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Abstract: Breast cancer is the most common and the leading cause of cancer death in women
worldwide; treating invasive breast carcinomas is challenging due to the side effects of
chemotherapeutics. Compounds isolated from natural sources have been proposed as
potential molecules for cancer therapy; for instance, the homoisoflavonoid brazilin has
shown pharmacological properties, including anti-tumoral and anti-inflammatory activities.
In this study, we isolated brazilin from the heartwood of Haematoxylum brasiletto; then, we
performed a semi-synthesis by adding three methyl or acetyl groups to the core structure
of brazilin. We confirmed the identity of brazilin and its derivatives by spectroscopic
data (1H NMR and 13C NMR) and measured their purity by optical rotation. Then, we
analyzed the effects of brazilin and its derivatives in three mammary gland-derived cell
lines: the TNBC MDA-MB-231, the ERα(+) MCF7, and the non-tumorigenic MCF10A.
We evaluated the cell viability by MTT assays, cell migration by wound-healing assays,
and focal adhesion kinase (FAK) activation by Western blot. Regarding biological assays,
the MTT assay showed that these compounds showed cytotoxic effects on the MCF7
and MDA-MB-231 breast cancer cells at 20 µM but was not toxic in non-tumorigenic
MCF10A mammary epithelial cells. Specifically, the greatest effects found from treatment
with the compounds were in the MDA-MB-231 cell line, where the IC50 of brazilin was
49.92 µM, and for MCF7, the brazilin-(OAc)3 was 49.97 µM. These effects were dose- and
time-dependent, as well as being associated with a decrease in the levels of cell migration
and FAK activation.
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1. Introduction
The diversity of natural products has played and will continue to play an essential

role in drug discovery and development [1,2]. According to Newman and collabora-
tors, about 75 (41%) of the newly approved anti-cancer drugs from 1946 to 2019 were
inspired or derived from natural sources [3]. Natural sources include microorganisms,
algae, and plants; the isolated compounds may consist of tannins, stilbenes, lignans, phe-
nolic acids, and flavonoids. However, flavonoids are among the most abundant and
bioactive compounds [4]. The anti-cancer effects of numerous members of flavonoids
have been extensively reviewed; they modulate reactive oxygen species (ROS) responses,
arrest the cell cycle, induce cell death, and suppress the proliferation and invasiveness
of cancer cells [5,6]. Moreover, isoflavonoids such as genistein, daidzein, biochanin A,
and glycitein have been taken to the stage of clinical trials for the development of new
anti-invasive chemotherapeutics [7].

Brazilin [(6aS, 11bR) -7, 11b-dihydro-6H-indeno [2,1-c] chromene-3, 6a, 9, 10-tetrol]
is a natural tetracyclic homoisoflavonoid made of a chroman skeleton fused in cis with a
2,3-dihydro-1H indene residue [8]. Brazilin is the most abundant compound in the heart-
wood of Caesalpinia sappan L. (Leguminosae) (Southeast Asia) and was also isolated from the
ethanolic extracts of the heartwood of Haematoxylum brasiletto (Fabaceae) [9]. H. brasiletto,
regionally known as “Palo de Brasil”, is commonly used in beverages, infusions, or extracts
in traditional medicine in the treatment of chronic diseases [8]. The cytotoxic effects of
brazilin (H. brasiletto) were tested against the A549, LS180, HeLa, SiHa, MDA-MB-231, and
NCI-H1299 cancer cell lines, showing a reduction in cell viability in all cancer cells [9].
Previous reports showed that brazilin regulates markers of the epithelial–mesenchymal
transition by decreasing the expression of vimentin, Twist, and invasion in breast cancer
cells [10]. Despite the growing evidence of the anti-tumoral activities of brazilin, its effects
inhibiting breast cancer progression continue to be explored.

Breast cancer is the most diagnosed and the leading cause of death in women world-
wide. In 2020, in women aged 45 to 55 years, the incidence of breast cancer was more than
two million new cases and mortality was over a half million [11]. Among breast cancer sub-
types, triple-negative breast cancer (TNBC) is the most aggressive; patients often develop
metastasis and chemoresistance [12]. From the hallmarks of cancer, metastasis [13] is the
leading cause of death in cancer patients [14]. Metastasis is a multi-step process in which
tumor cells separate from neighboring cells by losing their cell–cell and cell–extracellular
matrix (ECM) adhesions; then, the cells acquire migratory capacity, invade the stroma,
and enter the bloodstream; and finally, by extravasation, the tumor cells grow in a distant
organ, forming a secondary tumor [15]. Cell migration is one of the initial and more es-
sential steps in the metastatic cascade and involves cytoskeleton rearrangements; actin
filaments polarize and form protrusions that facilitate cell movement [16]. In addition,
cell–ECM adhesions, e.g., focal adhesions (FAs), are fundamental to giving directionality
and strength to the movement. Both actin cytoskeleton dynamics and FAs are regulated
by the downstream signaling of kinases, such as focal adhesion kinase (FAK) and Src [17].
Despite the strategies to counteract breast cancer progression with the use of mastectomy,
radiation, and hormonal and targeted therapy, chemotherapy is the primary approach for
treating TNBC [18]. However, around 90% of women who have received chemotherapy
have shown side effects [19,20]. Therefore, new therapeutic agents are needed for the
treatment of invasive breast cancer.

Previous evidence suggests that brazilin prevents the migration of platelet-derived
growth factor (PDGF)-stimulated vascular smooth muscle cells (VSMCs); the authors pro-
posed a mechanism by inhibiting the platelet-derived growth factor receptor (PDGFR)–Src-
ERK1/2-Akt signaling axis [21]. Brazilin in co-treatment with doxorubicin (DOX) inhibited
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cell migration through HER2-overexpressing MCF7 breast cancer cells (MCF7/HER2),
possibly through the downregulation of matrix metalloprotease-2 (MMP-2), MMP-9, HER2,
Rac1, and p120 protein expression [22]. Furthermore, a recent investigation described the
effects of brazilin on the invasion of breast cancer cells in vitro and in vivo. They found
that brazilin inhibited the proliferation, migration, and invasion of 4T1 and MDA-MB-231
breast cancer cells; also, brazilin-treated mice showed increased survival, fewer metastatic
nodules, and smaller tumor volume [23].

Even though natural products are a very important source for obtaining biomolecules
with therapeutic potential in cancer, they have shown some physicochemical mimics related to
low bioavailability, solubility, biotransformation, and low systemic absorption that hinder drug
development. Therefore, structural optimization is a crucial step in the drug development
process [24]. Semi-synthesis is a strategy to perform structural modifications to improve
activity and selectivity; it usually consists of the change, addition, or removal of functional
groups to the core structure of a compound [25]. Such chemical modifications change the
physicochemical and pharmacological properties of compounds, which can result in improved
performance, as described before for cabazitaxel (Jevtana®, Sanofi, Hong Kong), which is a C-7-
and C-10-methoxylated derivative of docetaxel [26]. Likewise, halichondrin B (Halichondria
okadai), initially used as a chemotherapeutic for breast cancer, was structurally simplified to
eribulin mesylate with better activity and manageable secondary effects [27,28].

The aim of the present study was to evaluate the anti-migratory activity in three
mammary gland-derived cell lines of brazilin and two semisynthetic derivatives. Initially,
we isolated brazilin from the heartwood of H. brasiletto and performed chemodiversification
by semi-synthesis; we obtained brazilin-(OMe)3 and brazilin-(OAc)3. We investigated
the biological activity of brazilin and methylated and acetylated derivatives on TNBC
MDA-MB-231, ERα (+) MCF7 breast cancer cells, and the non-tumorigenic mammary
epithelial MCF10A cell line. We also evaluated their effects on cell viability, cell migration,
and FAK activation; our compounds showed differential effects against the tested cell lines,
exhibiting a greater impact against the MDA-MB-231 breast cancer cells.

2. Materials and Methods
2.1. Chemistry General Information

All the materials and solvents were analytical grade and used as received unless
otherwise noted. The reaction progress in the synthesis of all the compounds was monitored
on Merck aluminum plates pre-coated with silica gel 60 F254 (Merck, KGaA, Dormstadt,
Germany). Silica gel column flash chromatography was performed with Silica Flash 60
230–400 mesh (Merck, KGaA, Dormstadt, Germany), and two alternative reagents were
used for visualization: (a) iodine and (b) KMnO4 in water.

The proton and carbon nuclear magnetic resonance (1H-NMR and 13C-NMR) spectra
were recorded in CD3OD or CDCl3 on a Bruker (500 MHz) instrument using TMS as an
internal standard. The chemical shifts (δ) were determined in parts per million (ppm),
and the coupling constant (J) values are given in hertz (Hz). Standard abbreviations are
used for the peak multiplicities. The melting points were determined with a MEL-TEMP®

3.0 apparatus and are uncorrected. The optical rotation was measured on a Perkin Elmer
341 polarimeter (Perkin Elmer, Waltham, MA, USA) at 589 nm, and the samples were dis-
solved in MeOH. High-resolution FAB+ mass spectra (HRMS) data of the new derivatives
were obtained on a JEOL MStation MS-700 mass spectrometer (JEOL, Tokyo, Japan).

2.2. Compound Brazilin Isolation

The heartwood of H. brasiletto was collected at Mochitlan, state of Guerrero, Mexico,
at 99◦21′19.03” W; 17◦29′03.27” N to 1042 msnm. Purification of 6aS,11bR-1 or (+)-brazilin:
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(1) The ethanolic extract from the heartwood powder of H. brasiletto was obtained by
maceration with EtOH at room temperature for seven days with regular stirring. The
ethanol extracts were evaporated under reduced pressure on a rotary evaporator to yield
the total extract. (2) The total extract was resuspended in 250 mL of an aqueous mix-
ture (3:2 of H2O/EtOH), and the resulting suspension was fractionated by liquid–liquid
separation with n-hexane and dichloromethane (CH2Cl2) to produce the correspond-
ing fractions of low and low-media polarity, respectively. The fractions were stored at
−4 ◦C in amber glass vials until use. (3) The brazilin was purified on flash chromatog-
raphy using gradient elution with CH2Cl2/EtOAc/MeOH mixtures (9:1:0.5), yielding
11 main fractions (3A-3K) (Appendix B Figure A1b). (4) Fraction 3B was purified by flash
chromatography eluting with n-hexane: EtOAc: MeOH (45:50:5) to yield 8 new frac-
tions (4A-4H) (Appendix B Figure A1b). The final purification of fraction 4C using EtOAc:
CH2Cl3: MeOH (70:30:10 + 50 µL formic acid) resulted in the isolation of (5) brazilin. See
the workflow diagram described in Appendix A. The 1H and 13C NMR spectroscopic data
for brazilin shown in Figure 1b, Supplementary Figure S1, and described below are similar
to previous reports [29].
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Figure 1. Brazilin isolated from H. brasiletto. (a) Chemical structure and (b) spectroscopic data
(1H NMR and 13C NMR) of brazilin.

Structural elucidation of brazilin-1 (6aS,11bR)-9,10-dihydroxy-6,6a,7,11b-tetrahydroindeno
[2,1-c] chromene-3,6a-diol (+)-Brazilin (C16H14O5 Wt.: 286.08) (purity of 91%).

m.p.: 119–121 ◦C. [α]25
D +69.2 (c 1.00, MeOH), 1H-NMR (500 MHz, CD3OD): δ = 7.18

(d, J = 8.4 Hz, 1H), 6.71 (s, 1H), 6.60 (s, 1H), 6.47 (dd, J = 8.3, 2.5, Hz, 1H), 6.30 (d, J = 2.5 Hz,
1H), 3.96 (s, 1H), 3.93 (dd, J = 11.3, 1.4 Hz, 1H), 3.69 (d, J = 11.3 Hz, 1H), 3.02 (d, J = 15.6 Hz,
1H), and 2.77 (d, J = 15.6 Hz, 1H) ppm. 13C-NMR (125 MHz, CD3OD): δ = 157.98, 155.86,
145.79, 145.48, 137.62, 132.42, 131.53, 115.74, 113.06, 112.62, 110.15, 104.44, 78.27, 71.02, 51.21,
and 43.06 ppm.

HRMS (FAB+): m/z [M + H]+ Calcd. for C16H15O5: 287.0919; found: 287.0991.

2.3. Semi-Synthesis of Brazilin-(OMe)3 and Brazilin-(OAc)3

3’,9’,10’-O-trimethylbrazilin or brazilin-(OMe)3: (6aS, 11bR)-3,9,10-trimethoxy-7,11b-
dihydroindeno [2,1-c] chromene-6a (6H)-ol: A solution of brazilin (40 mg, 0.14 mmol) in
acetone (3.5 mL) at room temperature was treated with K2CO3 (57.9 mg, 0.4191 mmol) and
MeI (99.16 mg, 0.6986 mmol). The reaction mixture was stirred at room temperature for
24 h. The crude product was purified by column chromatography 80:20 (EtOAc-Hexane),
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giving the compound [28.8 mg (52%)] as a yellow oil. For the reaction conditions, see
Table A1 in Appendix C.

1H NMR (500 MHz, CDCl3): δ = 7.28 (d, J = 8.5 Hz, 1H), 6.76 (s, 1H), 6.71 (s, 1H), 6.63
(dd, J = 8.4, 2.6, Hz, 1H), 6.46 (d, J = 2.6 Hz, 1H), 4.10 (s, 1H), 4.01 (dd, J = 11.3, 1.5 Hz, 1H),
3.89 (dd, J = 13.2, 2.0 Hz, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.76 (s, 3H), 3.23 (d, J = 15.8 Hz, 1H),
2.86 (d, J = 15.8 Hz, 1H), and 2.52 (br s, 1H) ppm. 13C NMR (125 MHz, CDCl3): δ = 159.63,
154.59, 148.94, 148.65, 136.31, 131.31, 130.77, 114.60, 109.10, 108.66, 107.90, 102.21, 77.72,
70.50, 56.32, 56.28, 55.56, 50.73, and 41.57 ppm. See Supplementary Figure S2.

3’,9’,10’-O-triacetylbrazilin or brazilin-(OAc)3: (6aS, 11bR) -6a-hydroxy-6, 6a, 7,11b-
tetrahydroindeno [2,1-c] chromene-3,9,10-triyl triacetate: A solution of brazilin (50 mg,
0.17 mmol) in THF (2.5 mL) at room temperature was treated with NaHCO3 (44 mg,
0.5238 mmol) and Ac2O (89.15 mg, 0.8733 mmol). The reaction mixture was stirred at room
temperature for 6 h. The crude product was purified by column chromatography (EtOAc:
hexane, 65:50), yielding the compound [24 mg (48%)] as a yellow oil. For the reaction
conditions, see Table A2 in Appendix C.

1H NMR (500 MHz, CDCl3): δ = 7.34 (d, J = 8.4 Hz, 1H), 7.07 (d, J = 1.0 Hz, 1H),
7.03 (s, 1H), 6.79 (dd, J = 8.3, 2.4, Hz, 1H), 6.68 (d, J = 2.4 Hz, 1H), 4.19 (s, 1H), 4.04
(dd, J = 11.5, 1.6 Hz, 1H), 3.84 (d, J = 11.5 Hz, 1H), 3.30 (d, J = 16.3 Hz, 1H), 2.94 (d,
J = 16.3 Hz, 1H), 2.58 (br s, 1H), 2.29 (s, 3H), and 2.26 (s, 6H) ppm. 13C NMR (125 MHz,
CDCl3): δ = 169.59, 168.67, 168.57, 154.32, 150.47, 142.34, 141.69, 141.32, 137.60, 131.29,
120.45, 119.59, 119.08, 115.50, 111.02, 77.52, 70.17, 50.64, 41.23, 21.33, 20.86, and 20.81 ppm.
See Supplementary Figure S3.

2.4. Cell Culture and Treatments

The non-tumorigenic mammary epithelial MCF10A cell line and the ERα(+) MCF7 and
TNBC MDA-MB-231 cell lines (ATCC, Manassas, VA, USA) were cultured in DMEM/F12
medium (50:50, V:V; Sigma-Aldrich, St Louis, MO, USA) supplemented with 10% fetal
bovine serum (FBS) and 1% antibiotics (penicillin G/streptomycin; Gibco, Waltham, MA,
USA) in a humidified atmosphere containing 5% CO2 at 37 ◦C.

The cell cultures were FBS-starved for 4 h (MCF10A) or 24 h (MDA-MB-231 and MCF7)
and rinsed with sterile PBS prior to treatments. Brazilin (1), 3’,9’,10’-O-Trimethylbrazilin
(2), or 3’,9’,10’-O-Triacetylbrazilin (3) were administered in concentrations from 2.5 µM to
40 µM in DMEM/F12 media for the time indicated in each section.

2.5. Viability Assays

The cells were seeded at 105 in a 96-well plate. After adherence overnight, the cells
were incubated with the medium alone or with a serial dilution of brazilin, brazilin-
(OMe)3, and brazilin-(OMe)3 starting with the highest concentration at 40 µM/mL for
48 h. Staurosporin and DMSO were used as the controls. Then, 20 µL of MTT (3-[4,5-
dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) solution was added to each well
and mixed. After 4 h, the supernatants were removed, and 100 µL of the MTT solvent
(acidified isopropanol) was added to each well to dissolve the formazan crystals. The cell
viability was estimated by measuring the absorbance at 630 nm using a Thermo Scientific
™ Multiskan ™ FC microplate photometer. The percentage of cell viability was calculated
as a function of the absorbance ratio between the cell culture treated with brazilin and the
untreated control multiplied by 100, representing the cell viability (percentage of control).

2.6. Cell Migration Assays

MDA-MB-231, MCF7, and MCF10A cells were grown to confluence in 60 mm culture
plates supplemented with complete DMEM/F12. The cells were FBS-starved and treated
for 2 h with 10 µM Cytosine β-D-Arabinofuranoside (AraC) to inhibit cell proliferation
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during the experiment. After starvation, the cells were scratched using a sterile 200 µL
pipet tip, the suspended cells were removed by washing twice with ice-cold sterile PBS,
and the cultures were re-fed with DMEM/F12 in the absence (control cells or 0 condition)
or presence 20 µM or 40 µM. The progress of wound healing was monitored using an EVOS
FL microscope with a 10× objective. The cell cultures were photographed immediately
after wounding and 48 h after the treatments; five images were analyzed per plate. The
migration area was determined by measuring the total wound area using ImageJ 1.44p
(NIH, Bethesda, MD, USA) software.

2.7. FAK Activation by Western Blot

After the treatments, the cells were solubilized in ice-cold lysis buffer/proteases
and phosphatases inhibitor cocktail. The total protein (20 ng) was resolved in 10% SDS-
PAGE and transferred to nitrocellulose membranes. Unspecific bindings were blocked
with 5% non-fat milk solution incubation for 2 h at RT. The membranes were then incu-
bated overnight at 4 ◦C with the primary anti-FAK (44-624G, Invitrogen, Waltham, MA,
USA) (1:1000), total FAK (sc-558, Santa Cruz Biotechnology, Dallas, TX, USA) (1:1000),
and GAPDH (AC027, ABclonal, Woburn, MA, USA) (1:5000 dilution). Next, the mem-
branes were washed with TBS/0.1% Tween20 and incubated with a secondary HRP-
conjugated anti-rabbit antibody (1:5000 dilution) for 2 h at RT. Proteins were detected
using a Tanon High-sig ECL Western Blotting substrate (180-5001, ABclonal) and autora-
diographic films. The images were processed using ImageJ 1.54 software (NIH, Bethesda,
Rockville, MD, USA).

2.8. Statistical Analysis

The results are presented as the mean ± SE. The data were analyzed statistically by
one-way ANOVA, and a Dunnett’s multiple comparison test was applied using the Prism
9.5.1 GraphPad software. A statistical probability of p< 0.05 was considered significant.

3. Results
3.1. Brazilin Purification from H. brasiletto and Semi-Synthesis of Brazilin-(OMe)3 and
Brazilin-(OAc)3

In our study, the ground heartwood of H. brasiletto was used to obtain the ho-
moisoflavonoid brazilin with a yield of 0.04% and a purity of 91% (Table 1). Brazilin was
identified by spectroscopic 1H NMR and 13C NMR data (Figure 1) (Supplementary Figure S1).

Table 1. Yield and purity of brazilin isolated from H. brasiletto heartwood.

Raw Material (g) Yield (g) Yield (%) Purity (%)

1500 0.680 0.047 91

Using brazilin (purified from H. brasiletto) as the raw material, we performed the
semi-synthesis of two derivatives by the addition of three methyl or acetyl groups at 3’,9’,
and 10’-OH groups (Figure 2). Therefore, the reaction of brazilin (Figure 2a) with methyl
iodide and potassium carbonate in acetone at 25 ◦C for 24 h generated brazilin-(OMe)3

with a yield of 52% (Table 2; Figure 2b). On the other hand, the reaction of brazilin with
acetic anhydride in the presence of sodium bicarbonate in tetrahydrofuran at 25 ◦C for
6 h provided brazilin-(OAc)3 with 48% yield (Table 2; Figure 2c). Brazilin-(OMe)3 and
brazilin-(OAc)3 were identified by spectroscopic 1H NMR and 13C NMR data (Figure 3)
(Supplementary Figures S2 and S3).
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3.2. Brazilin, Brazilin-(OMe)3, and Brazilin-(OAc)3 Effects in Cell Viability

The impact of brazilin, brazilin-(OMe)3, and brazilin-(OAc)3 on cell viability was
evaluated in two breast cancer cell lines and as control the non-tumorigenic MCF10A
mammary epithelial cell line, after 48 h. Selectivity was observed in the reduction of
viability in the cancer cells, particularly in the MDA-MB-231 cell line, where a lower
percentage of viability was recorded at concentrations of 20 µM of brazilin and 80 µM of
the chemoderivatives (Table 3; Figure 4a). In the MCF7 cell line, viability was significantly
decreased at concentrations of 40 µM of brazilin and brazilin-(OAc)3, compared to the
control group (Table 3; Figure 4b). Furthermore, at 20 µM, brazilin also exerted an effect in
decreasing the viability of the MCF10A cell line, while the compounds brazilin-(OMe)3 and
brazilin-(OAc)3 showed their effect at concentrations higher than 40 µM (Table 3; Figure 4c).

Table 3. IC50 of brazilin and derivatives in breast cancer and epithelial non-tumorigenic cells *.

Cell Line Brazilin Brazilin-(OMe)3 Brazilin-(OAc)3

MDA-MB-231 49.92 ± 1.26 >80 µM 70.75 ± 3.48
MCF7 67.59 ± 0.40 >80 µM 49.97 ± 3.91

MCF10A 63.64 ± 3.02 >80 µM 104.09 ± 4.34
* Calculated by non-linear regression.
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Figure 4. Cell viability of MDA-MB-231 (a), and MCF7 (b) breast cancer cells and MCF10A (c) cells
after treatment with brazilin for 24 h. Differences from the control were determined with one-way
ANOVA and Dunnett’s multiple comparison test. Statistical significance: * p < 0.05), ** p < 0.01), and
*** p < 0.001). Staurosporine (Stau) was used as an in vitro positive control for apoptosis.

3.3. Brazilin, Brazilin-(OMe)3, and Brazilin-(OAc)3 Inhibited Cell Migration of Breast Cancer Cell

Cell migration is an essential process during cancer cell invasion and metastasis
and is an important target in cancer therapy [30]. Once the modified brazilin products
were obtained, their biological effect on the cell migration of the breast cancer cell lines
MDA-MB-231 and MCF7, as well as the non-tumorigenic breast epithelial cells MCF10A,
was evaluated.

Using wound closure assays, the cell migration was evaluated by measuring the
wound area of the cell cultures treated with different concentrations (0, 20, and 40 µM) of
brazilin (Figure 5a), brazilin-(OMe)3 (Figure 5b), and brazilin-(OAc)3 (Figure 5c) for 24 h.

In the MDA-MB-231 cells, all three compounds had an inhibitory effect on cell mi-
gration in a concentration-dependent manner; as the concentration of the compounds
increased, the cells decreased their migratory capacity compared to the control group
(Figure 5d). Statistically, brazilin-(OAc) presented a more significant anti-migratory effect
at a concentration of 20 µM compared to the other two compounds, decreasing cell migra-
tion by 30% compared to the control (Figure 5c); however, at 40 µM, the same effect was
observed for all the compounds (Figure 5).
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about 50% from a 20 µM concentration (Figure 6c); however, brazilin-(OMe)3 had no ac-
tivity at 20 µM, whereas, at the highest concentration, it was the compound that presented 
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The migration rate of the MCF10A cells was considerably lower than the breast can-
cer cells. However, we observed that at 20 µM, the three compounds decreased cell mi-
gration by about 50% with respect to the control, while at 40 µM, the effect reduced ap-
proximately 20% of the cell migration (Figure 7). 

Figure 5. Wound closure assays of the effect of brazilin, brazilin-(OMe)3, and brazilin-(OAc)3 on cell
migration of MDA-MB-231 cells. Cell cultures were exposed for 2 h with Ara-C to inhibit proliferation
and treated with 20 µM and 40 µM of (a) brazilin, (b) brazilin-(OMe)3, and (c) brazilin-(OAc)3 for
24 h. Representative images of brightfield microscopy using 10x magnification; scale bars represent
400 µm. (d) Graphs represent the quantification of percent cell migration for each condition. The
image is representative of three independent experiments. Differences with respect to control were
determined by one-way ANOVA and Dunnett’s multiple comparison test. Statistical significance:
* p < 0.05, *** p < 0.001, and **** p < 0.0001.

In the MCF7 cells (Figure 6), brazilin-(OAc)3 started to decrease the migration rate
by about 50% from a 20 µM concentration (Figure 6c); however, brazilin-(OMe)3 had no
activity at 20 µM, whereas, at the highest concentration, it was the compound that presented
the greatest effect by decreasing 50% of the cell migration (Figure 6b).
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treated with 20 µM and 40 µM of (a) brazilin, (b) brazilin-(OMe)3, and (c) brazilin-(OAc)3 for 24 h.
Representative images of brightfield microscopy using 10x magnification; scale bars represent 400 µm.
(d) Graphs represent the quantification of percent cell migration for each condition. The image is
representative of three independent experiments. Differences with respect to control were determined
by one-way ANOVA and Dunnett’s multiple comparison test. Statistical significance: ** p < 0.01);
*** p < 0.001).

The migration rate of the MCF10A cells was considerably lower than the breast cancer
cells. However, we observed that at 20 µM, the three compounds decreased cell migration
by about 50% with respect to the control, while at 40 µM, the effect reduced approximately
20% of the cell migration (Figure 7).
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Figure 7. Wound closure assays of the effect of brazilin, brazilin-(OMe)3, and brazilin-(OAc)3 on cell
migration of MCF10A cells. Cell cultures were exposed for 2 h with Ara-C to inhibit proliferation
and treated with 20 µM and 40 µM of (a) brazilin, (b) brazilin-(OMe)3, and (c) brazilin-(OAc)3 for
24 h. Representative images of brightfield microscopy using 10x magnification; scale bars represent
400 µm. (d) Graphs represent quantification of percent cell migration for each condition. The image is
representative of three independent experiments. Differences with respect to control were determined
by one-way ANOVA and Dunnett’s multiple comparison test. Statistical significance: ** p < 0.01;
*** p < 0.001.

3.4. Brazilin, Brazilin-(OMe)3, and Brazilin-(OAc)3 Inhibited Activation of FAK

Focal adhesion kinase (FAK) is a kinase involved in regulating cell migration in cancer
and requires the formation of focal adhesions, a process regulated by adhesion molecules
such as integrins and by various intracellular proteins [31]. FAK regulates the assembly
and disassembly of adhesions during cell migration, and its activation is related to the
autophosphorylation of the Y397; in addition, its expression is related to tumor progression
and the clinical prognosis [32].

To determine the effect of brazilin, brazilin-(OMe)3, and brazilin-(OAc)3 on FAK
activation, we performed Western blotting of the total proteins obtained from the MDA-



Sci. Pharm. 2025, 93, 4 11 of 20

MB-231, MCF7, and MCF10A cells treated with 2.5, 5, 10, 20, and 40 µM of the different
compounds for 24 h.

The results obtained in the MDA-MB-231 cells show a differential effect, where brazilin-
(OMe)3 and brazilin-(OAc)3 increase FAK activation at 2.5 and 5 µM, but decrease considerably
from 10 µM, showing a potential effect at 20 µM; however, in the brazilin, no changes were
observed at low concentrations. Interestingly, we observed changes at 20 and 40 µM (Figure 8).
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Figure 8. Effect of brazilin, brazilin-(OMe)3, and brazilin-(OAc)3 on FAK activation in MDA-MB-231
cells. Cell cultures were treated with the different compounds (2.5–40 µM) for 24 h. Western blot of
FAK activation corresponding to treatments with (a) brazilin, (b) brazilin-(OMe)3, and (c) brazilin-
(OAc)3 in MDA-MB-231 cells. (d–f) Graphs corresponding to the densitometric and statistical analysis
of the bands obtained by WB. Statistical analysis was performed by one-way ANOVA and Dunnett’s
multiple comparison test. Statistical significance: * p < 0.05, *** p < 0.001, and **** p < 0.0001.

In the MCF7 cells, different effects are observed with the three compounds. Brazilin
promotes FAK activation at low concentrations, but at 20 and 40 µM, the FAK levels
are reestablished with respect to the control (Figure 9a). Meanwhile brazilin-(OMe)3 at
2.5 µM decreases FAK activation; however, as the concentration increases, the two modified
compounds increase FAK activation compared to the control (Figure 9d).
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The results corresponding to the MCF10A cells show that brazilin and brazilin-(OMe)3

promote FAK activation with respect to the control (Figure 10a,b). Conversely, brazilin-
(OAc)3 decreases FAK activation in a concentration-dependent manner (Figure 10d).

Our results show a differential effect on the three breast epithelial cell lines and the
different compounds. However, all three compounds show a better effect on FAK activation
in the MDA-MB-231 breast cancer cells.
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Figure 9. Effect of brazilin, brazilin-(OMe)3, and brazilin-(OAc)3 on FAK activation in MCF7 cells.
Cell cultures were treated with the different compounds (2.5–40 µM) for 24 h. Western blot of FAK
activation corresponding to treatments with (a) brazilin, (b) brazilin-(OMe)3, and (c) brazilin-(OAc)3

in MDA-MB-231 cells. (d–f) Graphs corresponding to the densitometric and statistical analysis of the
bands obtained by WB. Statistical analysis was performed by one-way ANOVA and Dunnett’s multiple
comparison test. Statistical significance: * p < 0.05, ** p < 0,01, *** p < 0.001, and **** p < 0.0001.
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Cell cultures were treated with the different compounds (2.5–40 µM) for 24 h. Western blot of FAK
activation corresponding to treatments with (a) brazilin, (b) brazilin-(OMe)3, and (c) brazilin-(OAc)3

in MDA-MB-231 cells. (d–f) Graphs corresponding to the densitometric and statistical analysis of
the bands obtained by WB. Statistical analysis was performed by one-way ANOVA and Dunnett’s
multiple comparison test. Statistical significance: * p < 0.05, ** p < 0.01, and *** p < 0.001.

4. Discussion
Despite the different treatments currently available, breast cancer continues to be one

of the main causes of death worldwide, so it is important to continue the search for new
therapeutic agents with potential effects against breast cancer [11,33]. In this regard, the
study of phytochemicals has increased due to their potent antitumor activity and minimal
toxicity, with alkaloids, taxanes, and flavonoids the most studied molecules [34].

Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto [9] and Caesalpinia sappan [35].
It has been reported that brazilin displays a wide variety of antitumor effects on various
cancer cell lines, inhibiting cell proliferation and cell cycle progression, decreasing cell
migration, and inducing apoptosis [36,37]. However, its effects on breast cancer cells are
poorly known. Therefore, in this study, we evaluated the effect of brazilin, extracted from
the heartwood of H. brasiletto, and methoxylated and acetoxylated products of brazilin on
cell migration and FAK activation in breast cancer cells.

The strategy for structural modification is to increase potency and selectivity; improve
physicochemical, biochemical, and pharmacokinetic properties; eliminate or reduce adverse
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effects; and simplify the structural complexity of the candidate drug. It is described that
flavonoids can act as enzyme inhibitors and receptor ligands [38,39].

In our study, we evaluated the potential cytotoxic effect of brazilin and its deriva-
tives by MTT assays in MDA-MB-231 and MCF7 breast cancer cells and in non-
tumorigenic MCF10A mammary epithelial cells. Interestingly, we observed specific
effects in the IC50 according to the cell line and the compound tested, resulting in a
higher activity of the three compounds in the MDA-MB-231 and MCF10A cells, whereas
in the MCF7 cells, only brazilin and brazilin-(OAc)3 exhibited cytotoxic effects. Particu-
larly, the greatest effects were in the MDA-MB-231 cell line where the IC50 of brazilin
was 49.92 µM, while the IC50 value of brazilin-(OAc)3 was 49.97 µM against the MCF7
cells (Figure 4). These differences in the IC50 values of the derivatives in the tested cell
lines could be related to the molecular and genetic characteristics of the breast cancer
cell lines [40]. It has been described that in MDA-MB-231 cells, there is overexpression
of EGFR, mutation in p53, loss of the tumor suppressor gene PTEN (involved in the
regulation of the PI3K/AKT pathway that promotes cell survival and growth), and
activation of NF-κB [41,42]. On the other hand, MCF7 cells are estrogen receptor (ER)- or
progesterone receptor (PR)-positive (cell proliferation is regulated by these hormones)
and overexpress Bcl-2, cyclin D, and the PI3K/AKT/mTOR pathway [41–43]. In this
context, there is more significant dysregulation at the molecular level in MDA-MB-231
cells; therefore, brazilin and its derivatives may act through different targets, thus further
decreasing viability in this breast cancer cell line.

According to our results on cell migration, a greater effect was observed with
the modified compounds brazilin-(OMe)3 and brazilin-(OAc)3 than with the parent
compound (Figures 5–7). In this regard, the biological activity of the compounds shown
here could be related to their aromatic rings, allowing for molecular (non-covalent) in-
teractions with proteins showing strong dispersion interactions with non-polar amino
acid [44]. Furthermore, hydrogen bond donors (HBDs), hydrogen bond acceptors (HBAs),
and rotatable bonds in the compounds are critical determinants in the biological activity
of drugs, as they significantly participate in the interaction with molecular targets, in-
cluding proteins. Hydrogen bonds, formed by functional groups such as -OH, stabilize
drug–protein complexes by facilitating specific interactions with crucial residues in active
sites [45]. On the other hand, rotatable bonds affect the conformational flexibility of the
ligand. High flexibility allows for better adaptation to the binding site, and optimization
of this parameter is essential to design molecules with selective affinity toward targets
with rigid cavities [46]. All these characteristics of the compounds allow for molecular
interactions, essential for the differential biological activity observed in the cell viability
and cell migration of breast cancer cells.

However, although we observed that these compounds have a potential effect in
decreasing breast cancer cell migration, the mechanism of the inhibitory effect has not
yet been elucidated; here, we decided to evaluate FAK activation in breast cancer and
non-tumorigenic epithelial cell lines.

FAK is considered a central regulator of cell migration by promoting the formation
of focal adhesions [47]. FAK phosphorylation at PY397 upon stimulation by integrins and
growth factors promotes signaling pathway activation and its overexpression is related to
tumor progression and poor prognosis in cancer [48].

Interestingly, in our study, a differential effect in FAK activation was found, both in the
cell lines and in the concentrations of the treatments, because only at high concentrations
of the three compounds did FAK activation decrease by about 50% in the MDA-MB-231
cells; remarkably, this result correlates with the results obtained for cell migration. There-
fore, specifically in this TNBC cell line, brazilin, brazilin-(OMe)3, and brazilin-(OAc)3
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can decrease cell migration through FAK inhibition. However, at lower concentrations of
brazilin-(OMe)3 and brazilin-(OAc)3, an increase in FAK activation was observed in the
MDA-MB-231 cells (Figure 8). Likewise, in the MCF10A cells, FAK activation was also
observed at all concentrations of brazilin and brazilin-(OMe)3 (Figure 10). These findings
may be associated with a hormetic effect, where exposure to a low dose of a cytotoxic
agent can induce oxidative stress in cancer cells and thus stimulate tumor proliferation and
growth [49]. In this regard, an increase in FAK activation was also observed in the MCF7
cells at most concentrations of the three compounds (Figure 9). However, particularly in
the MCF7 cell line, FAK activation at high concentrations of brazilin-(OMe)3 and brazilin-
(OAc)3 (20 and 40 µM) can be related to their estrogenic positivity because, structurally,
the isoflavonoids show similarities to estrogens, and they can bind to estrogen receptors
with preferential affinity for estrogen receptor beta (ERβ), compete with 17β-estradiol for
the ligand-binding domain of the receptor, and exhibit both estrogenic and anti-estrogenic
activities [50,51]. Interestingly, estrogen, through the ER receptor, has been reported to
promote FAK activation in ovarian cancer cells [52]. However, these results should be
studied in depth to establish this relationship.

Furthermore, the chemical modifications to the original structure of brazilin improve
the metabolic stability and allow for greater absorption and permeability across cell mem-
branes, thus enhancing its potential effect [53]. There is evidence that methylation of
flavonoids favors metabolic stability. Adding methyl groups (-CH3) increases hydropho-
bicity, favoring cell permeability and bioavailability, and improves metabolic stability by
blocking reactive hydroxyl groups, prolonging the half-life of compounds. It can also mod-
ulate biological activity, increasing anti-inflammatory or antioxidant activity [54]. On the
other hand, acetylation, which introduces acetyl groups (-COCH3), stabilizes compounds
by reducing the reactivity of functional groups and can improve cell permeability, although
in some cases it reduces antioxidant activity [55]. Both processes are crucial to optimize the
use of natural product derivatives in therapeutic applications.

Our results indicate that all three compounds significantly affected cell migration
and FAK activation in the MDA-MB-231 cells in a concentration-dependent manner. The
MDA-MB-231 cell line corresponds to triple-negative breast cancer (TNBC), characterized
by the absence of hormone receptors (ER-α/PR) and negativity for HER2, and is considered
the most aggressive subtype, with early relapse and metastatic dissemination to several
organs such as the lung, liver, and brain, being responsible for more than 50% of breast
cancer deaths [56,57]. In this sense, these compounds have potential effects on this cell
line, and they could be considered as potential new therapeutic agents in the treatment of
breast cancer. In addition, it has been described that nanoformulations such as liposomes or
nanoparticles can improve the bioavailability and targeting of natural compounds [58,59];
one perspective will be to test these derivatives and perform in vivo studies to confirm the
efficacy and biosafety of these derivates.

However, it is important to deepen the investigation of the different mechanisms that
brazilin and its derivates can be used to reduce tumor progression.

5. Conclusions
In this study, we observed that brazilin, brazilin-(OMe)3, and brazilin-(OAc)3 had

a greater effect on the triple-negative breast cancer cell line MDA-MB-231, while in the
MCF7 estrogen receptor-positive tumor cells, brazilin-(OAc)3 had greater activity; however,
the effect of the compounds was also time-specific and concentration-dependent. These
results show the potential of these compounds, so it is important to continue their study,
evaluating more processes and molecular targets that promote tumor progression because
they may be promising compounds for treating breast cancer.
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Figure A1. (a) Brazilin purification scheme. (1) Obtaining the total extract, (2) sub-fractionation,
(3,4) purification by column, (5) identification of brazilin. (b) Sub-fractions of brazilin isolation
process. Thin layer chromatography of the fractions generated in (a) step 3 and (b) step 4 of the
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Appendix C

Table A1. Reaction conditions to obtain brazilin-(OMe)3.

Information

Reagents P.M E.Q mg µL mmoles
Brazilin 286.27 1 40 0.1397
K2CO3 138.21 3 57.93 0.4191
MeI 141.94 5 99.16 0.6986
Acetone 58.08 3500

K2CO3: potassium carbonate; MeI: Iodomethane.
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Table A2. Reaction conditions to obtain brazilin-(OAc)3.

Information

Reagents P.M E.Q mg µL mmoles
Brazilin 286.27 1 50 0.1746
Acetic
anhydride 102.09 5 89.15 83 0.8733

NaHCO3 84.01 3 44 0.5238
THF 72.11 2500

NaHCO3: sodium bicarbonate; THF: tetrahydrofuran.
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