period covered
by climate models) and 1850–2021 (only the past).

The results of these case studies allow us to make the following observations.

1. There is no essential difference between the results for the periods 1850–2100 and
1850–2021.

2. While, as expected, the IRFs differ if they are calculated with or without constraining
roughness, the characteristic lags are similar in the two cases (with the exception of
h1/2 in cases #17 and #21).

3. In all cases, the lags are negative in the direction ∆T → ∆ln[CO2] and positive in
the direction ∆ln[CO2] → ∆T , suggesting a HOE causality with principal direction
∆ln[CO2] → ∆T .

4. Clearly, the finding in point 3, resulting from climate model outputs, is opposite
to the results found when real measurements are used (NCEP/NCAR Reanalysis
temperature and Mauna Loa [CO2] time series).

5. Oddly, while the principal direction suggested by the models is ∆ln[CO2] → ∆T , the
explained variance is impressively low (10–15%) in this direction and impressively
high (reaching 90%) in the opposite direction, ∆T → ∆ln[CO2] .

One may argue that the main result of this analysis, i.e., the point 4 above, may be
affected by the difference in the study periods, i.e., 1958–2021 for the real measurements and
1850–2021 for the model outputs. To examine whether the origin of the different behavior is
the time period or the system dynamics (actual vs. modeled), we performed an additional
analysis, graphically depicted in Figures 11 and 12.
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Figure 9. IRFs for temperature–CO2 concentration based on the CMIP6 mean temperature and
SSP2-4.5 CO2 time series, respectively, calculated without using the roughness constraint; upper row:
period 1850–2100—case studies #16 (left; ∆T → ∆ln[CO2] ) and #17 (right; ∆ln[CO2] → ∆T ); lower

row: period 1850–2021—case studies #18 (left; ∆T → ∆ln[CO2] ) and #19 (right; ∆ln[CO2] → ∆T ).
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Figure 10. IRFs for temperature–CO2 concentration based on the CMIP6 mean temperature and
SSP2-4.5 CO2 time series, respectively, as in Figure 9 but calculated using the roughness con-
straint; upper row: period 1850–2100—case studies #20 (left; ∆T → ∆ln[CO2] ) and #21 (right;
∆ln[CO2] → ∆T ); lower row: period 1850–2021—case studies #22 (left; ∆T → ∆ln[CO2] ) and #23
(right; ∆ln[CO2] → ∆T ).
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Figure 11. Empirical cross-correlation functions for monthly and annual timescales (continuous lines
in blue without markers and red lines with circles, respectively) for the data sets indicated in each
panel. In all panels, the plot for the monthly scale is that of the NCEP/NCAR data for T and Mauna
Loa data for [CO2], for the period 1958–2021. The upper-left panel also shows the cross-correlation
function reconstructed from the IRF and the autocorrelation function using the discretized version of
Equation (7) (dashed line).
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Figure 12. Empirical autocorrelation functions for monthly and annual timescales (continuous lines
in blue without markers and red lines with circles, respectively) for the data sets indicated in each
panel. In all panels, the plot for the monthly scale is that of the NCEP/NCAR data for T and Mauna
Loa data for [CO2], for the period 1958–2021.

The upper left panel of Figure 11 is similar to that in Figure 4 (upper right), where, in
addition, we have plotted the empirical cross-correlation function for the same data but
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averaged at the annual scale. This agrees relatively well with the empirical function at the
monthly scale, which provides a basis for the comparisons that follow.

The empirical cross-correlation function at the monthly scale is copied in all other
panels of Figure 11 and serves as a basis for the comparisons. In the upper right panel,
where we replaced the Mauna Loa time series for [CO2] with the CMIP6 time series for
the same period, 1958–2021, while keeping the NCEP/NCAR time series for T, there is
still agreement of the annual with the monthly cross-correlations. However, when we also
replace the NCEP/NCAR time series for T with the CMIP6 series (lower left plot), the
two plots decouple. The decoupling is even more prominent if we go to the longer period
1850–2021 (lower right panel).

Similar observations can be made about autocorrelations in Figure 12. In particular,
the CMIP6 autocorrelation of T decouples from the actual one for both periods 1958–2021
and 1850–2021, while the two latter do not differ substantially from each other. These
observations allow us to assert that the main cause of disagreement has to do with problems
with the modeling of system dynamics rather than the time period of study.

9. Discussion and Further Results

The mainstream assumption of the causality direction [CO2] → T makes a compelling
narrative, as everything is blamed on a single cause, the human CO2 emissions. Indeed,
this has been the popular narrative for decades. However, popularity does not necessarily
mean correctness, and here we have provided strong arguments against this assumption.
Since we have identified atmospheric temperature as the cause and atmospheric CO2
concentration as the effect, one may be tempted to ask the question: What is the cause of
the modern increase in temperature? Apparently, this question is much more difficult to
reply to, as we can no longer attribute everything to any single agent.

We do not claim to have the answer to this question, whose study is far beyond the
article’s scope. Neither do we believe that mainstream climatic theory, which is focused
upon human CO2 emissions as the main cause and regards everything else as feedback
of the single main cause, can explain what happened on Earth for 4.5 billion years of
changing climate.

Nonetheless, as a side product, in the Appendices to the paper, we provide several
indications of the following:

1. The dependence of the carbon cycle on temperature is quite strong and indeed major
increases of [CO2] can emerge as a result of temperature rise. In other words, we show
that the natural [CO2] changes due to temperature rise are far larger (by a factor > 3)
than human emissions (Appendix A.1).

2. There are processes, such as the Earth’s albedo (which is changing in time as any other
characteristic of the climate system), the El Niño–Southern Oscillation (ENSO) and
the ocean heat content in the upper layer (represented by the vertically averaged tem-
perature in the layer 0–100 m), which are potential causes of the temperature increase,
unlike what is observed with [CO2], their changes precede those of temperature
(Appendices A.2–A.4).

3. On a large timescale, the analysis of paleoclimatic data supports the primacy of the
causal direction T → [CO2], even though some controversy remains about this issue
(Appendix A.5).

In terms of the carbon cycle (point 1 above), several physical, chemical, biochemical
and human processes are involved in it. The human CO2 emissions due to the burning
of fossil fuels have largely increased since the beginning of the industrial age. However,
the global temperature increase began succeeding the Little Ice Period, at a time when
human CO2 emissions were very low. To cast light on the problem, we examine the issue
of CO2 emissions vs. atmospheric temperature further in the Supplementary Information,
where we provide evidence that they are not correlated with each other. The outgassing
from the sea is also highlighted sometimes in the literature among the climate-related
mechanisms. On the other hand, the role of the biosphere and biochemical reactions is often
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downplayed, along with the existence of complex interactions and feedback. This role can
be summarized in the following points, examined in detail and quantified in Appendix A.1.

• Terrestrial and maritime respiration and decay are responsible for the vast majority of
CO2 emissions [32], Figure 5.12.

• Overall, natural processes of the biosphere contribute 96% to the global carbon cycle,
the rest, 4%, being human emissions (which were even lower in the past [33]).

• The biosphere is more productive at higher temperatures, as the rates of biochemical re-
actions increase with temperature, which leads to increasing natural CO2 emission [2].

• Additionally, a higher atmospheric CO2 concentration makes the biosphere more
productive via the so-called carbon fertilization effect, thus resulting in greening of the
Earth [34,35], i.e., amplification of the carbon cycle, to which humans also contribute
through crops and land-use management [36].

In addition to the biosphere, there are other factors that drive the Earth’s climate in
periodic and non-periodic way. Orbital parameters of Earth’s revolution change quasi-
cyclically in a multi-millennial scale (variations in eccentricity, axial tilt, and precession of
Earth’s orbit), as interpreted by Milanković [37–41], and changes in the orbit geometry in-
fluence the amount of insolation. The non-periodic drivers of the Earth’s climate variability
include volcanic eruptions and collisions with large extraterrestrial objects, e.g., asteroids.
An important climate driver is water in its three phases [33]. Another apparent factor is
solar activity (including solar cycles) and the solar radiation (im)balance on Earth (e.g.,
albedo changes; see [33] and Appendix A.2). Notably, a recent study [42], by assessing
20 years of direct observations of energy imbalance from Earth-orbiting satellites, showed
that the global changes observed appear largely from reductions in the amount of sunlight
scattered by Earth’s atmosphere.

ENSO and ocean heating, both of which affect temperature, are examined in
Appendices A.3 and A.4, respectively. The results of Appendices A.2–A.4 are summa-
rized in the schematic of Figure 13. Changes in all three examined processes, albedo, ENSO
and the upper ocean heat, precede in time the changes in temperature and even more so
those in [CO2]. Generally, the time lags shown in Figure 13 complete a consistent picture
of potential causality links among climate processes and always confirm the T → [CO2]
direction.
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Figure 13. Schematic of the examined possible causal links in the climatic system, with noted types
of potential causality, HOE or unidirectional, and its direction. Other processes, not examined here,
could be internal of the climatic system or external.
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The examined processes in the Appendices are internal to the climatic system. Other
processes affecting T, not examined here, could also be external (e.g., solar and astronomi-
cal [43,44] and geological [45–49]). Generally, in complex systems, an identified causal link,
even though it gives some explanation of a phenomenon, raises additional questions, e.g.,
what caused the change in the identified cause, etc. In turn, causal links in complex systems
may form endless sequences. For this reason, it is naïve to expect complete answers to
problems related to complex systems or to assume that a complex system is in permanent
equilibrium and that an external agent is needed to “kick” it out of the equilibrium and
produce change. Yet the investigation of a single causal link between two processes, as
is the focus of this paper, provides useful information, with possible significant scientific,
technical, practical, epistemological and philosophical implications. These are not covered
in this paper. Readers interested in epistemological and philosophical aspects of causality
are referred to Koutsoyiannis et al. [6], while those interested in the perennial changes in
complex systems are referred to Koutsoyiannis [50,51].

As already clarified, the scope of our work is not to provide detailed modeling of
the processes studied but to check causality conditions. We highlight the fact that the
relationship we established explains only about 1/3 of the actual variance of ∆ln[CO2].
This is not negligible for investigating causality, but also leaves a margin for many other
climatic factors to act.

Nonetheless, our results can certainly be improved if we change our scope to more
detailed modeling. To illustrate this, we provide the following toy model. Based on our
result that the T-[CO2] system is potentially causal with direction ∆T → ∆ln[CO2] , we
estimate ∆ln[CO2] as

∆ln[CO2] =
20

∑
j=0

gj∆Tτ−j + µv (8)

and we proceed a step further, assuming that the mean µv also depends on past temperature,
averaged at timescale m, i.e.,

µv = α(Tm − T0) (9)

where Tm is the average temperature of the previous m years, and α and T0 are constants
(parameters). Such a simple linear relationship is supported by the above-listed points
related to the productivity of the biosphere. Equation (9) will result in negative values µv if
Tm < T0 and positive otherwise.

By re-evaluating the IRF coordinates gj simultaneously with the parameters of Equa-
tion (9), we find the modified version of the IRF plotted in Figure 14. The optimized
additional parameters are m = 4 (years), α = 0.0034, T0 = 285.84 K. Similarly to [6],
we used a common spreadsheet software solver to perform the optimization, adding the
two parameters α and T0 to the unknown coordinates gj of the IRF and performing the
(nonlinear) optimization for all unknowns (m was found by trial-and-error). A graphical
comparison of the actual ∆ln[CO2] and [CO2] with those simulated by the model of Equa-
tions (8) and (9) is given in Figure 15. The explained variance for ∆ln[CO2] was drastically
increased from 34% to 55.5% and that for [CO2] is an impressive 99.9%.

For the convenience of the readers who are interested in repeating the calculations, we
also give a parametric expression of IRF and summarize the toy model as:

∆ln[CO2] =
20
∑

j=0
gj∆Tτ−j + µv,

gj = 0.00076 j0.67e−0.2j/K, µv = 0.0034 (T4/K − 285.84)
(10)

(where K is the unit of kelvin).
We emphasize, however, that we do not exploit the impressive result of explained

variance of 99.9% to assert that we have built a decent model, even though this toy model
is both accurate (in the lower panel of Figure 15, the simulated curve is indistinguishable
from the actual) and parsimonious (the model expression in (10) contains only 5 fitted
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parameters). We prefer to highlight the fact that the hugely complex climate system entails
high uncertainty, and its study needs reliable data that provide the basis for the modeling
and testing of hypotheses.
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Figure 14. Modified IRF for temperature–CO2 concentration based on the NCEP/NCAR Reanalysis
temperature at 2 m and Mauna Loa time series, respectively, similar to Figure 2 but with IRF
coordinates simultaneously optimized with the parameters of Equation (9).
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Figure 15. Comparison of the actual ∆ln[CO2] (upper) and [CO2] (lower) with those simulated by
the model of Equations (8) and (9).
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10. Conclusions

With reference to points 1–7 of the Introduction setting the paper’s scope, the results
of our analyses can be summarized as follows.

1. All evidence resulting from the analyses of the longest available modern time series of
atmospheric concentration of [CO2] at Mauna Loa, Hawaii, along with that of globally
averaged T, suggests a unidirectional, potentially causal link with T as the cause and
[CO2] as the effect. This direction of causality holds for the entire period covered by
the observations (more than 60 years).

2. Seasonality, as reflected in different phases of [CO2] time series at different latitudes,
does not play any role in potential causality, as confirmed by replacing the Mauna
Loa [CO2] time series with that in South Pole.

3. The unidirectional T → ln[CO2] potential causal link applies to all timescales resolved
by the available data, from monthly to about two decades.

4. The proposed methodology is simple, flexible and effective in disambiguating cases
where the type of causality, HOE or unidirectional, is not quite clear.

5. Furthermore, the methodology defines a type of data analysis that, regardless of
the detection of causality per se, assesses modeling performance by comparing ob-
servational data with model results. In particular, the analysis of climate model
outputs reveals a misrepresentation of the causal link by these models, which suggest
a causality direction opposite to the one found when the real measurements are used.

6. Extensions of the scope of the methodology, i.e., from detecting possible causality
to building a more detailed model of stochastic type, are possible, as illustrated by
a toy model for the T-[CO2] system, with explained variance of [CO2] reaching an
impressive 99.9%.

7. While some of the findings of this study seem counterintuitive or contrary to main-
stream opinions, they are logically and computationally supported by arguments and
calculations given in the Appendices.

Overall, the stochastic notion of a causal system, based on the concept of the impulse
response function, proved to be very effective in studying demanding causality problems.
A crucial characteristic of our methodology is its direct use of the data per se, in contrast
with other methodologies that are based on uncertain estimates of autocorrelation functions
or on the more uncertain tool of the power spectrum, i.e., the Fourier transform of the
autocorrelation function. The methodology has the potential for further advances, as we
first reported here (e.g., the asymmetric time lag window, the definition of a type of data
analysis to be used in assessing modeling performance, and the extensions of its scope
from detecting possible causality to building a more detailed model).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sci5030035/s1: Section SI1, Additional analysis of climate model
behavior; Section SI2, On correlations of temperature with CO2 emissions.
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scale from the climexp (http://climexp.knmi.nl/ (accessed on 1 January 2023) platform, namely from
http://climexp.knmi.nl/data/inair_0-360E_-90-90N_n.dat and http://climexp.knmi.nl/getindices.
cgi?WMO=CDIACData/maunaloa_f&STATION=Mauna_Loa_CO2 (accessed on 1 January 2023).
The South Pole CO2 concentration data are provided by the Global Monitoring Laboratory of the
USA’s National Oceanic and Atmospheric Administration (NOAA) at https://gml.noaa.gov/dv/
data/index.php?parameter_name=Carbon%2BDioxide&site=SPO (accessed on 1 January 2023). The
data retrieved are “Monthly Averages” for Type “Flask” and “Insitu”. The CO2 time series used
in climate models have been downloaded from https://gmd.copernicus.org/articles/13/3571/20
20/gmd-13-3571-2020-supplement.zip (accessed on 1 January 2023); from the Excel file provided,
the data from the column “CO2 ppm World” of the tabs “T2—History Year 1750 to 2014” and
“T5—SSP2-4.5” have been retrieved. The climate model outputs were downloaded from the climexp
platform, http://climexp.knmi.nl/selectfield_cmip6.cgi (accessed on 1 January 2023); specifically,
from the “Monthly CMIP6 scenario runs”, the globally averaged time series on “CMIP6 mean over
all members” and “UKESM1-0-LL f2” have been derived through the platform. The CERES data
were downloaded from https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SSF1degEd41Selection.jsp
(accessed on 17 March 2023). The SOI data were downloaded from https://www.ncdc.noaa.gov/
teleconnections/enso/indicators/soi/ (accessed on 17 March 2023). The data on monthly global
upper ocean mean temperature were downloaded from http://climexp.knmi.nl/getindices.cgi?
WMO=NODCData/temp100_global&STATION=global_upper_ocean_mean_temperature (accessed
on 17 March 2023).
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Appendix A.

Appendix A.1. Notes on Carbon Cycle and its Dependence on Temperature

The carbon cycle is typically presented as a system with components that are in
permanent equilibrium, except for the perturbation caused by anthropic activities. For
example, the recent (2022) comprehensive study by Friedlingstein et al. [52], in its Figure 2
shows an absolute equilibrium in both the terrestrial and maritime parts of Earth, with
inputs and outputs matching each other (±130 Gt C/year for the terrestrial part and
±80 Gt C/year for the maritime part), to which a human perturbation (9.6 ± 0.5 Gt C/year
from the fossil fuel CO2 emissions and 1.2 ± 0.7 Gt C/year from land-use change) is
imposed and then distributed into several components. This representation is misleading,
missing the large changes (by orders of magnitude) in the historical evolution of the
abundance of CO2 in Earth’s atmosphere. A different approach and account has recently
been provided by Stallinga [53], according to whom humans add 38 Gt of per year to the
atmosphere-ocean system, a quantity equivalent to 10.4 Gt C/year.

Here, we follow the IPCC’s [32] account in its recent (2021) Assessment Report (AR6).
Its schematic (Figure 5.12 in that Report) does not hide (a) the imbalances in the different
parts of Earth and (b) the fact that the natural carbon inputs and outputs in the atmosphere
change over time—even though the IPCC’s schematic implicitly assumes that “natural” is
the budget that occurred in the preindustrial age (1750) and that any change that occurred
since is anthropogenic. Interestingly, in an alternative view by Hansen et al. [54], civilization
always produced greenhouse gases and aerosols, and humans likely contributed to the
increase of both in the past 6000 years, thus resulting in climate forcings.

Based on the IPCC’s representation, we have summarized in Figure A1 the information
given in the IPCC’s schematic, in terms of annual carbon balance. When seen in the entire
picture, the human emissions due to fossil fuel combustion (9.4 Gt C/year including cement
production) is a small part (4%) of the total CO2 inflows to the atmosphere.

http://climexp.knmi.nl/
http://climexp.knmi.nl/data/inair_0-360E_-90-90N_n.dat
http://climexp.knmi.nl/getindices.cgi?WMO=CDIACData/maunaloa_f&STATION=Mauna_Loa_CO2
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https://gml.noaa.gov/dv/data/index.php?parameter_name=Carbon%2BDioxide&site=SPO
https://gml.noaa.gov/dv/data/index.php?parameter_name=Carbon%2BDioxide&site=SPO
https://gmd.copernicus.org/articles/13/3571/2020/gmd-13-3571-2020-supplement.zip
https://gmd.copernicus.org/articles/13/3571/2020/gmd-13-3571-2020-supplement.zip
http://climexp.knmi.nl/selectfield_cmip6.cgi
https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SSF1degEd41Selection.jsp
https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
http://climexp.knmi.nl/getindices.cgi?WMO=NODCData/temp100_global&STATION=global_upper_ocean_mean_temperature
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Figure A1. Annual carbon balance in the Earth’s atmosphere in Gt C/year, based on the IPCC [32]
estimates. The balance of 5.1 Gt C/year is the annual accumulation of carbon (in the form of CO2) in
the atmosphere.

The greatest part of the inflows is due to the respiration of the biosphere, i.e., the
biochemical reaction whereby living organisms convert organic matter (e.g., glucose) to
CO2, releasing energy and consuming molecular oxygen [32]. As seen in Figure A1 (and in
several publications, e.g., [55]), respiration has increased in recent years, the main reason
for this being the increased temperature. Photosynthesis, the biochemical process that
removes CO2 from the atmosphere, producing carbohydrates in plants, algae and bacteria
using the energy of light [32], has also increased, resulting in the greening of Earth [34–36]
due to the increased atmospheric concentration of CO2, which is plants’ food.

It is not difficult to quantify the increase in respiration due to the temperature rise.
The mechanism has been known in chemistry for more than a century. The rate of a
chemical reaction kT at temperature T is an increasing function of T, given by the Arrhenius
equation [56]:

kT = Aexp
(

−
a

R*T

)

(A1)

where A and a are free parameters and R* is the universal gas constant. Typically, the
rate is measured in moles per unit volume, but it can readily be expressed in mass units.
Expressing the relationship at a reference temperature T0 and dividing with (A1), we obtain:

kT

k0
= exp

(

−
a

R*

(

1
T
−

1
T0

))

(A2)

Taking the logarithms and setting ∆T := T − T0 we find

ln
(

kT
k0

)

= − a
R*

(

1
T − 1

T0

)

= a
R*T0

(

1 − T0
T

)

= a
R*T0

(

∆T
T0+∆T

)

= a
R∗T0

(

∆T
T0

−
(

∆T
T0

)2
+
(

∆T
T0

)3
− . . .

) (A3)

and assuming that ∆T/T0 is small (nb., T0 is of the order of 300 K, while typical values of
∆T is of the order of 1–10 K). We can neglect all terms beyond first order and find:

kT

kT0
= exp

(

a

R*T2
0

∆T

)

=

(

exp

(

a

R*T2
0

))∆T

= Q∆T
1 = Q∆T/10

10 (A4)
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where

Q1 := exp

(

a

R*T2
0

)

, Q10 := Q10
1 (A5)

Notice that both Q1 and Q10 are dimensionless numbers > 1. The exponential expression in
which Q10 is raised to power ∆T/10 is known as the Q10 model [57].

The exponential increase of the process rate with temperature is a general chemical
behavior, also extending to biochemical reactions. This is not a hypothesis or speculation
but a proven fact that is widely used in engineering. For example, the metabolic rate
in wastewater and sewer systems is expressed by the so-called effective BOD (EBOD,
with BOD standing for biochemical oxygen demand). It has been known for more than
75 years that the metabolic rate increases with temperature, as microorganism activity
generally increases with temperature. The relationship of EBOD with temperature has been
expressed by Pomeroy and Bowlus [58] as [EBOD] = [BOD] (1.07)T−20, which is similar to
(A4), where the reference temperature is T0 = 20 ◦C and Q1 = 1.07 (Q10 = 2.0). The latter
relationship is the standard of engineering design in sewer systems.

To apply this framework to find the increase of respiration in the last 65-year period
investigated in our study, we first retrieved the global temperature separately for land and
sea from the NCEP/NCAR Reanalysis data set. These are shown on an annual timescale
in Figure A2. The resulting linear trends, also shown in Figure A2, yield an increase
∆T = 1.69 ◦C for the terrestrial and 0.78 ◦C for the maritime part for the 65-year period.

Now the literature gives representative average Q10 values of 3.05 for terrestrial
respiration [57] and 4.07 for maritime respiration [59]. If RB and RE denote the respiration
rate at the beginning and the end of the 65-year period, and ∆R := RE − RB, then according
to (A4),

RE

RB
= Q∆T/10

10 (A6)

and hence

∆R = RE

(

1 −
1

Q∆T/10
10

)

(A7)
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Figure A2. Evolution of global land (terrestrial) and sea (maritime) temperature at 2 m from the
NCEP/NCAR Reanalysis data set, retrieved from the ClimExp platform, and resulting slopes of
linear trends.
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For the above given values of Q10 and ∆T, the expression in parentheses becomes
0.172 for the terrestrial part and 0.104 for the maritime part. Multiplying these by the
RE values shown in Figure A1, i.e., 136.7 and 77.6 Gt C/year, respectively, we find
∆R = 23.5 and 8.1 Gt C/year, respectively, i.e., a total global increase in the respiration
rate of ∆R = 31.6 Gt C/year. This rate, which is a result of natural processes, is 3.4 times
greater than the CO2 emission by fossil fuel combustion (9.4 Gt C /year including cement
production).

Appendix A.2. Investigation of Causality between Albedo and Atmospheric Temperature

There are several factors causing changes to the Earth’s temperature. Solar radiation is
a principal one, yet the changes in it have not been substantial at timescales of a few years.
However, the Earth’s response to solar radiation may change on such scales. Here, we
investigate the changes of Earth’s albedo. In the 21st century, the albedo at the top of the
atmosphere (TOA) can be estimated from satellite data. Specifically, this can be done using
the data from the ongoing project Clouds and the Earth’s Radiant Energy System (CERES).
This is part of NASA’s Earth Observing System, designed to measure both solar-reflected
and Earth-emitted radiation from the TOA to the Earth’s surface. The data we used here are
from the TERRA platform for the monthly timescale and are available online [60] for the
period of March 2000 to date. The global TOA albedo was calculated as the ratio for each
month of the globally integrated observed TOA shortwave flux (all-sky) over the globally
observed TOA solar insolation flux. The resulting time series is shown in Figure A3. A
falling linear trend of –0.0019/decade is also shown in the figure. A falling trend means that
less solar radiation is reflected by the Earth, which may result in an increase in temperature.
For the entire period, the decline of the albedo is about 0.004. As the average incoming solar
radiation (insolation), according to the same data set, is 340 W/m2, this implies a difference
(imbalance) of received energy by Earth of 0.004 × 340 = 1.4 W/m2. This result does not
disagree with that of Hansen et al. [54], who found that in the period January 2015 through
March 2022, the global absorbed solar energy is +1.01 W/m2 higher than the mean for the
first 10 years of data (2000–2009). These figures are greater than the average imbalance (net
absorbed energy) of the Earth, which, if calculated from the ocean heat content data, is
about 0.4 W/m2 [33]. According to mainstream science, this imbalance is attributed to the
increase of [CO2], but the analyses in this study do not support this hypothesis. Moreover,
it is hard to see how the albedo fall could be caused by increased [CO2] (and for this reason,
it is usually blamed on aerosols).
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Figure A3. TOA albedo time series (continuous line), as provided by NASA’s Clouds and the Earth’s
Radiant Energy System (CERES), along with linear trend (dashed line).
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However, the potential causal link of albedo (α) with atmospheric T can be more
thoroughly investigated by the stochastic framework discussed here. The resulting char-
acteristics are shown in Table A1 and the resulting IRFs are shown in Figure A4. Notice
that, as an increase of α is expected to cause a decrease of T, we changed the sign in albedo
differences (−∆α) so as to have a positive correlation with temperature differences (∆T).
The IRF determined suggests a potential HOE causation, with principal direction α → T
and time lags of 1–3 months. However, the explained variance is small, 13%.

Table A1. Summary indices of the case studies related to albedo. Data are on a monthly timescale
and the time step of differencing is 1 year; for explanation of symbols see Table 1.

Case System # Direction hc µh h1/2 ryx(hc) e ε

Albedo, α: CERES, TERRA;
T: NCEP/NCAR; period: 2000–2022

24 −∆α → ∆T 3 1.08 2.90 0.24 0.13 9.1 × 10–4

25 ∆T → −∆α –3 –0.31 –2.46 0.24 0.06 3.6 × 10–4
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Figure A4. IRFs for albedo–temperature based on the CERES albedo time series and the NCEP/NCAR
Reanalysis temperature at 2 m, respectively—case studies #24 (left; −∆α → ∆T];) and #25 (right;
∆T → −∆α ).

Appendix A.3. Investigation of Causality between El Niño, Atmospheric Temperature and CO2

A second process that is known to affect atmospheric temperature globally is the El
Niño–Southern Oscillation (ENSO) (see [12,61] and a recent study by Kundzewicz et al. [62]
for details). ENSO is associated with irregular variations in sea surface temperature and air
pressure over the tropical Pacific Ocean. Several indices associated with ENSO are used in
climatic studies, among which the most popular is US NOAA’s Southern Oscillation Index
(SOI), the time series of which is plotted in Figure A5.

Our stochastic methodology was previously applied with SOI along with satellite tem-
perature data for the period 1979–2021 in [7]. Here we repeat the investigation replacing the
temperature data with those of the NCEP/NCAR reanalysis and expanding the data back
to 1951 (the beginning of the availability of SOI data) and forth to 2022. We also examined
the potential causality between SOI and [CO2]. In both cases, we tested differences with a
time step of differencing of 1 year (thus reducing the effect of seasonality) and to make the
correlation positive, we used −∆SOI (as in the albedo case).
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Figure A5. SOI time series (continuous line) along with rolling (right-aligned) 10-year average
(dashed line). Negative and positive values indicate the El Niño and La Niña phases, respectively.

The results are shown in Table A2, Figures A6 and A7. The principal directions are
SOI → T and SOI → [CO2] . In the former case, the explained variance is 33%, and the
causality type is HOE but very close to unidirectional with a time lag of 4 months. In the
latter case, the explained variance is 30%, and the causality type is unidirectional with a lag
of about a year.

Table A2. Summary indices of the case studies related to ENSO. Data are on a monthly timescale and
the time step of differencing is 1 year; for explanation of symbols see Table 1.

Case System # Direction hc µh h1/2 ryx(hc) e ε

SOI: NOAA; T: NCEP/NCAR;
period: 1951–2022

26 −∆SOI → ∆T 3 4.14 3.85 0.46 0.33 8.1 × 10–4

27 ∆T → −∆SOI 3 –2.15 –0.93 0.46 0.30 2.3 × 10–3

SOI: NOAA; [CO2]: Mauna Loa,
period: 1958–2022

28 −∆SOI → ∆ln[CO2] 11 11.62 11.15 0.32 0.24 6.6 × 10–4

29 ∆ln[CO2] → −∆SOI –11 –3.73 –3.84 0.32 0.08 0
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Figure A6. IRFs for ENSO–temperature based on the SOI time series and the NCEP/NCAR Re-
analysis temperature at 2 m, respectively—case studies #26 (left; −∆SOI → ∆T];) and #27 (right;
∆T → −∆SOI ).
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Figure A7. IRFs for ENSO–[CO2] based on the SOI and the Mauna Loa time series, respectively—case
studies #28 (left; −∆SOI → ∆ln[CO2]] ;) and #29 (right; ∆ln[CO2] → −∆SOI ).

Appendix A.4. Investigation of Causality between Ocean Heat Content, Atmospheric Temperature
and CO2

A third process examined in connection to both T and [CO2] is the heat content of
the upper-layer ocean. This is indirectly represented by data of the upper ocean mean
temperature of the layer 0–100 m [63] (OMT0–100), also known as Vertically Averaged
Temperature Anomaly (0–100 m layer) [64]. These are based on historical ocean temperature
data, bathythermograph data and Argo data [65] and are made available at the timescale of
three months by the National Oceanographic Data Center of the US NOAA [64], as well as
by the ClimExp platform, which we used to download the data. The time series, starting in
1955, is plotted in Figure A8.
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Figure A8. OMT0–100 time series (continuous line) along with rolling (right-aligned) 10-year average
(dashed line).

The results of the stochastic analyses are shown in Table A3, Figures A9 and A10.
The principal directions are OMT0–100 → T and OMT0–100 → [CO2] and the causality
type is HOE. In the former case, the explained variance is substantial, 53%, and the time
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lag is 3–7 months, depending on the metric used (nb., the time lags in Table A3 are given
in 3-monthly steps). In the latter case, the explained variance is 35%, and the time lag is
greater, 7–9 months.

Table A3. Summary indices of the case studies related to OMT0–100. Data are on a three-month
timescale and the time step of differencing is 1 year; for explanation of symbols see Table 1.

Case System # Direction hc µh h1/2 ryx(hc) e ε

OMT0–100: NOAA; T: NCEP/NCAR;
period: 1955–2022

30 ∆OMT0–100 → ∆T 0 2.42 0.98 0.68 0.53 7.1 × 10–3

31 ∆T → ∆OMT0–100 0 –2.15 –0.93 0.68 0.52 3.8 × 10–3

OMT0–100: NOAA; [CO2]: Mauna
Loa; period: 1958–2022

32 ∆OMT0–100 → ∆ln[CO2] 2 2.22 2.93 0.46 0.35 5.8 × 10–4

33 ∆ln[CO2] → ∆OMT0–100 –2 –2.73 –2.82 0.46 0.21 5.6 × 10–3
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Figure A9. IRFs for upper ocean temperature—atmospheric temperature based on the OMT0–100
and the NCEP/NCAR Reanalysis data, respectively—case studies #30 (left; ∆OMT0–100 → ∆T];)
and #31 (right; ∆T → ∆OMT0–100).
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Figure A10. IRFs for upper ocean temperature—[CO2] based on the OMT0–100 and the NCEP/NCAR
Reanalysis data, respectively—case studies #32 (left; ∆OMT0–100 → ∆ln[CO2]] ;) and #33 (right;
∆ln[CO2] → ∆OMT0–100).
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Appendix A.5. Notes on the T-[CO2] Relationship on Large Timescales

While the scope of this study is the modern period covered by reliable CO2 concen-
tration measurements (about six decades), it may be useful to refer to studies that used
paleoclimatic proxies to assess the T-[CO2] relationship on much larger timescales. Berner
and Kothavala [66] studied the entire phanerozoic (the last 530 million years) and asserted
that “over the long term there is indeed a correlation between CO2 and paleotemperature”, while
their Figure 13 showed that the atmospheric [CO2] was much higher (up to 27 times) than
the current one for most of the time during the phanerozoic. They also emphasized the
“importance of considering ALL factors affecting CO2 when modelling the long term carbon cycle
and not concentrating [on] only one cause”. On the other hand, Veizer et al. [67] presented
evidence for decoupling atmospheric CO2 and global climate during the phanerozoic,
questioning the role of the (partial pressure of) CO2 as the main driving force of past global
(long-term) climate changes, at least during two of the four main cool climate modes of
the phanerozoic.

Several studies, based on paleoclimatic reconstructions and mostly the Vostok ice
cores [68,69] covering the most recent ~400 thousand years, have identified the change of T
as the cause and that in [CO2] as the effect, with estimates of the time lag varying from 50 to
1000 years, depending on the time period and the particular study [23,70–72]. Claims that
CO2 concentration leads (i.e., a negative lag) have not generally been made in these studies.
At most, a synchrony claim has been sought on the basis that the estimated positive lags are
often within the 95% uncertainty range [73], while in one of them [72], it has been asserted
that a “short lead of CO2 over temperature cannot be excluded”.

Synchrony was also claimed for the last deglacial warming in another study by Par-
renin et al. [74], who stated that they found no significant asynchrony between Antarctic
temperature and atmospheric [CO2]. For the same period, another study by Shakun
et al. [75] gave different lead-lag relationships for the north and south hemispheres. Gener-
ally, it appears that the issue remains controversial, as illustrated, for example, in a recent
report (2021) by NOAA (in the framework of Paleo Perspectives [76]), which states: “While
it might seem simple to determine cause and effect between carbon dioxide and climate from which
change occurs first, [. . .] the determination of cause and effect remains exceedingly difficult.”

On the other hand, a convincing explanation about why, in the long run, change in
temperature leads and in CO2 concentration follows has been given by Roe [40], who
demonstrated that in the Quaternary it is the effect of Milanković cycles, rather than of
atmospheric CO2 concentration, that explains the glaciation process. Specifically, he found
that “variations in atmospheric CO2 appear to lag the rate of change of global ice volume. This
implies only a secondary role for CO2—variations in which produce a weaker radiative forcing than
the orbitally-induced changes in summertime insolation—in driving changes in global ice volume.”

The Vostok ice cores covering the most recent ~400 thousand years have also been
examined, applying the same method as in this paper, by Koutsoyiannis et al. [7], who
concluded that “the causal relationship of atmospheric T and CO2 concentration, as obtained
by proxy data, appears to be of HOE type with principal direction T → [CO2]”, same as in the
records of the modern period, but with a much higher time lag, of the order of 1000 years.
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