Scientia Pharmazeutica (Sci. Pharm.) 68, 333-341 (2000) © Österreichische Apotheker-Verlagsgesellschaft m. b. H, Wien, Printed in Austria

SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF

NEW SULPHONAMIDES OF PYRIMIDINE

Jerzy Cieplik^a, Janusz Pluta^b, Olaf Gubrynowicz^b

a) Department of Organic Chemistry, Medical Academy, Grodzka 9, 50-137 Wrocław, Poland

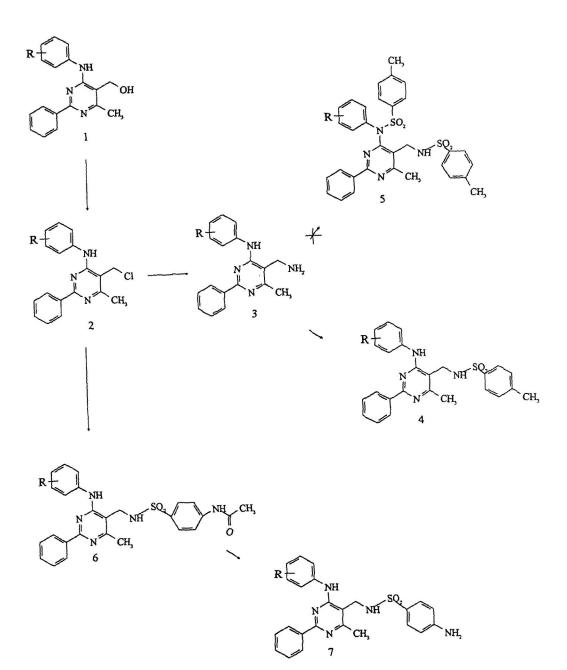
b) Department of Applied Pharmacy, Medical Academy, Szewska 38, 50-137 Wrocław, Poland

Summary

The paper presents the synthesis of 5-substituted pyrimidine sulphonamides as well as the results of studies on the antibacterial and antifungal activity of obtained derivatives.

Introduction

Results of previous research on synthesis and biological properties of pyrimidine ring have demonstrated that the system is capable of extremely potent biological activity. The obtained derivatives revealed both cytostatic [1,2], immunomodulating [3,4] and first of all antibacterial [5,6,7] properties. That is why we found useful to carry out a number of syntheses aiming at obtaining 5-substituted pyrimidine sulphonamides.


CHEMISTRY

The substrate in our studies was 4-aryl-6-methyl-2-phenyl-5-hydroxymethylpyrimidine (1), which after treatment with $SOCl_2$, was transformed into 2-aryl-6-methyl-2-phenyl-5-chloromethylpyrimidine (2). Next 5-substituted pyrimidine sulphonamides were obtained by means of two methods. The first one consisted in treatment of 5-chlorderivative of pyrimidine 2 with aqueous solution of ammonia gave 5-aminoderivative 3, which was condensed with p-toluilosulphonic acid chloride giving adequate sulphonamides. The second method consisted in direct action of N-acetylsulfanilamide on 5-chloroderivative of pyrimidine 2. Despite of several trials, we failed to obtain double sulphonamides, compound 5. The arylaminegroup at site 4 of the pyrimidine ring does not react with sulphonic chlorides.

Physical and spectral properties of the compounds are given in Table 1.

Key words Pyrimidine, sulphonamides, antibacterial activity

(*) Herrn Prof. Fleischhacker zum 65. Geburtstag gewidmet

Scheme 1

334

Physical and spectral of the compounds are given in Table 1.

Co mp	R	R ¹	Formula	M.P.	Yield	ANA	L Y calc. found	SIS
			(M.W.)	(°C)	(%)	C	Н	N
3a	Н	Н	C18H18N4	117-119	92.3	74.48	6.20	19.31
			(290)			74.56	6.36	19.52
3b	4-C1	Н	C18H17N4Cl	148-150	88.2	66.66	5.24	17.28
			(324)			66.50	4.95	16.96
3c	4-OC ₂ H ₅	Н	$C_{20}H_{22}N_4O$	109-111	85.3	71.85	6.58	16.76
-			(334)			71.55	6.50	17.03
3d	4-OH	Н	C18H18N4O	110-112	82.2	70.58	5.88	18.30
			(306)			70.62	5.90	18.26
3e	4-CH ₃	Н	$C_{19}H_{20}N_4$	120-122	79.2	75.00	6.57	18.42
-			(304)			75.22	6.66	18.56
4a	н	-SO ₂ -C ₆ H ₄ -4-CH ₃	$C_{25}H_{24}N_4O_2S$	164-166	64.5	67.58	5.40	12.61
			(444)			67.40	5.65	12.33
4b	4-C1	-SO ₂ -C ₆ H ₄ -4-CH ₃	C25H23N4O2SCI	138-140	63.5	62.76	4.81	11.47
			(478)			62.54	5.12	11.62
4c	$4-OC_2H_5$	-SO ₂ -C ₆ H ₄ -4-CH ₃	C27H28N4O3S	213-215	61.1	66.39	5.73	11.47
			(488)			66.20	5.54	11.62
6a	н	-SO ₂ -C ₆ H ₄ -NH-CO-CH ₃	C26H25N5O3S	158-161	76.3	64.04	5.13	14.37
			(487)			64.12	4.95	14.26
6b	4-C1	-SO ₂ -C ₆ H ₄ -NH-CO-CH ₃	$C_{26}H_{25}N_5O_3S$	123-125	72.2	59.88	4.60	13.43
			(521)			60.11	4.55	13.20
6c	4-OC ₂ H ₅	-SO ₂ -C ₆ H ₄ -NH-CO-CH ₃	C28H29N5O4S	189-191	68.7	63.27	5.46	13.18
			(531)			63.35	5.52	13.24
6d	4-OH	-SO ₂ -C ₆ H ₄ -NH-CO-CH ₃	C26H25N5O4S	160-162	75.2	62.02	4.97	13.91
			(503)			62.25	4.85	13.82
6e	4-CH ₃	-SO ₂ -C ₆ H ₄ -NH-CO-CH ₃	C27 H27N5O3S	150-152	72.4	64.67	5.38	13.97
			(501)			64.73	5.42	13.99
7a	Н	$-SO_2-C_6H_4-NH_2$	$C_{24}H_{23}N_5O_2S$	110-112	84.4	69.73	5.56	16.94
			(445)			70.12	5.63	17.25
7b	4-C1	-SO ₂ -C ₆ H ₄ -NH ₂	$C_{24}H_{22}N_5O_2SCI$	174-176	81.7	60.12	4.59	14.61
			(479)			60.23	4.70	14.72
7c	$4-OC_2H_5$	-SO ₂ -C ₆ H ₄ -NH ₂	C ₂₆ H ₂₇ N ₅ O ₃ S	178-180	77.2	63.80	5.52	14.31
_			(489)			63.55	5.45	14.48
7d	4-OH	$-SO_2-C_6H_4-NH_2$	$C_{24} H_{23} N_5 O_3 S$	160-162	75.3	62.47	4.98	15.18
			(461)			62.55	5.12	15.20
7e	4-CH ₃	-SO ₂ -C ₆ H ₄ -NH ₂	C25 H25N5O2S	125-127	72.2	65.35	5.44	15.25
	1		(459)	1		65.40	5.25	15.33

335

The obtained chemical compounds were examined from the point of view of their microbiological activity, which was assessed on selected bacterial strains.

Assessment of the activity of ivestigated substances was carried out according to FP V [8]. Absolute activity was determined by defining lowest concentration able to inhibit the growth of bacterial stain (MIC) in fluid medium and wxpressed in micrograms (μ g) of investigated substanced per 1 ml. Relative activity was determined MIC value of the investigated substance by MIC value of a pattern (Urenil, Erytromycin).

Antibacterial potential was determined by means of cylinder-plate method assuming the average from 9 trials (3 weighed samples by 3 measurements).

The obtained results are presented in Table 2, 3.

	ну -	-0	\$ ⁵ Q	5							HO C														
		Ure	nil			1. 1. 1			6b						60	1					6e				
			ıg/m	1					μg/	ml				ПC	μg				l x	ЛС		g/ml			
			25			2		100			~	3		100			~	2		100				2	
	500	100	25	12	0	3	500	100	25	12	0	3	500	100	25	12	0	3	500	100	25	12	0.)	
Escherichia coli	202	125	117	108	101	90	236	108	93	92	91	90	234	120	102	94	92	90	238	125	111	94	92	90	
Enterobacter fecalis	181	117	105	99	90	90	188	140	131	108	94	90	133	123	111	106	94	90	148	118	93	92	90	90	
Staphylococ- -cus aureus	190	124	108	97	94	90	126	102	94	94	90	90	129	96	92	90	90	90	105	98	96	92	90	90	
Pseudomonas aeruginosa	206	112	103	98	90	90	250	109	94	92	9 0	90	212	136	98	95	90	90	220	110	98	96	90	90	
Bacillus subtilis	234	176	120	104	1 98	3 90	142	120	107	98	96	90	191	137	104	98	96	90	148	106	94	92	90	90	
Serratia marcesceus	211	120	110	96	92	90	167	120	105	98	90	90	181	109	98	96	90	90	164	106	98	96	90	90	
Proteus vulgaris	186	118	104	96	90	90	158	108	98	90	90	90	183	114	95	92	90	90	157	99	96	92	90	90	
Staphylococcus epidermidis	151	115	100	94	90	90	174	112	95	92	90	90	98	96	94	90	90	90	134	96	94	92	90	90	
Klebsiella pneumoniae	164	110	105	98	90	90	254	157	102	94	90	90	260	194	109	97	90	90	256	224	113	100	90	90	
Candida albicans	180	114	101	90	90	90	238	140	110	100	95	90	259	137	104	100	90	90	250	148	128	110	10	2 90	

Table 2: Antibacterial activity (MIC, µg/ml)

	н,ч	C	\$ SQ1	NŘ	NH	2							но (" T_a,	ส ^{. SQ} 1) NH,							
	Urenil						7b									7e								
	MIC μg/ml 500 100 25 12 6 3						MIC μg/ml 500 100 25 12				6	3	MIC μg/ml 500 100 25 12 6 3					MIC μg/r 500 100 25						
Escherichia coli	202	125	117	108	101	90	223	111	97	92	90	90	245	127	106	95	90	90	232	104	96	90	90	90
Enterobacter fecalis	181	117	105	99	90	90	160	122	116	111	92	90	164	128	105	90	90	90	178	102	96	90	90	90
Staphylococcus aureus	190	124	108	97	94	90	150	101	94	90	90	90	130	94	90	90	90	90	90	90	90	90	90	90
Pseudomonas aeruginosa	206	112	103	98	90	90	244	106	96	93	90	90	256	123	104	92	90	90	194	102	90	90	90	90
Bacillus subtilis	234	176	120	104	98	90	120	108	90	90	90	90	172	116	90	90	90	90	289	187	140	124	118	90
Serratia marcesceus	211	120	110	96	92	90	175	90	9 0	90	90	90	185	103	90	90	90	90	153	90	90	90	90	9 0
Proteus vulgaris	186	118	104	96	90	90	167	95	90	90	90	90	164	101	90	90	90	90	156	9 0	90	90	90	90
Staphylococcus epidermidis	151	115	100	94	90	90	90	90	90	90	90	90	155	106	90	90	90	90	127	90	90	90	90	90
Klebsiella pneumoniae	164	110	105	98	90	90	256	166	105	101	90	90	232	179	100	94	90	90	259	107	90	90	90	90
Candida albicans	180	114	101	90	90	90	227	186	133	122	104	90	259	137	104	100	99	090	250	148	128	110	102	90

Table3: Antibacterial activity (MIC, µg/ml)

RESULTS AND DISCUSSION

Seven newly obtained pyrimidine derivatives were studied microbiologically on 10 bacterial strains: Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Serratia marcesceus, Proteus vulgaris, Staphylococcus epidermidis, Klebsiella pneomonae,

Candida albicans. In comparison with the pattern (sulphonamide used in medicine – *Urenil*), the obtained compounds have revealed interesting antibacterial as well as antifungal activity. Compounds **6b**, **6d**, **6e** have revealed satisfactory antibacterial properties, however their activity increased significantly when the amine group in phenyl ring of sulphonamide group was deblocked from acetyl radical (compounds **7b**, **7d**, **7e**). The activity decreased significantly if alkyl radical was used to replace the amino group in phenyl ring of sulphonamide group as in compound **4**. Phenylamine substituent at site 4 of the pyrimidine ring also plays an important role. Substitution of p-chloroaniline, p-aminophenol or p-toluidine at carbon 4 of the pyrimidine ring increases significantly the antibacterial activity. The above mentioned derivatives reveal extremely potent properties of inhibiting the growth of Gram (+) *Enterobacter faecalis*, Gram (-) *Pseudomonas aeruginosa*, Gram (-) *Klebsiella pneumoniae*.

It should be stressed that above-mentioned sulphoderivatives 7 also reveal antifungal properties, inhibiting strongly the growth of *Candida albicans*, what holds promise in further research.

Expeimental

Melting points were determined in Köfler apparatus.

¹H NMR spectra were recorded on BS-487-C, 80 MHz Tesla spectrometer. Infrared (IR) spectra were recorded in nujol with a Specord spectrophotometer at Analytical Laboratory of Medical Academy in Wrocław. Elemental analyses indicated by the symbols were within +/- 0.4% of the theoretical values.

6-Methyl-2-phenyl-4-phenylamine-5-aminomethylpyrimidine (3a)

4 g (12.9 mmol) of 6-methyl-2-phenyl-4-phenylamine-5-chloromethyl-pyrimidine (2a) were added to 30 ml of 25% aqueous solution of ammonia. The mixture was heated under reflux condenser and stirred intensively throughout the process. After 5 h the postreaction mixture was diluted with 100 ml of water and three times extracted with chloroform. The chloroform extracts were combined, dried over MgSO₄ and after filtration vacuum condensed. Obtained oily product was crystallised from acetone – chloroform 1:1 mixture, giving 3.46 g (92.3%) of cream-white crystals with m.p. 117-119^o C.

Spectra data of **3a** IR [v, cm⁻¹]: 2924 (NH), 1442 (NH), 1378 (NH₂). ¹H NMR [δ , ppm, CDCl₃]: 2.45 (s, 3H;CH₃), 4.30 (t, 2H; CH₂), 5.12 (s,1H; NH) 6.80-8.45 (m, 10H aromatic), 9.58 (s, 1H; ArNH).

Spectral data of **3b:** IR [ν , cm⁻¹,]: 2924 (NH), 1554 (NH), 1490 (NH₂). ¹H NMR [δ , ppm, CDCl₃]: 2.50 (s, 3H; CH₃), 4.35 (t, 2H; CH₂), 5.26 (t, 2H; NH₂), 6.70-8.55 (m, 9H aromatic), 9.12 (s, 1H;ArNH).

Spectral data of **3c:** IR $[v, cm^{-1}]$: 2930 (NH), 1455 (NH), 1395 (NH₂). ¹H NMR [δ , ppm, CDCl₃]: 1.25 (t, 3H; CH₃), 2.60 (s, 3H; CH₃), 3.70 (q,2H; CH₂), 4.40 (t, 2H; CH₂), 4.70 (s,1H; ArNH), 5.30 (t, 2H; NH₂), 7.20-850 (m, 9H; aromatic), 9.20 (s, 1H; ArNH).

Spectral data of **3d:** IR $[v, cm^{-1}]$: 2930 (NH), 1550 (NH), 1495 (NH₂). ¹H NMR $[\delta, ppm, CDCl_3]$: 2.55 (s, 3H; CH₃), 4.30 (t, 2H; CH₂), 5.30 (t, 2H; NH₂), 5.58 (s, 1H; Ar-OH), 6.74-8.55 (m, 9H aromatic), 9.15 (s, 1H; ArNH).

338

Spectral data of **3e:** IR $[v, cm^{-1}]$: 2940 (NH), 1560 (NH), 1498 (NH₂). ¹H NMR [δ , ppm, CDCl₃]: 2.00 (s, 3H; Ar-CH₃) 2.55 (s, 3H; CH₃), 4.30 (t, 2H; CH₂), 5.30 (t, 2H; NH₂), 5.58 (s, 1H; Ar-OH), 6.74-8.55 (m, 9H aromatic), 9.15 (s, 1H; ArNH).

6-Methyl-4-(phenylamine)-2-phenyl-5-(4'-methylphenyl)sulphonamidomethyl-pyrimidine (4b)

4 g (13.7 mmol) of 6-methyl-4-phenylamine-2-phenyl-5-aminmethylpyrimidine (<u>3a</u>) were diluted in 50 ml of benzene and 2.5 g of p-toluensulphonic chloride were added gradually. The mixture was heated under reflux condenser for 8 h. Next the postreaction mixture was cooled and poured to 100 ml of water. The solution was three times extracted with 50 ml of chloroform. The chloroform extracts were combined and dried over MgSO₄, and next after filtration vacuum condensed. Oily residue was purified on chromatographic column filled with silica gel 60 (35-70 mesh ASTM), using the mixture of chloroform-acetone 3:1. 3.9 g (64.5%) of sulphonamide **4a** with m.p. of 164-166^oC were obtained.

Spectra data of 4a IR $[v, cm^{-1}]$: 2040 (NH), 1450 (NH), 1308 (SO₂).

 1 H NMR [δ , ppm, CDCl₃]: 2.55 (s.3H; CH₃), 3.45 (s. 3H; CH₃), 6.25 (1H; NH), 7.25-8.60 (14H; aromatic).

Spectral data of **4b**: IR [v, cm⁻¹]: 2940 (NH), 1560 (NH), 1498 (NH₂). ¹H NMR [δ , ppm, CDCl₃]: 2.50 (s, 3H; CH₃), 3.40 (s, 3H; CH₃), 4.40 (d, 2H; CH₂), 4.75 (s, 1H; ArNH), 6.25 (t, 1H; NH).

Spectral data of 4c: IR [ν , cm⁻¹]: 2950 (NH), 1415 (NH), 1312 (SO₂). ¹H NMR [δ , ppm, CDCl₃]: 1.70 (t, 3H; CH₃), 2.45 (s, 3H; CH₃), 3.30 (s, 3H; CH₃), 3.80 (q, 2H; CH₂), 4.35(d, 2H; CH₂), 4.70(s, 1H; ArNH), 6.20(t, 1H; NH), 7.30-8.60(m, 13H; aromatic)

6-Methyl-2-phenyl-4-phenylamine-5-(4'-N-acetylaminphenyl)-sulphonamidomethylpyrimidine (6a)

4 g (12.9 mmol) of 6-methyl-2-phenyl-6-phenylamin-5-chloromethylpyrimidine (2) were diluted in 50 ml of chloroform and 3 g of N-acetylsulphanilic acid amide were added. The mixture was heated for 12 h under reflux condenser and stirred vigorously. Next, the mixture was cooled and 100 ml of water was added. The mixture was extracted three times with 50 ml of chloroform. The chloroform extracts were combined, dried over MgSO₄ and after filtration vacuum condensed. Oily residue was purified chromatographically with silica gel 60 (35-70 mesh ASTM) using chloroform-aceton 3:1 mixture, giving 4.8 g (76.3%) of precipitate with m.p. 158-161°C.

Spectra data of IR [ν , cm⁻¹]: 2836 (NH), 1556 (NH), 1496 (SO₂). ¹H NMR [δ , ppm, CDCl₃]: 1.30 (s, 1H; AcNH), 2.55 (s, 3H; CH₃), 3.50 (s, 3H; CH₃), 4.75 (d, 2H; CH₂), 4.80 (s, 1H; ArNH), 5.20 (t, 1H; NH), 7.35-8.55 (m, 14H; aromatic).

Spectral data of **6b**: IR [v, cm⁻¹]: 2940 (NH), 1560 (NH), 1498 (NH₂). ¹H NMR [δ , ppm, CDCl₃]: 1.25(s, 1H; AcNH), 2.50 (s, 3H; CH₃), 3.45 (s, 3H; CH₃), 4.70 (d, 2H; CH₂), 4.75 (s, 1H; ArNH), 5.20 (d, 1H; NH), 7.30-8.50 (m, 13H; aromatic).

Spectral data of 6c: IR [v, cm⁻¹]: 2940 (NH), 1560 (NH), 1498 (NH₂).

¹H NMR [δ, ppm, CDCl₃]: 1.20 (s, 1H; AcNH), 1.30 (t, 3H; CH₃), 2.20 (s, 3H; CH₃), 2.35 (s, 3H; CH₃), 3.40 (q, 2H; CH₂), 3.60 (t, 1H; NH), 3.85 (d, 2H; CH₂), 4.70 (s, 1H; ArNH).

Spectral data of **6d:** IR [v, cm⁻¹]: 2840 (NH), 1560 (NH), 1490 (SO₂). ¹H NMR [δ, ppm. CDCl₃]: 1.40(s, 1H; AcNH), 2.60 (s, 3H; CH₃), 3.55 (s, 3H; CH₃), 4.85 (d, 2H; CH₂), 4.80 (s, 1H; ArNH), 5.20 (t, 1H; NH), 5.50 (s, 1H; Ar-OH), 7.35-8.55 (m, 14H; aromatic)

Spectral data of **6e**: IR $[v, cm^{-1}]$: 2850 (NH), 1550 (NH), 1495 (SO₂). ¹H NMR [δ , ppm, CDCl₃]: 1.40(s, 1H; AcNH), 2.20 (s, 3H; Ar-CH₃), 2.60 (s, 3H;CH₃), 3.55 (s, 3H; CH₃), 4.75 (d, 2H; CH₂), 4.70 (s, 1H; ArNH), 5.30 (t, 1H; NH), 5.50 (s, 1H; Ar-OH), 7.35-8.55 (m, 14H; aromatic).

6-Methyl-2-phenyl-4-phenylamine-5(4'-aminphenyl)-sulphonamidomethyl-pyrimidine (7a)

4 g (8.2 mmol) of 6-methyl-2-phenyl-4-phenylamine-5-(4'-acetylphenyl)-sulphonamidomethyl-pyrimidine ($\underline{6a}$) were diluted in 50 ml of alcoholic solution of HCl. The mixture was heated under reflux condenser for 1h. Next the solution was cooled, 100 ml of water were added and three times extracted with 50 ml of chloroform. The chloroform extracts were combined, dried over MgSO₄ and after filtration vacuum condensed. Oily residue was purified on chloroform-acetone 3:1 column, giving crystals with m.p. 110-112°C.

Spectra data of IR [v, cm⁻¹,nujol]: 2836 (NH), 1562 (NH₂), 1492 (NH), 1406 (SO₂). ¹H NMR [80-MHz, δ, ppm, CDCl₃]: 1.25 (s. 2H; NH₂), 2.45 (s. 3H; CH₃), 3.25 (t.1H; NH), 4.50 (d. 2H; CH₂), 4.75 (s.1H; ArNH), 7.40-8.50 (m. 14H; aromatic).

Spectral data of 7b: IR [v, cm⁻¹]: 2885 (NH), 16775 (NH₂), 1455 (NH), 1410 (SO₂). ¹H NMR [δ, ppm, CDCl₃]: 1.30 (s, 2H; NH₂), 2.50 (s, 3H; CH₃), 3.30 (t, 1H; NH), 4.45 (d, 2H; CH₂), 4.70 (s, 1H; NH), 7.40-8.50 (m, 13 H; aromatic).

Spectral data of 7c: IR $[v, cm^{-1}]$: 2850 (NH), 1660 (NH₂), 1460 (NH), 1407 (SO₂). ¹H NMR [δ , ppm, CDCl₃]: 1.20 (s, 2H; NH₂), 1.35 (t, 3H; CH₃), 2.45(s, 3H; CH₃), 3.20 (q, 2H; CH₂, 3.50 (t, 1H; NH), 3.75 (d, 2H; CH₂), 3.80 (s, 1H; ArNH), 7.45-8.55 (m, 13H; aromatic)

Spectral data of 7d: IR [v, cm⁻¹]: 2895 (NH), 1670 (NH₂), 1445 (NH), 1415 (SO₂). ¹H NMR [δ, ppm, CDCl₃]: 1.30 (s, 2H; NH₂), 2.50 (s, 3H; CH₃), 3.25 (t, 1H; NH), 4.40 (d, 2H, CH₂), 4.70 (s, 1H; NH), 5.50 (s, 1H; Ar-OH), 7.40-8.50 (m, 13H; aromatic).

Spectral data of 7e: IR [v, cm⁻¹]: 2875 (NH), 1660 (NH₂), 1455 (NH), 1425 (SO₂). ¹H NMR [δ , ppm, CDCl₃]: 1.40(s, 2H; NH₂), 2.20 (s, 3H; Ar-CH₃), 2.60 (s, 3H-CH₃), 3.35 (t, 1H; NH), 4.40 (d, 2H; CH₂), 4.70 (s, 1H; NH), 5.50 (s, 1H; Ar-OH), 7.40-8.50 (m, 13H; aromatic).

REFERENCES

- [1] Z. Machoń, J. Cieplik, Synthesis 2, 142, (1986).
- [2] Z. Machoń, J. Cieplik, Pol. J. Pharmacol. Pharm. 40, 201, (1988).
- [3] J. Cieplik, Z. Machoń, M. Zimecki, Z. Wieczorek, Arch. Imm. -Ther. Exp. 41, 11, (1993).

Synthesis and Antibacterial Acitvity of New Sulphonamides of Pyrimidine

- [4] J. Cieplik, Z. Machoń, M. Zimecki, Z. Wieczorek, Il Farmaco 50, 131, (1995).
- [5] Z. Machoń, J. Cieplik, Eur. J. Chem-Chim. Ther. 19, (4), 113, (1994).
- [6] J. Pluta, M. Flendrich, J. Cieplik, J. Boll. Chim. Farmaceutico-Anno135, 239, (1996). [7] J. Cieplik, J. Pluta, A. Meler, Arch. Pharm. Med. Chem., 333, 237, (1997).
- [8] Pharmacopea polonica V (1990), I, 94.

Received February 24th, 2000 Accepted August 23rd, 2000