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Abstract: Silver nanoparticles (AgNPs) have broad biocidal activities, and are widely employed as
an active ingredient in antiseptic, anti-viral, and anti-inflammatory preparations. Green-synthesizing
AgNPs would be a rapid, cheap, and environmentally friendly method of synthesis. The methanolic
extract of the leaves of Bellevalia flexuosa Boiss. (Asparagaceae) was used for the green synthesis of
the AgNPs. The effects of the pH and the concentration of silver nitrate (AgNO3) on the synthesis
of the AgNPs were investigated. The AgNPs produced above pH 10, and 1 mM of AgNO3 resulted
in lower hydrodynamic diameters. Ultraviolet-visible spectroscopy, Fourier-transform infrared
spectroscopy, and X-ray diffraction proved the formation of the AgNPs, with a face-centered, cubed
geometry. Scanning electron microscopy images showed colloidal and well-dispersed nanoparticles.
In addition, the antibacterial activities of the prepared AgNPs were assessed by optical densities (ODs)
against Gram-positive bacteria (Enterococcus faecalis and Staphylococcus epidermidis) and Gram-negative
bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica). The
broths of Gram-negative and Gram-positive bacteria that contained AgNPs, showed lower OD values
compared to the controls. In conclusion, AgNPs were prepared using B. flexuosa methanolic extract,
and showed antibacterial activity against the tested bacterial strains.

Keywords: silver nanoparticles; green synthesis; bellevalia flexuosa; green nanoparticles; antimicrobial
activity

1. Introduction

Metallic nanoparticles (NPs) are metals within the size range of 1–1000 nm. Nanosize
particles have different characteristics when compared to their bulk counterparts, in terms
of stability, and electronic, optical, and chemical characteristics [1]. They have a wide range
of applications, including biotechnology, and as vehicles for gene and drug delivery. In
addition, the have the potential to be used as catalysts, and in site-specific targeting [2].
Such nanomaterials can be prepared and modified with various techniques, and used
directly or as adjuvant with other drugs. Among these NPs are silver NPs (AgNPs), which
are nowadays attracting attention because of their antiseptic properties [3–5]. AgNPs have
properties that enable them to kill Gram-negative and Gram-positive bacteria [6]. They
can disturb the enzymatic activities of microorganisms by disrupting their unicellular
membrane [7]. Their mechanism of action involves the inactivation of the respiratory
chain, and the disruption of the cell membrane, to leak their cellular contents. They can
bind to the functional group of proteins leading to protein denaturation and cell death,
block DNA replication, and denature enzymes that transport nutrients across the bacterial
cell membrane [8]. With their broad biocidal activities, therefore, AgNPs are widely
employed as an active ingredient in antiseptic, antiviral, antifungal, and anti-inflammatory
preparations. AgNPs have been added to wound dressings, topical creams, antiseptic
sprays, and fabrics [9]. In addition, AgNPs are used in food storage containers [10]. They
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are also employed in coating the surfaces of medical devices, bandages, footwear, and
countless household items, to reduce nosocomial infections [11]. Recently, the major focus
on using AgNPs has been as a disinfectant during the COVID-19 pandemic, to control
possible indoor airborne infections [12].

Various methods are available for manufacturing NPs, including chemical [13], pho-
tochemical [14], radiation [15], Langmuir–Blodgett [16], microwave [17], laser [18], and
biological techniques [19,20]. Most chemical methods, however, involve the use of toxic
and hazardous materials in the environment. The fabrication of NPs using microorganisms
or plant extracts is referred to as ‘green nanotechnology’ [21]. The first record of green syn-
thesis, using alfalfa, was in 2003; since that time, the production of NPs has increased [22].
Green synthesis of NPs is rapid, cheap, easy, and environmentally friendly [23]. Biologically,
it has been proven that the cellular intake and internalization of green NPs depends on the
concentration of the NPs. In addition, it has been suggested that AgNPs directly diffuse
into cells, or internalize via receptor-mediated endocytosis [24].

A large number of plants have been investigated for green synthesis of AgNPs, and have
been applied in various fields, such as catalysis, biosensing, imaging, drug delivery nanodevice
fabrication, and medicine [21]. The key phytochemicals—as identified in IR spectroscopic
data—responsible for converting silver ions into AgNPs are terpenoids, glycosides, alkaloids,
and phenolics (flavonoids, coumarins, ubiquinones, tannins, etc.) [25,26].

Bellevalia flexuosa Boiss. (Asparagaceae) is a perennial wild-growing herb in Jordan,
known locally as ‘Drooping Onion’ [27]. Chemical investigation of the bulbs of B. flexuosa
resulted in the isolation of a set of homoisoflavonoids [28]. Homoisoflavonoids are a rare
subclass of flavonoids that possess a wide range of biological activities, including antiox-
idant, anti-inflammatory, cytotoxic, and antimicrobial activities [29]. Hence, B. flexuosa
could be a good candidate for the green synthesis of AgNPs.

The present study was therefore carried out, to examine the use of dried B. flexuosa
leaves in the form of a methanolic extract to prepare AgNPs, and to investigate the effect of
several variables on the preparation of these NPs. The prepared NPs were characterized
and evaluated for their stability and efficacy as antibacterial agents.

2. Materials and Methods
2.1. Materials

Leaves of B. flexuosa were collected from the campus of the Jordan University of Science
and Technology (JUST), Irbid, Jordan. A voucher specimen (PHS-122) was deposited in the
herbarium of the Faculty of Pharmacy, JUST. Silver nitrate (AgNO3), ammonia solution,
and sodium hydroxide (NaOH) were purchased from Merck Chemical Co. (Darmstadt,
Germany). Enterococcus faecalis (ATCC 29212), Staphylococcus epidermidis (ATCC 12228),
Pseudomonas aeruginosa (ATCC 9027), Escherichia coli (ATCC 2452), Klebsiella pneumoniae
(ATCC 1705), and Salmonella enterica (ATCC 103799) were purchased from Becton Dickinson
and Company (Cockeysville, MD, USA). Mueller Hinton Broth II was purchased from
MHB Biocorp (Warsaw, Poland). All other chemicals and solvents used in this work were
of chemical grade.

2.2. Preparation of B. flexuosa Methanolic Extract

Air-dried leaves of B. flexuosa were ground to a powder, using a laboratory mill. The
powdered leaves were defatted with hexane, using the Soxhlet apparatus, followed by
exhaustive extraction with methanol at 60 ◦C. The solvent was evaporated under reduced
pressure, to furnish the MeOH extract. A stock solution of the extract was prepared at a
concentration of 8%, using distilled water.

2.3. Green Synthesis of Silver Nanoparticles (AgNPs)

The procedure for the preparation of the AgNPs was adapted from the literature, with
some modifications [30]. Briefly, AgNO3 solution was added dropwise to the stock solution
of B. flexuosa in a ratio of 1:1, followed by adding 1 mL of ammonia, and then mixed gently
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at different pH. An immediate change was noticed in the color of the solutions, which
became dark green. The solutions were kept under continuous shaking in a water bath
for 4 h at 45 ◦C and 100 rpm. The color of the mixture changed again from dark green
to darker brown. After optimizing the pH, different concentrations of AgNO3 (1, 5, and
10 mM) were used to prepare the NPs. Figure 1 is a scheme that explains the green synthesis
of the AgNPs.
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Figure 1. Scheme of the general method used in this work to synthesize green AgNPs. The materials
used were B. flexuosa leaves extract and AgNO3, ammonia and NaOH solutions: 1. AgNO3 solution
was added, dropwise, to a stock solution of B. flexuosa leaves extract and ammonia, followed by
gentle mixing; 2. The pH of the solution was adjusted, using NaOH. The solutions were kept under
continuous shaking in a water bath for 4 h at 45 ◦C and 100 rpm; 3. The solutions were further filtered,
then centrifuged for 20 min at 18,000 rpm.

The samples were then filtered three times, using a filter syringe of 0.45 µm pore size.
The filtered solutions were then centrifuged for 20 min at 18,000 rpm. The precipitated
pellets were washed three times with distilled water, followed by centrifugation for 5 min
at 18,000 rpm. The precipitate was immediately freeze-dried, to obtain AgNPs as a dry
powder. The powder was kept in a well-closed container until further investigation.

2.4. Characterization of the Green-Synthesized AgNPs

The formation of the AgNPs was confirmed by an ultraviolet–visible (UV-Vis) spec-
trophotometer (EMC-61PC-UV, UK). The blank, Milli-Q water, and the solutions of AgNPs
were filled in quartz cuvettes, and placed between a light source and a photodetector, to
measure the intensity of a beam of light.

The hydrodynamic diameters, polydispersity index (PdI), and zeta potential (ZP)
of the nanoparticles were measured, using a Zetasizer Nano ZS90 instrument (Malvern,
Worcestershire, UK). The hydrodynamic diameters and PdI were determined at 25 ◦C,
using dynamic light scattering. The ZP was calculated from the electrophoretic mobility
of the NPs, using the Helmholtz–Smoluchowski equation, under an electrical field of
40 V/cm. All measurements were carried out in triplicate (n = 3).

Fourier-transform infrared spectroscopy (FT-IR) (Shimadzu, Kyoto, Japan) was used
to evaluate the functional groups of the formed AgNPs. The FT-IR was provided with a
high-performance diamond single-bounce attenuated total reflection (ATR) accessory that
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covered a wavelength in the range of 400–4000 cm−1, had a resolution of 4 cm−1, and ran
64 scans per spectrum.

The determination of the X-ray diffraction (XRD) patterns of the AgNPs was recorded
by an Ultima IV X-ray diffractometer (Rigaku, Tokyo, Japan) using cobalt radiation (CuKα),
with a voltage of 40 kV and a current of 30 mA at room temperature. Diffraction angles of
2θ, starting from 0◦ to 80◦, were used to analyze the powdered samples, which were placed
on the sample holder on the X-ray diffractometer, and analyzed.

The morphology of the AgNPs was determined by scanning electron microscope
(SEM) (Model QUANTA FEG 450, FEI, Thermo Fisher Scientific, Bremen, Germany).

The configuration of the AgNPs was determined by XRD spectra derived by Ultima IV
X-ray diffractometer (Rigaku, Tokyo, Japan), using cobalt radiation (CuKα), with a voltage
of 40 kV and a current of 30 mA at 25 ◦C. Diffraction angles from 0◦ to 60◦ (2θ) were used.
Powders were dispersed on a quartz sample holder, placed on a Goniometer, and diffracted
using a DTEX detector.

2.5. Antibacterial Susceptibility Test

The antimicrobial activity of the AgNPs was evaluated using six bacterial strains.
Two of the bacterial strains were Gram-positive: Enterococcus faecalis (ATCC 29212) and
Staphylococcus epidermidis (ATCC 12228). Four of the bacterial strains were Gram-negative:
Pseudomonas aeruginosa (ATCC 9027); Escherichia coli (ATCC 2452); Klebsiella pneumoniae
(ATCC 1705); and Salmonella enterica (ATCC 103799). The microorganisms were cultured in
a Mueller Hinton Broth II overnight at 37 ◦C.

The AgNPs were dispersed in distilled water, with a concentration of 150 µg/mL, and
added to the bacterial test tubes. The quantification of the total number of bacteria was
done in triplicate, where aliquots of suspension were analyzed with a spectrophotometer
(Visible spectrophotometer V-1200, VWR, Radnor, PA, USA). The optical density (OD)
was reported as bacterial proliferation expressed in a colony-forming unit (CFU/mL)
(1 OD600 = 1.5 × 108 CFU/mL), and compared to the control broth [31].

3. Results and Discussion
3.1. Characterization of the AgNPs

The reduction of AgNO3 was the main step in the AgNPs synthesis that was affected by
different parameters during the experimental procedure. The reaction time, however, was
kept at 4 h, which had been optimized previously in the literature [32]. The concentration
of the AgNO3, on the other hand, was fixed at 1 mM, to study the effect of the pH on
the synthesis of the AgNPs in the range of 3 to 11, which was optimized afterwards. The
particles formed were characterized using a UV-Vis spectrophotometer, and the results
obtained are shown in Figure 2.

The figure shows that the synthesis of the AgNPs was achieved at pH values of
more than 10, which is indicated by the optical absorption band peak at around 430 nm.
Absorption at 430 nm is considered the typical absorption for metallic AgNPs, due to the
surface plasmon resonance [33]. Furthermore, the peak clearly became higher and narrower
as the pH increased [34,35]. This indicated that increasing the pH enhanced the stability of
the NPs formed, as reported previously in the literature [36]; therefore, pH 11 was chosen
for further investigation. The weak absorption peak around 260 nm was explained by the
presence of several organic compounds, which are known to interact with silver ions, and
which suggest a possible mechanism for the reduction of the metal ions present in the
solution [33,37]. Similar results obtained for green-synthesized AgNPs in the presence of
Artemisia herba-alba extract at pH 12, with absorption peak of an average of 395 nm, were
explained as an indication of well-dispersed NPs [38].
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(UV-Vis) spectrophotometer (EMC-61PC-UV, Duisburg, Germany).

Afterwards, the pH was fixed at 11, to study the effect of the AgNO3 concentration.
The UV-Vis spectra showed no difference between the three molarities tested: the same
peak appeared at 396 nm, which meant that the NPs were formed successfully at the three
pHs. However, differences in the hydrodynamic diameter and the ZP of the formed NPs
were observed, as shown in Table 1. The lowest tested concentration (1 mM) showed the
smallest NPs, the lowest charge in negative, and the lowest PdI. As the molarity increased
from 1 to 10 mM, the hydrodynamic diameters of the particles increased, and the samples
became more polydispersed. Likewise, the synthesized AgNPs using the leaf extract of
Peumus boldus at different concentrations of AgNO3 (0.1 mM, 1 mM, 2 mM, 10 mM) showed
an increase in the average hydrodynamic diameter of the AgNPs (ranging from 147 nm to
503 nm) [39]. In addition, the ZP of the AgNPs was affected by the concentration of AgNO3,
and showed instability in the high concentration of AgNO3 with −6 mV. By contrast, at
lower concentrations (1 mM and 5 mM) the ZP was higher in the negative (−27 mV and
−36 mV, respectively) [40]. In general, the AgNPs carried a negative charge that was
around −30 mV, as mentioned by other research teams [41,42]. The ZP of metallic NPs
is very important in determining the stability of the dispersion, where ZP of more than
25 mV and lower than −25 mV is usually used to indicate good stability of NPs due to
electrostatic repulsion [40].

Table 1. Hydrodynamic diameters, zeta potential (ZP), and polydispersity index (PdI) of AgNPs
prepared using different concentrations of AgNO3 (1, 5, and 10 mM), and synthesized using B. flexuosa
leave extract.

Property
AgNO3 Concentration

1 mM 5 mM 10 mM

Hydrodynamic diameter (nm) 86.5 ± 1.8 352.9 ± 795.2 1219.0 ± 339.3
PdI 0.45 ± 0.0 0.93 ± 0.0 0.81 ± 0.1

ZP (mV) −27 ± 0.3 −36 ± 3.6 −6 ± 3.5

Additionally, the uniformity of the NPs, indicated by the PdI (with values lower than
0.5), is crucial in any pharmaceutical industry, to assure efficacy, safety, and stability [43].
For instance, it was reported that heterogenicity enhances sedimentation of particles [44].
Moreover, the distribution of the particles affects the drug-release kinetics, which in turn
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affects the drug bioavailability [45]. Other formulary and pharmacokinetic concerns were
found to be related to the size distribution of the system.

The residuals of the biomolecules on the surface of the synthesized AgNPs were
investigated, using FTIR spectroscopy. The results were compared for any critical shifts
in functional peaks. Figure 3 compares the FTIR spectra of both the B. flexuosa MeOH
extract and the synthesized AgNPs. In addition, Table 2 presents the main FTIR frequencies
of the AgNPs spectrum. In the spectrum of the AgNPs, the sharp peaks around 3373,
2920 and 2850, and 1078 cm−1 were ascribed to hydroxyl (OH), alkyl (–CH), and alcohol
(C–O), respectively. As similar peaks with small shifts, intensity, and shape could be
noticed in the extract spectrum, then the synthesized AgNPs may have contained natural
compounds from the extract. However, the small shifts in the range of 2351–3396 cm−1

in the B. flexuosa extract band, along with the formation of the carbonyl (C=O) band at
1743 cm−1, and the double bond at 1543 and 1575 cm−1, indicate the bioreduction of Ag and
the stabilization of the formed AgNPs [46]. It was previously reported by Kumar et al. that
the phenolic functional groups which appeared at 1637 and 3396 cm−1 were responsible
for the formation of AgNPs [41]. Therefore, the polyphenolic groups reveled at 1419,
1641, and 3373 cm−1 in B. flexuosa MeOH extract were considered a suitable source for the
bioreducing agents that helped in reducing the cationic Ag (Ag+) to metallic Ag (Ag0), as
noted above [47].
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Table 2. FTIR spectral characteristics of AgNPs synthesized by B. flexuosa extract.

No. IR Value Functional Group
Detection Remark

1 719 cm−1 –CH –CH aromatic bending
2 902 cm−1 –OH –OH bending of carboxylic
3 1078, 1170 cm−1 C–O or –C–O–C– C–O stretching
4 1380 cm−1 –CH C–H bending of alkane
5 1471 cm−1 –CH C–H bending of alkane
6 1543, 1575 cm−1 –C=C– –C=C– stretching vibration
7 1743 cm−1 C=O C=O stretching of carbonyl
8 2850, 2920 cm−1 –CH –CH stretching of alkyl
9 3373 cm−1 –OH –OH stretching of alcohol/phenol

The XRD spectrum of the synthesized AgNPs is shown in Figure 4. The four major
peaks, at 37.48◦, 43.92◦, 65.98◦, and 77.08◦, corresponded to the (111), (200), (220), and
(311) reflection planes, respectively, of the face-centered cubed geometry [48,49]. A sharp
peak around 55 (noted by +) may have been related to other crystalline compounds in the
extract [50].
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Figure 4. The XRD spectrum of green AgNPs, synthesized using B. flexuosa leave extract. The
samples were scanned in the range of 0◦ to 80◦ at a diffraction angle of 2θ, with an Ultima IV X-ray
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The synthesized AgNPs were investigated, using SEM, to characterize their size,
shape, and morphology. The SEM image is shown in Figure 5, and shows colloidal and
well-dispersed particles.
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3.2. Antimicrobial Activity of the AgNPs

The sensitivity of the tested bacteria to the prepared AgNPs was assessed by deter-
mining the OD data from the bacterial broth that contained the NPs at a concentration
of 150 µg/mL. Rajasekar et al. tested the antibacterial activity of the produced AgNPs,
which showed dose-dependent, and bacterial inhibition was observed at 150 µg/mL [51].
In addition, other reported work tested the AgNPs bacterial activity against P. aeruginosa,
and E. coli showed strong inhibition at the selected concentration [52].

The ODs data for 24 h were obtained using a plate reader to measure the antimicrobial
effect of the NPs. It was reported by other researchers that higher ODs values indicated
higher bacterial growth [53,54]. The final OD was slightly lower in the broths that contained
the AgNPs in comparison to the controls, which indicated that the prepared AgNPs had
antimicrobial activity; it also demonstrated the good antibacterial effect of AgNPs on both
Gram-negative and Gram-positive bacteria, without developing resistance. A systematic
review paper by Rai et al. concluded that AgNPs have strong bactericidal activity against
both Gram-positive and Gram-negative bacteria [55]; as they mentioned, and up to the year
2012, AgNPs showed activity against many strains, including E. coli, V. cholerae, P. aeruginosa,
Staph. aureus and S. typhus [55]. However, the activity of AgNPs was much higher against
Gram-positive bacteria—namely, E. faecalis and S. epidermidi—than against Gram-negative
bacteria—namely, P. aeruginosa, E. coli, K. pneumonia, and S. enterica; Table 3 and Figure 6.
Similar results were observed when AgNPs (prepared using L. tuber extract) were tested
on Gloriosa superba and E. faecalis. The latter, which is a Gram-positive bacteria, was more
sensitive to the NPs [56]. This was explained by the fact that the AgNPs carried positive
charges that interacted with the negatively charged bacterial cell walls, adhered, and
penetrated the bacterial cell, leading to the loss of cell wall integrity and permeability [57].
It is known that Gram-positive bacteria carry a negative charge on their cell wall, because
of the presence of teichoic acids linked to either the peptidoglycan or to the underlying
plasma membrane; whereas, in Gram-negative bacteria, the negative charge has a lower
impact—in comparison to Gram-positive bacteria—because of their outer covering, that is
made of phospholipids and lipopolysaccharides [58].

Table 3. The ODs results for P. aeruginosa, E. coli, K. pneumonia, S. enterica, E. fecalis, and S. epidermidis,
after 24 h of incubating at 37 ◦C with the freshly prepared AgNPs and the negative control; without
AgNPs. The quantification of the total number of bacteria was done in triplicate.

Bacterial Strain Negative Control AgNPs

P. aeruginosa (0.174) 1.665 ± 0.029 1.491 ± 0.033
E. coli (0.272) 2.040 ± 0.031 1.768 ± 0.027

K. pneumonia (0.26) 2.012 ± 0.001 1.752 ± 0.030
S. enterica (0.303) 1.897 ± 0.047 1.594 ± 0.014

E. faecalis (0.7) 1.879 ± 0.0502 1.113 ± 0.055
S. epidermidis (0.33) 1.917 ± 0.011 1.587 ± 0.012
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Figure 6. The ODs data for 150 µg/mL of AgNPs against P. aeruginosam, E. coli, K. pneumonia,
S. enterica, E. fecalis, and S. epidermidis, after 24 h of incubating at 37 ◦C. The quantification of the total
number of bacteria was done in triplicate.

4. Conclusions

In this work, B. flexuosa methanolic leave extract was used for the first time to prepare
AgNPs. The formation and the properties of the NPs were affected by the experimental
conditions. For instance, the particles were not formed in neutral or acidic media, while
they were formed, and their stability was enhanced as the pH increased. Furthermore, the
size and the charge of the NPs increased as the concentration of the precursor (AgNO3)
increased. On the other hand, the uniformity of the particles increased as the concentration
of AgNO3 decreased. Finally, the selected NPs showed activity against the studied strains
of both Gram-positive and Gram-negative bacteria, but with better activity on the Gram-
positive strains. Based on this work, we believe that the B. flexuosa methanolic leave extract
can be used in the future to prepare AgNPs. The green method mentioned herein, to
prepare AgNPs, is expected to be economic, eco-friendly, and effective in preparing a
wide-spectrum antimicrobial agent. First of all, however, further studies are needed, such
as optimizing the formulation, and performing in vivo studies.
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