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Abstract: A series of nine nitro group-containing chalcones were synthesized to investigate their
anti-inflammatory and vasorelaxant activities via in vivo, ex vivo, and in silico studies. The anti-
inflammatory effects of the compounds were evaluated via a TPA-induced mouse ear edema model,
and the vasorelaxant effects were evaluated via an isolated organ model in addition to molecular
docking studies. The compounds with the highest anti-inflammatory activity were 2 (71.17 ± 1.66%),
5 (80.77 ± 2.82%), and 9 (61.08 ± 2.06%), where the nitro group is located at the ortho position in both
rings, as confirmed by molecular docking with COX-1 and COX-2. The compounds with the highest
vasorelaxant activity were 1 (81.16 ± 7.55%), lacking a nitro group, and 7 (81.94 ± 2.50%), where the
nitro group is in the para position of the B ring; both of these compounds interact with the eNOS
enzyme during molecular docking. These results indicate that the position of the nitro group in the
chalcone plays an important role in these anti-inflammatory and vasorelaxant activities.

Keywords: chalcones; nitro group; anti-inflammatory activity; vasorelaxant activity; docking

1. Introduction

Inflammation is a natural process that is activated by a wide range of harmful con-
ditions. In most cases, this process is beneficial, self-limiting, and quickly resolved [1].
However, inflammation can become chronic and has been associated with the etiology of
several relevant clinical conditions, including cancer, arthritis, obesity, inflammatory bowel
disease, and cardiovascular complications [2,3]. Traditionally, the treatment of chronic in-
flammation has included steroids and nonsteroidal anti-inflammatory drugs (NSAIDs) [4].
Both classes of drugs have side effects that range from mild to severe, affecting principally
the gastrointestinal tract and cardiovascular system or generating allergic reactions [5]. For
this reason, the development of new substances with anti-inflammatory potential is highly
important [6].
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Flavonoids are a family of compounds that have demonstrated anti-inflammatory ac-
tivity. Among them, chalcones have garnered considerable interest due to their wide range
of pharmacological properties, including anti-inflammatory, vasorelaxant, antibacterial,
analgesic, antiplatelet, anticholinergic, antimalarial, antiviral, anticancer, antileishmanial,
antioxidant, and antispasmodic effects, among others [7–12]. The structure of chalcones is
composed of two benzene rings (rings A and B) linked by a three-carbon α, β-unsaturated
ketone (enone). This last moiety is highly electrophilic, with a conjugated double bond and
a completely delocalized π-electron distribution on the aromatic rings [13,14], a property
that can be modulated by substituting aromatic rings A or B with different functional
groups [15,16]. This has resulted in the synthesis of novel chalcones, which have been
studied for their physical, chemical, and biological properties [17]. The efficacy, safety,
and therapeutic effects of these chalcones have been analyzed [18,19], and it has been
demonstrated that they serve as efficacious models for the development of novel thera-
peutic agents [20]. It has been previously reported that chalcones containing a nitro group
possess anti-inflammatory effects. The mechanism by which these compounds exert their
biological effects is attributed to their ability to inhibit a number of enzymes associated with
inflammation, including cyclooxygenase (COX) and lipoxygenase (LOX) [21]. Furthermore,
both these enzymes are implicated in a range of other diseases and conditions that repre-
sent significant global health burdens, including cardiovascular disease, cancer, diabetes
mellitus, asthma, chronic obstructive pulmonary disease, obesity, and arthritis [22–24].

In addition, some chalcones can also induce vasorelaxation, a phenomenon related to
the nitric oxide (NO) and estrogen receptor α (Erα) pathways [25]. This is crucial in the
context of cardiovascular diseases, which affect a significant portion of the adult population
worldwide [26]. Many investigations into the mechanisms of action by which chalcones
exert anti-inflammatory and vasorelaxant effects via molecular docking methods have
revealed a plethora of interactions related to their calcium channel blocking activity and
the inhibition of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) induced by
lipopolysaccharide (LPS) [27,28].

Current pharmaceuticals that contain the nitro group in their structure [29], exem-
plified by the antibiotic metronidazole [30] and the anticancer drug venetoclax [31], are
known to exert their pharmacological effects primarily through this moiety. Therefore, the
presence of this functional group is of paramount importance given the polar and electronic
properties that enable them to interact with specific targets that play a pivotal role in the
pathogenesis of numerous diseases [32].

The objective of this study was to evaluate the anti-inflammatory and vasorelaxant
properties of a series of nitro group-containing chalcones previously synthesized by our
research group [33–36] through in vivo, ex vivo, and in silico investigations (Figure 1).
The compounds that exhibited the most pronounced pharmacological activity were sub-
sequently evaluated in terms of their dose–response and concentration–response rela-
tionships, as well as through molecular docking studies involving the relevant targets for
anti-inflammatory and vasorelaxant effects, namely the COX-1, COX-2, and eNOS enzymes.
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Figure 1. Previously synthesized chalcones were evaluated for their anti-inflammatory and vaso-
relaxant activities [33–36]. 
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manganate (KMnO4). The resulting solid was filtered, washed with distilled water, and 
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h and then cooled to 0 °C for 24 h. The precipitate was filtered, washed with cold water, 
and recrystallized from a dichloromethane/ethanol mixture. The crystals were dried at 70 
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Figure 1. Previously synthesized chalcones were evaluated for their anti-inflammatory and vasore-
laxant activities [33–36].

2. Materials and Methods
2.1. Synthesis

Compounds 1–10 were synthesized as previously reported by our research group
at the División Académica de Ciencias Básicas of the Universidad Juárez Autónoma
de Tabasco (UJAT). The physicochemical and spectroscopic data have been previously
published [33–36].

2.1.1. General Procedure for the Synthesis of Chalcone 1

Benzaldehyde (0.81 mmol) was added to ethanol (8 mL) and stirred continuously
at 0 ◦C. Acetophenone (0.81 mmol) and a 1 M NaOH solution (4 mL, 0.81 mmol) were
then added dropwise. The mixture was stirred vigorously until it reached 28 ± 2 ◦C. The
reaction progress was monitored by thin-layer chromatography (TLC) using silica gel and
an ethyl acetate/hexane mixture (20:80), visualized under UV light or with potassium
permanganate (KMnO4). The resulting solid was filtered, washed with distilled water, and
recrystallized from a dichloromethane/hexane [33].

2.1.2. General Procedure for the Synthesis of Nitrochalcones 2–4

Sodium hydroxide (6.7 mmol) was dissolved in water (6 mL) and cooled to 0 ◦C in
an ice bath. Ethanol (10 mL) was slowly added, and the mixture was allowed to warm to
room temperature. Acetophenone (10 mmol) was gradually added, followed by the slow
addition of benzaldehyde (10 mmol). The reaction was stirred at room temperature for
2 h and then cooled to 0 ◦C for 24 h. The precipitate was filtered, washed with cold water,
and recrystallized from a dichloromethane/ethanol mixture. The crystals were dried at
70 ◦C [34].

2.1.3. General Procedure for the Synthesis of Nitrochalcones 5–7

Nitrobenzaldehyde (1 mmol) was dissolved in ethanol (3 mL) and stirred at 0 ◦C in an
ice bath. Aqueous sodium hydroxide (0.1 equivalents, 0.05 M) and acetophenone (1 mmol)
were simultaneously added. The reaction mixture was stirred at room temperature for 3 h
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and then cooled to 0 ◦C for 24 h. The resulting solid was filtered, washed with cold water,
and purified by recrystallisation using a dichloromethane/hexane solvent pair [35].

2.1.4. General Procedure for the Synthesis of Nitrochalcones 8–10

2-Nitroacetophenone (10 mmol) was dissolved in ethanol (10 mL) and placed in an
ice–salt bath. Sodium hydroxide (6 mL, 1.0 M) was added, and the mixture was stirred
for 15 min. Nitrobenzaldehyde (10 mmol) was then added, and the reaction was stirred at
room temperature for 3 h. The reaction progress was monitored by TLC. The solid product
was filtered, washed with water, and recrystallized using a dichloromethane/n-hexane
solvent pair [36].

2.2. Characterization of Compounds 1–10 [34–36]

(E)-1,3-diphenyl-prop-2-en-1-one (1) yield: 85%; yellow solid; m.p. 53 ◦C. 1H NMR
spectrum (600 MHz, CDCl3) δ (ppm): 8.02 (d, J = 6.0, 1.5 Hz, 1H), 7.82 (d, J = 15.6 Hz, 1H),
7.64–7.61 (m, 1H), 7.56 (t, J = 7.2, 1.5 Hz, 1H), 7.52 (d, J = 15.6 Hz, 1H), 7.48 (t, J = 7.2, 6.0 Hz,
1H), 7.43–7.38 (m, 2H). 13C NMR spectrum (150 MHz, CDCl3) δ (ppm): 122.6, 129.0, 129.1,
129.2, 129.5, 131.1, 133.4, 135.4, 138.7, 145.4, 191.1.

(E)-1-(2′-nitrophenyl)-3-phenylprop-2-en-1-one (2) yield: 72.2%; white solid; m.p.
136–138 ◦C. 1H NMR spectrum (400 MHz, CDCl3) δ (ppm): 8.16 (d, J = 8 Hz, 1H), 7.76 (t,
J = 7.4 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.49 (m, 3H), 7.37 (m, 3H), 7.23 (d, J = 16.3 Hz, 1H),
7.16 (d, J = 16.3 Hz, 1H). 13C NMR spectrum (100 MHz, CDCl3) δ (ppm): 192.9, 146.6, 146.3,
136.1, 133.9, 133.8, 131.0, 130.5, 128.9, 128.7, 128.1, 126.1, 124.4.

(E)-1-(3′-nitrophenyl)-3-phenylprop-2-en-1-one (3) yield: brown solid (73.2%); m.p.
135–136 ◦C. 1H NMR spectrum (400 MHz, CDCl3) δ (ppm): 8.82 (t, J = 1.8 Hz, 1H), 8.43 (ddd,
J = 1.0, 1.8, 8.0 Hz, 1H), 8.35 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 15.6 Hz, 1H), 7.72 (t, J = 7.8 Hz,
1H), 7.68–7.66 (m, 2H), 7.54 (d, J = 15.6 Hz, 1H), 7.46–7.44 (m, 3H). 13C NMR spectrum
(100 MHz, CDCl3) δ (ppm): 187.9, 148.3, 146.7, 139.4, 134.2, 134.0, 131.1, 129.9, 129.0, 128.7,
127.0, 123.2, 120.5.

(E)-1-(4′-nitrophenyl)-3-phenylprop-2-en-1-one (4) yield: yellow solid (72.1%); m.p.
156–158 ◦C. 1H NMR spectrum (400 MHz, CDCl3) δ (ppm): 8.34 (d, J = 8.9 Hz, 2H), 8.14 (d,
J = 8.9 Hz, 2H), 7.84 (d, J = 15.7 Hz, 1H), 7.67–7.65 (m, 3H), 7.49 (d, J = 15.7 Hz, 1H), 7.45 (dd,
J = 1.2, 5.1 Hz, 2H). 13C NMR spectrum (100 MHz, CDCl3) δ (ppm): 188.9, 149.9, 146.7,
142.9, 134.2, 131.2, 129.3, 129.0, 128.6, 123.8, 121.2.

(E)-3-(2-nitrophenyl)-1-phenylprop-2-en-1-one (5) yield: 90%; yellow solid; m.p.
115–116 ◦C. 1H NMR spectrum (400 MHz, CDCl3) δ (ppm): 7.34 (d, J = 15.6 Hz, 1H),
7.51 (m, 2H), 7.58 (m, 2H), 7.72 (m, 2H), 8.01 (m, 2H), 8.04 (dd, J = 5.64, 1.2 Hz, 1H), 8.13 (d,
J = 15.6 Hz, 1H). 13C NMR spectrum (100 MHz, CDCl3) δ (ppm): 124.8, 127.0, 128.6, 128.6,
129.1, 130.2, 131.1, 133.0, 133.5, 137.2, 140.0, 148.3, 190.2.

(E)-3-(3-nitrophenyl)-1-phenylprop-2-en-1-one (6) yield: 94%; white solid; m.p.
132–134 ◦C. 1H NMR spectrum (400 MHz, CDCl3) δ (ppm): 7.56 (m, 4H), 7.67 (d, J = 16 Hz,
1H), 7.83 (d, J = 16 Hz, 1H), 7.93 (d, J = 7.8 Hz, 1H), 8.05 (m, 2H), 8.25 (dd, J = 8.1, 2.1 Hz,
1H), 8.50 (dd, J = 2.1, 1.8 Hz, 1H). 13C NMR spectrum (100 MHz, CDCl3) δ (ppm): 122.2,
124.4, 124.5, 128.5, 128.7, 129.9, 133.2, 134.2, 136.5, 137.4, 141.5, 148.5, 189.5.

(E)-3-(4-nitrophenyl)-1-phenylprop-2-en-1-one (7) yield: 90%; yellow solid; m.p.
156–158 ◦C. 1H NMR spectrum (400 MHz, CDCl3) δ (ppm): 7.53 (dt, J = 7.6, 1.5 Hz,
2H), 7.61 (d, J = 7.6 Hz, 1H), 7.65 (d, J = 15.54 Hz, 1H), 7.78 (d, J = 8.7 Hz, 2H), 7.81 (d,
J = 15.54 Hz, 1H), 8.04 (dd, J = 7.8, 1.5 Hz, 2H,), 8.26 (d, J = 8.7 Hz, 2H). 13C NMR spectrum
(100 MHz, CDCl3) δ (ppm): 124.1, 125.5, 128.5, 128.7, 128.8, 133.3, 137.4, 140.9, 141.4,
148.4, 189.5.

(E)-1,3-bis(2-nitrophenyl)prop-2-en-1-one (8) yield: 42%; white solid; m.p. 140–142 ◦C.
1H NMR spectrum (600 MHz, DMSO-d6) δ (ppm): 8.25 (d, J = 8.1 Hz, 1H), 8.08 (d, J = 8.1 Hz,
1H), 8.01 (d, J = 7.7 Hz, 1H), 7.95 (t, J = 7.3 Hz, 1H), 7.85–7.80 (m, 2H), 7.75 (d, J = 7.4 Hz,
1H), 7.70 (t, J = 7.9 Hz, 1H), 7.66 (d, J = 16.1 Hz, 1H), 7.24 (d, J = 16.1 Hz, 1H). 13C NMR
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spectrum (150 MHz, DMSO-d6, DEPTQ) δ (ppm): 192.6, 148.8, 146.9, 141.6, 135.3, 135.1,
134.4, 132.2, 131.8, 130.0, 129.8, 129.7, 129.6, 125.3, 125.1.

(E)-1-(2-nitrophenyl)-3-(3-nitrophenyl)prop-2-en-1-one (9) yield: 90%; white solid; m.p.
145–147 ◦C. 1H NMR spectrum (600 MHz, DMSO-d6) δ (ppm): 8.58 (s, 1H), 8.25–8.22 (m,
3H), 7.92 (t, J = 7.4 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.74 (d, J = 7.4 Hz, 1H), 7.70 (t, J = 7.9 Hz,
1H), 7.57 (d, J = 16.3 Hz, 1H), 7.51 (d, J = 16.3 Hz, 1H). 13C NMR spectrum (150 MHz,
DMSO-d6, DEPTQ) δ (ppm): 192.6, 148.7, 147.0, 143.6, 136.3, 135.6, 135.0, 134.9, 132.0, 130.8,
129.5, 128.6, 125.4, 125.0, 123.9.

(E)-1-(2-nitrophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (10) yield: 81%; yellow solid;
m.p. 175–177 ◦C. 1H NMR spectrum (600 MHz, DMSO-d6) δ (ppm): 8.24–8.22 (m, 3H),
8.01 (m. 2H), 7.93 (t, J = 7.4 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.76 (d, J = 7.4 Hz, 1H), 7.53 (d,
J = 16.2 Hz, 1H), 7.48 (d, J = 16.2 Hz, 1H). 13C NMR spectrum (150 MHz, DMSO-d6, DEPTQ)
δ (ppm): 192.5, 148.7, 147.0, 143.1, 140.8, 135.4, 135.0, 132.1, 130.3, 129.7, 129.5, 125.1, 124.3.

2.3. Animals

The experiments on anti-inflammatory activity were conducted using male ICR mice
weighing 25–30 g sourced from Envigo RMS, S.A. de C.V., kept in the bioterium of the
Centro de Investigación Biomédica del Sur (CIBIS-IMSS). For vasorelaxant activity, male
Wistar rats (250–300 g) were obtained from the Unidad de Producción, Cuidado y Experi-
mentación Animal (UPCEA), which is affiliated with the División Académica de Ciencias
de la Salud (UJAT). In both cases, the animals were maintained under a 12 h light–dark cycle
at a constant temperature (23–25 ◦C) with free access to food and water, and were treated
according to the Mexican Federal Regulations for the Care and Use of Laboratory Animals,
NOM-062-ZOO-1999 Guidelines [37], as well as the international ethical guidelines for
the care and use of laboratory animals [38]. The animal studies were approved by the
Ethics Committee of the Instituto Mexicano del Seguro Social (R-2020-1702-008) and by the
Institutional Commission on Research Ethics (CIEI-UJAT-0927).

2.4. Anti-Inflammatory Activity

The number of animals utilized (n = 5 for each treatment) and the intensity of the
noxious stimuli employed were the minimum necessary to demonstrate the consistent
effects of the pharmacological treatments.

The induction of auricular inflammation was performed in accordance with previously
described methods [39]. The dose evaluated for the compounds was 1.0 mg/ear. The
control group was treated with acetone as a vehicle, and 1.0 mg/ear indomethacin (Indo,
Sigma–Aldrich, Toluca, Mexico) was used as an anti-inflammatory positive control. All
treatments were prepared by dissolving the appropriate quantity of the active ingredient in
acetone and applying the solution topically to both ears immediately after the solution of
12-O-tetradecanoylphorbol-13-acetate (TPA; Sigma–Aldrich, Toluca, Mexico), which was
used as an inflammatory agent. Six hours after the administration of TPA, the animals
were euthanized via cervical dislocation. Circular sections 6 mm in diameter were excised
from both the treated (t) and nontreated (nt) ears and weighed to determine the extent of
inflammation. The percentage of inhibition was calculated via the following equation:

% inhibition = [Dw control − Dw treated/Dw control] × [100],

where Dw = wt − wnt. In this expression, wt represents the weight of the treated ear
section, and wnt denotes the weight of the untreated ear section.

2.5. Vasorelaxant Activity

The animals were anesthetized via the injection of sodium pentobarbital (60 mg/kg,
intraperitoneally) and subsequently euthanized via cervical dislocation. Aortic rings
(3–5 mm) were cleaned of connective tissue and fat (in some rings, the endothelium
was removed). Tissues were extracted under optimal tension (3 g) in Krebs solution
(composition, mM: NaCl, 118; KCl, 4.7; CaCl2, 2.5; MgSO4, 1.2; KH2PO4, 1.2; NaHCO3,
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25.0; EDTA, 0.026; and glucose, 11.1, pH 7.4) at 37 ◦C and oxygenated (O2/CO2 ratio, 19:1)
in a thermostatically controlled water bath. The solution was maintained at 37 ◦C and
oxygenated with a gas mixture comprising 19% oxygen and 1% carbon dioxide. Isometric
tension was recorded via TSD125 C force transducers, which were used in conjunction with
a DA100C amplifier (Astromed®, West Warwick, RI, USA) and connected to an MP160
analyzer (Biopac® Instruments, Santa Barbara, CA, USA), as previously described [40].
Following the equilibrium period, denuded and intact aortic rings were precontracted with
noradrenaline bitartrate (NA; Sigma–Aldrich Co., St. Louis, MO, USA) at a concentration
of 0.1 µM, and subsequently washed every 30 min. The absence of a relaxation response
to 1 µM carbamylcholine chloride (carbachol, Sigma–Aldrich Co., St. Louis, MO, USA)
confirmed the presence of the endothelium. Under these conditions, the relaxant effect and
vascular mode of action were determined.

The aortic rings, with or without endothelium, were contracted with NA (0.1 µM).
After 15 min, once a plateau was reached, the compounds (1–10; 0.1–10 µg/mL), carbachol
(1 × 10−4–10 µM), and nitrendipine (Sigma–Aldrich Co., St. Louis, MO, USA) at concen-
trations ranging from 1 × 10−4 to 10 µM or vehicle (0.1% DMSO) were added to the bath
chamber in a cumulative manner. Muscular tone was calculated both before and after the
addition of increasing concentrations. The data were analyzed via the AcqKnowledge
5.0 software. To elucidate the endothelial signaling pathway engaged by chalcones (mus-
carinic receptors, eNOS, or COX-1), aortic rings with endothelium were treated with Indo
(Sigma–Aldrich Co., St. Louis, MO, USA) and N-nitro-L-arginine methyl ester (L-NAME,
Sigma–Aldrich Co., St. Louis, MO, USA) at a concentration of 10 µM, or with atropine
(Sigma–Aldrich Co., St. Louis, MO, USA) at a concentration of 1 µM, for 15 min before
contracting the arterial rings with NA (0.1 µM). The most active compounds (1 and 7)
were subsequently added at cumulative concentrations (0.1–10 µg/mL). Muscle tone was
calculated in the presence and absence of Indo, L-NAME, or atropine [41].

2.6. Molecular Docking Calculations

The COX-1 model (pdb: 3kk6) [42] was obtained from the Protein Data Bank (PDB)
repository with a resolution of 2.75 Å. The COX-1 model was found to contain celecoxib
(CEL) as a ligand. The grid was positioned at the coordinates of the CEL site, which
were determined to be X = −32.591, Y = 42.338, and Z = −6.333. The COX-2 model (PDB:
3ln1) [43] cocrystallized with CEL was downloaded from the same repository with 2.40 Å
resolution; the grid was located at the coordinates X = 30.060, Y = −21.639, and Z = −16.698.

For both models, the grid had dimensions of 45 points (16.87 Å) per side, with a
spacing of 0.375 Å. The alignment of COX-1 and COX-2 was performed with the Align tool
from the UniProt database, and the identity and similarity percentages were calculated
manually. To analyze the selectivity of compounds between COX-1 and COX-2, the affinity
constant (Ki) was obtained via the Gibbs free energy equation. The selectivity index was
defined as the ratio of the Ki values for COX-1 and COX-2. A selectivity index of 10 or
greater was deemed a sufficient indicator of selectivity.

The eNOS model (PDB: 4d1o) [44] was obtained from the PDB repository with a
resolution of 1.82 Å. This model contained 5,6,7,8-tetrahydrobiopterin (H4B) as a ligand,
and the grid (18.0 Å per side) was positioned at the H4B site at the following coordinates:
X = 17.422, Y = 234.059, and Z = 22.246.

The models of chalcones 1–10 were optimized via a total energy minimization force
field of MMFF94 (Avogadro software v1.1.1) [45]. The compounds were docked into the
active sites of COX-1, COX-2, and eNOS via AutoDock Tools and the AutoDock Vina
executable [46,47], with the precise locations corresponding to those observed for CEL or
H4B in the crystallized structures. In the preceding phase, polar hydrogen atoms were
incorporated into the biomacromolecule models, and Kollman charges (AMBERs) were
assigned. A total of 100 poses were obtained for each compound 1–10, with Indo, CEL,
and H4B serving as the control compounds. The most populated cluster was subjected
to analysis, and the average energy pose was visualized with the Discovery Studio v3.5



Sci. Pharm. 2024, 92, 54 7 of 19

software [48]. The protocol was validated by docking the cocrystallized ligands into their
respective binding sites, with a root-mean-square deviation (RMSD) of less than 2.0 Å
considered for model validation.

2.7. Statistical Analysis

The data reported are presented as the mean ± standard error of the mean (SEM).
The statistical significance of the results was determined via analysis of variance (ANOVA)
with a confidence level of 95% (* p ≤ 0.05), followed by the one-tailed Dunnett test in
comparison with the control (Indo) and Tukey’s test. The results of the vasorelaxant
activity are expressed as the mean of five experiments ± standard error of the mean (SEM)
concentration–response curves. The statistical significance (p ≤ 0.05) of differences between
means was assessed by ANOVA, followed by Tukey’s test.

All the statistical analyses were conducted via IBM SPSS Statistics version 23.0 soft-
ware. The median effective dose (ED50) and median effective concentration (EC50) were
calculated via linear regression via GraphPad Prism 8.0.2 (San Diego, CA, USA).

3. Results
3.1. Anti-Inflammatory Evaluation

The anti-inflammatory efficacy of chalcone 1 and the set of chalcones containing
nitro groups (compounds 2–10) was evaluated in a TPA-induced mouse ear model. All
compounds demonstrated anti-inflammatory activity at a dose of 1 mg/ear (Figure 2).

The percentage inhibition of chalcone 1 was 31.75 ± 1.49%, and for the nitro group-
containing chalcones 2–10, the percentages of inhibition were 71.17 ± 1.66%, 18.32 ± 1.53%,
58.25 ± 1.97%, 80.77± 2.82%, 52.62 ± 1.37%, 30.09 ± 0.67%, 16.82 ± 0.95%, 61.08 ± 2.06%,
and 13.22 ± 2.08%, respectively. For the positive control (Indo), the observed percentage
inhibition was 71.48 ± 1.62%.

Compounds 2 and 5, which both possess a nitro group at the ortho position (on the
A and B rings, respectively), exhibited the highest percentage of inhibition. Specifically,
chalcone 5 exhibited notable distinctions and demonstrated the most pronounced effect in
comparison to the other compounds under examination and to Indo. Moreover, the effects
of compound 2 were statistically comparable to those of the reference drug. Furthermore,
compounds 4 and 9 exhibited notable activity, with no significant differences between
them. Notably, compound 4 has a nitro group at the para position (on ring B), whereas
compound 9, which has a nitro group at the ortho and meta positions (ring A and ring
B, respectively), is the only disubstituted compound that demonstrated substantial anti-
inflammatory activity. Similarly, the statistical analysis of the remaining compounds in
comparison with Indo revealed significant differences at the p ≤ 0.05 level. Finally, some
nitrochalcones were not significantly different; consequently, they had similar effects:
chalcones 1 and 7; chalcones 3, 8, and 10; and chalcones 4 and 6.

The most active compounds (2, 5, and 9) were evaluated at various doses (0.125,
0.25, 0.5, 1.0, and 2.0 mg/ear) to obtain their dose–response anti-inflammatory effects.
In the case of Indo, it was only at the 1.0 mg/ear dose that the doses of the compounds
were compared. At all the tested doses, edema was reduced in a dose-dependent manner
(Figure 3). The inhibition percentages for compound 2 were as follows: 41.60 ± 1.55%,
47.50 ± 1.35%, 54.83 ± 0.95%, 70.53 ± 1.43%, and 62.75 ± 1.71%. The inhibition percentages
for compound 5 were 32.61 ± 1.62%, 32.35 ± 2.10%, 38.88 ± 3.10%, 80.43 ± 2.21%, and
68.54 ± 2.45%, whereas for compound 9, the inhibition percentages were 25.42 ± 1.22%,
41.93 ± 2.25%, 48.1 ± 2.29%, 61.39 ± 1.63%, and 50.48 ± 1.66%, respectively. Notably, the
doses of 1 and 2 mg/ear of compounds 2 and 5 did not significantly differ from that of
Indo at 1 mg/ear. Conversely, the other doses demonstrated significant differences with
respect to the reference drug (Figure 3).

From the dose–response curves of each of the compounds, the mean response dose
(ED50) was obtained: for compound 2, the ED50 was 1.07 µM; for 5, it was 1.64 µM; and
for 9, it was 1.67 µM. Compound 2 had the lowest ED50 and was significantly different
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from the other two compounds (Figure 3). Furthermore, a comparison of the ED50 values
of each compound revealed that 2 was 1.57-fold and 1.84-fold more potent than 5 and
9, respectively.

3.2. Vasorelaxant Activity Evaluation

The pharmacological parameters of the compounds evaluated and their controls with
endothelium (E+) and without endothelium (E−) are presented in Table 1. The nitrochal-
cones demonstrated a partially endothelium-dependent and concentration-dependent
vasorelaxant effect. Compounds 1 and 7 presented higher Emax values than did the positive
control, prompting an investigation into their mechanism of action.

The chalcone that demonstrated the most pronounced vasorelaxant effect was 1,
which lacks a nitro group and exhibited a relaxation of 81.16 ± 7.55% in the presence of
endothelium and 45.64 ± 6.65% in its absence. The statistical analysis of both experiments
conducted on compound 1 revealed significant differences between them. With respect
to the nitro group-containing chalcones, compound 7 presented the most pronounced
vasorelaxant activity, with an Emax value of 81.94 ± 2.50% in the presence of endothelium
and 8.84 ± 3.45% in its absence. The statistical analysis of the experiments conducted on
compound 7 revealed significant differences.
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Figure 3. Anti-inflammatory effects of compounds 2, 5 and 9 at different doses and Indo at a single
dose. The values are reported as the means ± standard errors (n = 5 for each treatment). Statistical
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vs. Indo.

Table 1. Vasorelaxant effect induced by compounds 1–10 with contractions produced by NA (0.1 µM).

With Endothelium (E+) Without Endothelium (E−)

Compound Emax EC50 (µM) Emax EC50 (µM)

1 81.16 ± 7.55 159.01 45.64 ± 6.65 ** ND
2 57.04 ± 9.54 * 144.32 26.45 ± 5.64 ** ND
3 66.23 ± 13.35 * 364.17 12.65 ± 2.09 ** ND
4 43.25 ± 2.91 * ND 27.52 ± 6.50 ** ND
5 39.23 ± 5.10 * ND 23.64 ± 3.24 ** ND
6 −7.94 ± 11.84 * ND 16.16 ± 3.56 ** ND
7 81.94 ± 2.50 381.64 8.84 ± 3.45 ** ND
8 47.24 ± 1.75 * ND 53.42 ± 20.45 ** 197.60
9 45.00 ± 17.35 * ND 13.86 ± 1.85 ** ND

10 40.75 ± 7.27 * ND 28.92 ± 1.97 ** ND
Carbachol 76.72 ± 7.88 358.64 --- ---

Nitrendipine --- --- 90.29 ± 2.15 354.28
ND = not determined. E+ (* p ≤ 0.05 carbachol). E− (** p ≤ 0.05 nitrendipine).

In the experiments with endothelium present, compounds 1 and 7 presented the high-
est percentages of Emax, which did not significantly differ between them or with carbachol,
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indicating a similar efficacy. However, compound 1 is more potent than compound 7 and
carbachol, since it presents a lower EC50.

In the experiments without endothelium, compounds 1 and 8 had the highest percent-
ages of Emax, which did not significantly differ between them but did differ from nitrendipine.
Additionally, the IC50 of 8 was significantly different from that of nitrendipine.

Based on the vasorelaxant effect with and without endothelium, experiments were
proposed to determine the mechanism of action because each type of cell (muscle and
endothelial) has different relaxing factors. The most pronounced vasorelaxant effect was ob-
served with compounds 1 and 7, which prompted an investigation into potential pathways
through which this activity was achieved. To this end, the compounds were evaluated in
the presence of L-NAME (a nonspecific nitric oxide synthase inhibitor), Indo (a nonspecific
COX inhibitor), and atropine (a cholinergic muscarinic receptor antagonist) (Figure 4).
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Figure 4. Vasorelaxant effects of compounds 1 (A) and 7 (B) in the presence of L-NAME, Indo,
and atropine on NA (0.1 µM)-induced contraction in aortic rings with endothelium. The data are
presented as the means ± standard errors (n = 5 for each treatment). The statistical significance was
determined by analysis of variance (ANOVA), followed by Tukey’s test. A value of * p ≤ 0.05 was
considered statistically significant.

The vasorelaxant effect of compound 1 in aortic rings with E+ was observed to be
Emax = 81.16 ± 7.55%. However, in the presence of L-NAME, the effect was reduced to
E = 39.59 ± 3.18%. In tests with Indo and atropine, the response of the aortic rings with
E+ was not significantly modified. In contrast, compound 7 demonstrated a right-shifted
vasorelaxation effect in the presence of L-NAME, Indo, or atropine, with a corresponding
decrease in its E value. Specifically, the E value decreased to 12.24 ± 6.89%, 30.70 ± 15.69%,
and 35.39 ± 4.10%, respectively.

3.3. Molecular Docking

Molecular docking calculations were implemented with crystallographic complexes
obtained from the Protein Data Bank (PDB) database. With respect to anti-inflammatory
activity, a molecular docking study was conducted with compounds 1, 2, 5, and 9 in
complex with the COX-1 protein (PDB: 3kk6) [42] and COX-2 (PDB: 3ln1) [43], and for
vasorelaxant activities, with compounds 1 and 7 via the eNOS protein (PDB: 4d1o) [44].

3.3.1. Cyclooxygenase-1

The molecular docking results of compounds 1, 2, 5, and 9 with COX-1 demonstrated
an affinity energy range of −8.0–−7.5 kcal/mol, and the following interactions were
observed: the carbonyls of compounds 1, 2, and 5 formed carbon hydrogen–hydrogen
bonds with Ser353, whereas the carbonyl group of compound 9 similarly interacted with
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Ser530. The benzene ring A of compounds 1, 2, and 5 interacted with Leu531 via a π–alkyl
interaction, whereas ring B of these same compounds exhibited π–sigma interactions with
Leu352 and stacked amide–π-type interactions with Gly526. Similarly, Ala527 interacted with
the A and B rings of compounds 1, 2, and 5 via π–alkyl bonds. The presence of the nitro
group in the ortho position of the A-ring of compound 2 resulted in the interaction of one
of the oxygens of the nitro group with Arg120 through conventional hydrogen bonding.
Additionally, this ring exhibited further π–alkyl interactions with the amino acids Val349,
Leu359, and Val116, and π–sulfide interactions with Met113. In the ortho position of ring B of
compound 5, the nitro group engaged in a carbon–hydrogen bond with Ala527. Compound
9, which is substituted with a nitro group at both the ortho position of ring A and the meta
position of ring B, demonstrated interactions between ring A and Leu352 of the π–sigma
type, and with Gly526 of the stacked amide–π type. In ring B, the π–sigma interactions
were with Leu531 and Val349, whereas with Ala527, they were of the π–alkyl type. For the
nitro groups, only the one in ring B interacted with amino acid Arg120 via conventional
hydrogen bonding (Figure 5).
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Figure 5. Docking of nitrochalcones 1, 2, 5, and 9 with the COX-1 enzyme.

The coupling of the chalcone and nitro group-containing chalcones at the COX-1
binding site with CEL allowed the identification of a generic binding mode for chalcone
rings A and B (Figure 6A). The residues anchoring the rings were primarily Ala527, which
interacted with both rings of compounds 1, 2, 5, and 9. Leu352, Leu531, and Leu359 were
subsequently identified as contributing to stabilizing the chalcone core (Figure 6B). The
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orientations of compounds 1, 2, and 5 bound to COX-1 were identical, whereas compound
9 could reverse the rings’ position (Figure 6C). The carbonyl-like structural fragment
was observed to contribute to the formation of a hydrogen bond both when oriented
toward Ser353 (compounds 1, 2, and 5) and when oriented toward Ser530 (compound 9)
(Figure 6B,C).
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3.3.2. Cyclooxygenase-2

Molecular docking studies of compounds 1, 2, 5, and 9 with the COX-2 enzyme
revealed affinity energies ranging from −9.3 to −8.2 kcal/mol, indicating compound-
specific interactions. All the compounds except 9 exhibited carbonyl group interactions
with Ser339 via carbon–hydrogen bonding. In ring A, compounds 1 and 2 formed π–alkyl
bonds with Val102, whereas compounds 5 and 9 exhibited similar interactions with Val509.
The A and B rings of compounds 1 and 2 interacted with Ala513 via π–alkyl bonds, whereas
in compounds 5 and 9, only ring B had similar interactions with Ala513. Compound 1
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exhibited additional interactions, including a π–π T-shaped interaction between ring A
and Tyr341, a stacked amide–π interaction between ring B and the amino acid Gly512, and a
π–π-stack interaction between ring B and Phe504. In the case of compound 2, ring A did not
exhibit any additional interactions. However, the nitro group present in the ortho position
of this same ring engaged in conventional hydrogen bonding with Arg106, whereas ring B
demonstrated interactions with Gly512 and Phe504 through stacked amide–π interactions.
In the case of compound 5, ring A also interacted with Leu338 via a π–alkyl bond, whereas
ring B, which contains a nitro group in the ortho position, interacted with Tyr341 via a π–π
T-shaped interaction. Additionally, one of the oxygens of the nitro group interacted with
Arg106 via a conventional hydrogen bond.

In compound 9, ring A, which contains one of the two nitro groups in the ortho
position, interacts with Leu338 via a π–alkyl bond and with Trp373 via a π–π T-shaped
interaction. Ring B, which contains the nitro group in the meta position, interacts with
Leu517 via a π–alkyl bond. However, the ring’s nitro groups do not interact with any amino
acids. These observations underscore the impact of varying positions and substitutions of
compounds on the affinity and interaction pattern with active COX-2 residues, offering a
comprehensive understanding of the binding mechanisms at the molecular level (Figure 7).
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The docking of the chalcone and nitrochalcones at the COX-2 binding site with CEL
enabled identifying a generic binding mode for the chalcone rings A and B (Figure 8A). The
residues responsible for stabilizing the rings were primarily Ala513, which interacted with
both rings of compounds 1, 2, 5, and 9. Val102, Tyr341, Phe504, and Gly512 were subsequently
identified as contributing to stabilizing the chalcone core (Figure 8B). All the compounds
exhibited the same carbonyl orientation when bound to COX-2. However, for compounds
1 and 2, the rings could be reversed in position, although this did not affect the hydrogen
bond interaction with Ser339.
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Figure 8. Overlayed poses were obtained for compounds 1, 2, 5, and 9 with the residues stabilizing
the chalcone’s A and B rings (A). The structure of the base chalcone interacts with the residues,
stabilizing the chalcone base skeleton (B).

The COX-2 coupling results demonstrated that introducing a nitro group to ring A of
the chalcone enabled the establishment of a hydrogen bond with Arg106.

Given the results observed between COX-1 and COX-2 and the high degree of struc-
tural resemblance between the two COX isoforms, a sequence alignment was conducted.
The resulting data indicated an identity percentage of 61.4% and a high similarity percent-
age of 80.1%.

The calculated selectivity index revealed that compound 2 has greater selectivity for
COX-2 (Table 2). However, the potency of the control CEL was 3.7-fold more significant
than that of compound 2 and Indo, which are known to inhibit both COX-1 and COX-2.
These findings suggest that the selectivity index of compound 2 may not be a reliable
indicator of its selective profile.

Table 2. Molecular docking results and selectivity analysis of the chalcones with the highest activity.

COX-1 COX-2

Affinity
(Kcal/mol)

Ki *
(E−7) #

Affinity
(Kcal/mol)

Ki
(E−7) # SI **

1 −7.8 ± 0 19.1 ± 0 −8.2 ± 0.10 9.8 ± 1.70 1.95
2 −7.5 ± 0 31.8 ± 0 −9.1 ± 0.03 2.17 ± 0.11 14.64
5 −8.0 ± 0 13.6 ± 0 −8.99 ± 0.15 2.6 ± 0.25 5.25
9 −8.0 ± 0 13.6 ± 0 −9.3 ± 0.05 1.5 ± 0 8.97

Indo −5.0 ± 0.05 2078.6 ± 151.9 −6.8 ± 0.413 142.4 ± 265.17 14.59
CEL −6.1 ± 0.23 344.7 ± 227.6 −8.45 ± 0.05 6.3 ± 0.55 54.02

Data in the table report the mean ± standard deviation. * Ki: inhibition constant. # Values are in exponent factors
(−7). ** SI: selectivity index.
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3.3.3. Endothelial Nitric Oxide Synthase

In the molecular docking study of compounds 1 and 7 with the eNOS enzyme, an
affinity energy of −6.5 kcal/mol was obtained for both compounds. The experiments
demonstrated that both compounds engage in hydrogen bonding with the amino acid
Arg365 through their carbonyl groups. Ring A of both compounds interacted with the
amino acid Pro451 via a π–alkyl bond and a Hem500 group. In the case of compound 1,
the interaction occurred via a stacked π–π bond, whereas in the case of compound 7, it
occurred via a π–sigma bond. While ring B exhibited an interaction only with Ala446, in
compound 1, this interaction was conducted through a π–sigma bond, and in compound
7, it occurred through a π–alkyl bond. Concerning compound 7, which contains a nitro
group in the B-ring, no interaction of the nitro group with any amino acid was observed.
The primary distinction between these compounds is evident in compound 1, which has an
additional interaction of the double bond with the amino acid Trp447 (Figure 9).
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4. Discussion

The increasing interest in exploring the various medicinal properties of nitro group-
containing compounds [49] has led to investigations of the anti-inflammatory and vasore-
laxant activities of chalcones with a nitro group at different positions of the molecule. The
findings of the present study indicate that nitro group-containing chalcones have evident
anti-inflammatory and vasorelaxant effects.

The anti-inflammatory activity of the chalcones evaluated in this study demonstrated
that compound 1, a chalcone devoid of substituents, exhibited a diminished level of
potency relative to nitrochalcones 2, 4, 5, and 6, which contain a nitro group. Conversely,
compounds 3, 8, and 10 demonstrated a reduced potency compared with that of compound
1. Compared with the reference drug Indo, compounds 2 and 5 demonstrated equivalent
or greater potency at the same dose evaluated. This finding indicates that the incorporation
of the nitro group into specific positions within the chalcone structure can markedly
increase its anti-inflammatory potency, potentially attaining levels greater than those of a
reference drug.

Nitro group-containing chalcones 2 and 5, which feature a nitro group at the ortho
position on both the A and B rings, demonstrated the most pronounced anti-inflammatory
effects. This finding aligns with a previous study conducted by our research group. In
the aforementioned study, the anti-inflammatory effect of nitrochalcones in a model of
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plantar edema induced by carrageenan was reported. The chalcone with the nitro group in
the ortho position in the A ring was identified as the most effective isomer among those
studied [34]. These findings have been corroborated by other research groups who have
conducted anti-inflammatory assessments of select chalcone derivatives with a nitro group.
These results indicate that compounds with a nitro group at the ortho position exhibit the
highest anti-inflammatory activity [50,51].

The anti-inflammatory activity of chalcones has been attributed primarily to the enone
present in the structure of the compound [52], which has been demonstrated to be essential
for blocking the degranulation of mast cells in the anti-inflammatory process. Consequently,
it can be postulated that the enone present, together with the nitro group in the molecular
structure, can generate a series of electronic effects, thereby contributing to significant anti-
inflammatory activity. In this study, a correlation between the ortho position of the nitro
group in chalcones and their anti-inflammatory activity is observed. Chemically, the nitro
group in the ortho position introduces a strong resonance effect and electron delocalization
which increases the polarization of the enone system, which may possibly enhance the
reactivity of the molecule against enzymes involved in inflammatory processes [53].

To our knowledge, the anti-inflammatory effect of chalcones with two nitro groups has
not been discussed in the literature. Therefore, the results obtained represent a challenging
approach to chalcones with two nitro groups in their structure and it will be necessary to con-
duct further investigation about their possible interactions with pharmacological targets.

Many studies have proposed a mechanism of action for the anti-inflammatory activity
of chalcones, which is thought to involve the inhibition of cyclooxygenases (COXs) [54–56].
In this study, molecular docking calculations were conducted with COX-1 and COX-2. The
results demonstrated that compound 2 had the greatest number of interactions with COX-1,
whereas compound 5 had the greatest number of interactions with COX-2. These findings
align with the experimental data, which indicated that both compounds 2 and 5 exhibited
the greatest anti-inflammatory potency.

From an electronic point of view, docking simulations confirm that the nitro group
at the ortho position of the A-ring of chalcones establishes crucial hydrogen bonds with
key residues in COX-1 and COX-2 enzymes, such as Arg120 in COX-1 and Arg106 in COX-2.
These interactions confirm the affinity of the nitro groups of the chalcones for the active
sites of both COX isoforms, resulting in enhanced inhibition of inflammatory activity [57].

Conversely, the nitro group of chalcones has the capacity to donate NO and facilitate a
vasorelaxant effect [58]. This research represents the first report of the vasorelaxant effects
of the studied compounds (1–10). Notably, chalcones bearing nitro groups at different
positions showed similar or lower vasorelaxant effects than compound 1 (which lacked a
nitro group). Since the most active compounds were 1 and 7, their mechanism of action was
investigated. The reduction in the vasorelaxant effect of chalcones 1 and 7 in the presence
of L-NAME suggests the involvement of the NO pathway in the pharmacological effect.

This is the reason why, in Table 1, chalcones have a greater effect with endothelium than
without endothelium, and Figure 4 was constructed only in the presence of endothelium.

These findings are corroborated by the results of molecular docking, which indicate
that compounds 1 and 7 interact with the eNOS enzyme via specific interactions. However,
the vasorelaxant effect of compound 7 was diminished when Indo or atropine was included
in the experiments. These findings make compound 7 a promising subject for further study,
as it likely has dual vasorelaxant mechanisms, whereby more than one endothelial cell-
dependent vasorelaxant pathway is involved, such as the inhibition of prostaglandin
production or the activation of muscarinic receptors [59,60].

5. Conclusions

The present study aimed to assess the anti-inflammatory and vasorelaxant properties
of a series of chalcones with nitro groups at different positions. Compounds 2, 5, and 9, with
the nitro group in the ortho position, demonstrated the highest percentage of inhibition of
inflammation and exhibited the most significant interactions in molecular docking studies
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with COX-2. Furthermore, the presence of the nitro group in the B-ring in the para position
of compound 7 was found to enhance its vasorelaxant effect, primarily through the NO
pathway. This is likely due to the interaction of the nitro group with eNOS. These results
demonstrate that the nitro group and its position within the chalcone structure play pivotal
roles in influencing its anti-inflammatory and vasorelaxant activities.
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