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Abstract: Cancer is one of the leading causes of mortality worldwide, and the currently
available therapies are often associated with severe side effects, including nephrotoxicity,
hepatotoxicity, and cardiotoxicity. In this context, essential oils (EOs) have stood out
as a less toxic natural alternative, with their anticancer potential widely investigated in
in vitro and in vivo studies. The present study aimed to review, for the first time, the
chemical composition, anticancer potential, and biological safety of EOs extracted from
species of the Cyperaceae family. Research was conducted in different databases, covering
publications from the first report on the topic in 1989 to November 2024. This review
highlights 33 Cyperaceae species known to produce essential oils, with sesquiterpenes
(67%) identified as the predominant compounds. The notable compounds across multiple
species include cyperene, cyperotundone, caryophyllene oxide, and mustakone. Regarding
the pharmacological potential, the EOs of Cyperus rotundus, Cyperus kyllingia, and Cyperus
longus exhibited high cytotoxic activity against the HCT-116, HepG2, MCF-7, HeLa, and
NCI-H187 cell lines. The mechanisms of action associated with the anticancer effect of EOs
include DNA fragmentation, cell cycle arrest, and induction of apoptosis. Acute toxicity
reports indicate that only the EOs of Cyperus articulatus have been evaluated in rodents and
deemed biologically safe.

Keywords: Cyperus rotundus; sesquiterpenes; cytotoxicity; antitumor; antiproliferative

1. Introduction
Cancer is one of the leading causes of global mortality, with projections indicating

that the annual number of new cases could reach 35 million by 2050, an increase of 77%
compared to 2022 [1,2]. The continued increase in global cancer incidence is attributed
to population aging, population growth, and risk factors such as smoking, obesity, and
physical inactivity [3].

Despite therapeutic advances, many patients, especially in low- and middle-income
countries, struggle to access anticancer therapies due to delays in global rollout or local
unavailability [4]. Furthermore, while effective, the existing therapies are often associated
with severe side effects, such as nephrotoxicity, hepatotoxicity, and cardiotoxicity [5–8].
In this scenario, natural products emerge as promising alternatives to support cancer
treatment, offering therapeutic potential with lower toxicity [9–13]. Essential oils (EOs),
volatile compounds present in several species, have aroused great interest due to their
anticancer potential demonstrated in in vitro and in vivo studies [14–16].

Species from the Cyperaceae family, including Cyperus kyllingia Endl. [17], Cyperus
amuricus Maxim. [18], and Cyperus rotundus L. [19], are traditionally used in in India,

Sci. Pharm. 2025, 93, 9 https://doi.org/10.3390/scipharm93010009

https://doi.org/10.3390/scipharm93010009
https://doi.org/10.3390/scipharm93010009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/scipharm
https://www.mdpi.com
https://orcid.org/0000-0003-2081-8304
https://orcid.org/0000-0002-9389-4992
https://orcid.org/0000-0002-0938-9345
https://doi.org/10.3390/scipharm93010009
https://www.mdpi.com/article/10.3390/scipharm93010009?type=check_update&version=3


Sci. Pharm. 2025, 93, 9 2 of 21

Bangladesh, and Philippines for the treatment of cancer. These ethnomedicinal applications
have been scientifically validated, with EOs from C. rotundus [20] and C. kyllingia [21]
demonstrating significant cytotoxic activity against colon cancer (HCT-116), breast cancer
(MCF-7), hepatocellular carcinoma (HepG2), and lung carcinoma (NCI-H187) cell lines.
Chemically, the EO of C. rotundus is rich in sesquiterpenes, with an emphasis on cypero-
tundone, cyperene, and caryophyllene oxide [22–25]. When evaluated in isolation, these
compounds exhibited cytotoxic potential against different cancer cell lines [26–28].

Based on this evidence and the need to develop less aggressive therapeutic alternatives
for cancer treatment, this study reviewed, for the first time, the chemical composition,
anticancer potential, and biological safety of EOs obtained from Cyperaceae species.

2. Methodology
2.1. Databases

Documents were retrieved from the following databases: Google Scholar (https:
//scholar.google.com/ (accessed on 1 November 2024)), PubMed® (https://pubmed.ncbi.
nlm.nih.gov/ (accessed on 1 November 2024)), SciELO (https://search.scielo.org/ (ac-
cessed on 1 November 2024)), SpringerLink® (https://link.springer.com/ (accessed on
1 November 2024)), Scopus® (http://www.scopus.com/ (accessed on 1 November 2024)),
and Web of ScienceTM (https://www.webofknowledge.com (accessed on 1 November
2024)). The keywords used for this research were as follows: “anticancer AND essential oil
AND Cyperaceae”, “cytotoxicity AND essential oil AND Cyperaceae”, “antiproliferative
AND essential oil AND Cyperaceae”, “antitumor AND essential oil AND Cyperaceae”,
“phytochemistry AND essential oil AND Cyperaceae”, and “toxicity AND essential oil
AND Cyperaceae”.

2.2. Inclusion and Exclusion Criteria

Articles that presented specific information on the chemical composition of EOs
from Cyperaceae species were selected, covering publications from the first report by
Komai and Tang [29] to November 2024. Studies that addressed the anticancer, antitumor,
antiproliferative, cytotoxic potential, and acute oral toxicity in vivo of these oils were
also included. Review articles, e-books, book chapters, undergraduate theses, masters’
thesis, Ph.D. thesis, and works published in technical or scientific events were excluded.
Furthermore, studies that did not provide detailed information on the extraction methods
and analytical techniques used to characterize the chemical composition of EOs, as well as
those that mentioned species only at the genus level, were discarded [30]. The scientific
names of the species were verified on the website World Flora Online (WFO) Plant List
(https://wfoplantlist.org/, (accessed on 1 November 2024)).

2.3. Selection of Scientific Documents and Categorization of Information

Initially, 90 scientific articles were identified in the consulted databases (Figure 1).
After applying the inclusion and exclusion criteria, 24 documents were eliminated. Thus,
66 articles that provided data on the chemical composition, anticancer potential, and toxicity
of EOs from Cyperaceae species were included in this review. The results were organized
into three main categories: (1) chemical composition of essential oils from Cyperaceae
species; (2) anticancer activity of essential oils from Cyperaceae species; and (3) acute oral
toxicity of essential oils from Cyperaceae species.

https://scholar.google.com/
https://scholar.google.com/
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://search.scielo.org/
https://link.springer.com/
http://www.scopus.com/
https://www.webofknowledge.com
https://wfoplantlist.org/
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Figure 1. Flow diagram of selection of scientific documents included in this review.

2.4. Data Analysis

The results of studies on the in vitro anticancer activity of EOs from Cyperaceae
species were analyzed based on the criteria of the U.S. National Cancer Institute—NCI [31]
and Niksic et al. [32]. According to these parameters, EOs that exhibited IC50 values
(concentration required to reduce cell viability by 50%) equal to or lower than 20 µg/mL
against different cancer cell lines were classified as highly cytotoxic.

3. Results and Discussion
The Cyperus genus was the most investigated in relation to the chemical composition of

its EOs, covering a total of 23 species, with an emphasis on C. rotundus and C. articulatus L.
Furthermore, studies were found for representatives of the genera Carex (2 spp.), Eleocharis
(2 spp.), Scleria (2 spp.), Blysmus (1 sp.), Fimbristylis (1 sp.), Rhynchospora (1 sp.), and
Schoenoplectus (1 sp.) (Table 1).

Table 1. Chemical composition of essential oils from Cyperaceae species 1.

Genus/Species Part of the Plant Extraction
Method Major Compounds Chemical

Class References

Blysmus
Blysmus rufus

(Huds.) Link (Syn.
Scirpus

littoralis Schrad.)

Aerial parts Hydrodistillation Cyperene (18.7%),
cyperotundone (14.8%) Sesquiterpene [33]

Carex

Carex meyeriana
Kunth Aerial parts Hydrodistillation Palmitic acid (43.06%),

linolenic acid (28.46%)

Saturated
fatty acid,
essential
fatty acid

[34]

Carex pseudofoetida
Kük. Aerial parts Hydrodistillation Cyperene (31.5%),

cyperotundone (13.5%) Sesquiterpene [35]
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Table 1. Cont.

Genus/Species Part of the Plant Extraction Method Major Compounds Chemical
Class References

Cyperus
Cyperus arenarius

Retz. Aerial parts Hydrodistillation Cyperene (21.9%),
cyperotundone (12.5%) Sesquiterpene [36]

Cyperus articulatus L. Rhizomes Hydrodistillation
Cyperotundone (42.3%),

piperitone (10.1%),
β-maaliene (8.4%)

Sesquiterpene,
monoterpene [37]

Stems, rhizomes Hydrodistillation

Caryophyllene oxide
(4.6–27.4%), mustakone
(7.3–14.5%), α-pinene

(0.7–12.9%)

Sesquiterpene,
monoterpene [38]

Rhizomes Hydrodistillation Cyperene (33.5%),
β-santalene (5.5%) Sesquiterpene [39]

Tubers, aerial parts Hydrodistillation

Caryophyllene oxide
(16.63–18.22%),
γ-patchoulene
(12.07–12.79%)

Sesquiterpene [40]

Underground
parts Hydrodistillation

α-Cadinol (12.07%),
trans-pinocarveol (9.86%),

cyperenone (7.28%)

Sesquiterpene,
monoterpene [41]

Underground
parts Hydrodistillation

α-Pinene (10.09%),
mustakone (8.27%),

trans-pinocarveol (7.45%)

Monoterpene,
sesquiterpene [42]

Rhizomes Steam distillation Mustakone (9.9%),
cyclocolorenone (7.4%) Sesquiterpene [43]

Rhizomes Hydrodistillation

Mustakone (251.0 mg/g of
dried rhizomes),

cyperotundone (97.0 mg/g
of dried rhizomes)

Sesquiterpene [44]

Rhizomes Hydrodistillation
Mustakone (11.6%),

cyclocolorenone (10.3%),
α-pinene (8.26%)

Sesquiterpene,
monoterpene [45]

Rhizomes Hydrodistillation Mustakone (20.2%),
longifolenaldehyde (14.9%) Sesquiterpene [46]

Rhizomes Hydrodistillation
Mustakone (21.4%),

eudesma-4(15)-7-dien-1β-ol
(8.8%)

Sesquiterpene [25]

Rhizomes Hydrodistillation Mustakone (10.65%),
β-selinene (8.45%) Sesquiterpene [47]

Cyperus brevifolius
(Rottb.) Hassk. (Syn.

Kyllinga brevifolia
Rottb.)

Roots, rhizomes n-Hexane
extraction

δ-Cadinene (9.5%),
α-humulene (7.8%),
β-elemene (7.3%)

Sesquiterpene [29]

Aerial parts,
rhizomes Hydrodistillation

Manoyl oxide (6.8–31.1%),
13-epi-manoyl oxide

(5.7–26.1%),
11α-hydroxymanoyl oxide

(5.9–16.2%),
1β-hydroxymanoyl oxide

(4.6–22.1%)

Diterpene [48]

Leaves Hydrodistillation
α-Cadinol (40.3 %),
τ-muurolol (19.5 %),

germacrene D-4-ol (12.5 %)
Sesquiterpene [49]

Underground
parts Hydrodistillation

Manoyl oxide (44.08%),
β-pinene (13.58%),
cyperene (7.63%)

Diterpene,
monoterpene,
sesquiterpene

[41]

Cyperus capitatus
Vand. Aerial parts Hydrodistillation Cyperene (42.93%),

cyperotundone (10.66%) Sesquiterpene [50]
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Table 1. Cont.

Genus/Species Part of the Plant Extraction Method Major Compounds Chemical
Class References

Cyperus compressus L. Roots Hydrodistillation Caryophyllene oxide
(34.0%), cyperene (25.6%) Sesquiterpene [51]

Cyperus
conglomeratus Rottb. Aerial parts Hydrodistillation

Cyperene (27.2%),
cyperol (8.7%),

cyperotundone (8.1%)
Sesquiterpene [52]

Rhizomes Hydrodistillation
Eugenol (31.3%),

α-cyperone (10.5%),
cyperotundone (8.4%)

Phenolic
compound,

sesquiterpene
[53]

Cyperus difformis L. Aerial parts Hydrodistillation
Cyperene (34.8%),

cyperotundone (7.8%),
isorotundene (7.8%)

Sesquiterpene [36]

Aerial parts Hydrodistillation Cyperene (44.31%),
cyperotundone (11.57%) Sesquiterpene [50]

Cyperus distans L.f. Rhizomes Hydrodistillation
Cyperene (47.6%), α-pinene
(18.8%), 1,8-cineole (14.5%),
caryophyllene oxide (7.3%)

Sesquiterpene,
monoterpene [54]

Rhizomes Hydrodistillation
Zierone (33.9%),

caryophyllene oxide (14.2%),
α-cyperone (9.0%)

Sesquiterpene [55]

Cyperus erectus
(Schumach.) Mattf.

& Kük. (Syn.
Kyllinga erecta
Schumach.)

Rhizomes Hydrodistillation Manoyl oxide (48.0%),
cyperotundone (10.2%)

Diterpene,
sesquiterpene [56]

Aerial parts Hydrodistillation

1,8-Cineole (10.5%),
α-humulene (21.7%),

farnesyl acetate (11.2%),
β-caryophyllene (9.9%)

Monoterpene,
sesquiterpene [57]

Cyperus esculentus L. Tubers Hydrodistillation α-Pinene (70.5–75.5%),
α-thujene (5.2–10.2%) Monoterpene [58]

Tubers, aerial parts Hydrodistillation

Cyperene (23.06%),
caryophyllene oxide

(19.41%),
γ-patchoulene (13.11%)

Sesquiterpene [40]

Cyperus fuscus L. Burrs Hydrodistillation Dehydroaromadendrene
(10.7%), α-selinene (7.5%) Sesquiterpene [59]

Cyperus giganteus
Vahl Rhizomes Hydrodistillation Cyperotundone (30.4%),

cyperene (10.4%) Sesquiterpene [60]

Cyperus glomeratus L. Underground
parts Hydrodistillation

Caryophyllene oxide
(44.8%), humulene epoxide
II (14.1%), β-caryophyllene
(12.6%), α-humulene (7.8%)

Sesquiterpene [61]

Cyperus hortensis
(Salzm. ex Steud.)

Dorr (Syn. Kyllinga
pumila Michx.)

Leaves Hydrodistillation
β-Elemene (12.5%),

Z-caryophyllene (11.3%),
germacrene D (7.1%)

Sesquiterpene [62]

Cyperus laevigatus L. Aerial parts Hydrodistillation

Hexahydrofarnesyl acetone
(19.13%), (Z)-myroxide
(8.14%), phytol (6.96%),

limonene (6.74%)

Sesquiterpene,
monoterpene,

diterpene
[63]

Cyperus longus L. Aerial parts Steam distillation
β-Himachalene (46.6%),

α-humulene (16.7%),
γ-himachalene (10.1%)

Sesquiterpene [64]

Whole plant Hydrodistillation
β-Himachalene (10.81%),
α-caryophyllene oxide

(7.6%), aristolone (6.39%)
Sesquiterpene [65]
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Table 1. Cont.

Genus/Species Part of the Plant Extraction Method Major Compounds Chemical
Class References

Cyperus maculatus
Boeckeler Rhizomes Steam distillation

Mustakone (22.0%),
α-copaene (8.2%),
cyperene (7.8%)

Sesquiterpene [66]

Cyperus papyrus L. Tubers, aerial parts Hydrodistillation Cyperene (18.32%),
copaene (8.83%) Sesquiterpene [40]

Rhizomes Hydrodistillation
Caryophyllene oxide

(12.7%), cyperene (10.2%),
1,8-cineole (8.4%)

Sesquiterpene,
monoterpene [67]

Cyperus pedunculatus
(R.Br.) J.Kern (Syn.
Remirea maritima

Aubl.)

Roots, rhizomes Hydrodistillation Remirol (43.2%),
cyperene (13.8%)

Benzenoid,
sesquiterpene [68]

Cyperus prolixus
Kunth Tubers Hydrodistillation

Caryophyllene oxide
(6.9–26.8%), α-cyperone

(13.5–20.6%)
Sesquiterpene [69]

Cyperus rotundus L. Roots, tubers Steam distillation

α-Copaene (11.4%),
valerenal (9.8%),

caryophyllene oxide (9.7%),
cyperene (8.4%)

Sesquiterpene [70]

Tubers Hydrodistillation Cyperene (30.9%),
cyperotundone (8.8%) Sesquiterpene [71]

Tubers Hydrodistillation α-Cyperone (25.23%),
cyperene (20.38%) Sesquiterpene [72]

Rhizomes Hydrodistillation

β-Pinene (11.3%),
α-cyperone (11.0%),

α-pinene (10.8%),
myrtenol (7.9%)

Monoterpene,
sesquiterpene [73]

Tubers Hydrodistillation
Cyperene (16.9%),

caryophyllene oxide (8.9%),
α-longipinane (8.4%)

Sesquiterpene [22]

Aerial parts Hydrodistillation
Cyperotundone (11.2%),

isorotundene (9.5%),
cyperol (6.4%)

Sesquiterpene [23]

Tubers Hydrodistillation Cyperotundone (19.7%),
cyperene (15.2%) Sesquiterpene [24]

Tubers Hydrodistillation α-Cyperone (21.1%),
4-oxo-α-ylangene (12.8%) Sesquiterpene [20]

Rhizomes Steam distillation α-Cyperone (29.38%),
cyperene (13.97%) Sesquiterpene [74]

Rhizomes Hydrodistillation

2,5,9-trimethylcycloundeca-
4,8-dienone (13.44%),
alloaromadendrene

oxide-(1) (8.47%), piperitone
(7.37%), β-elemol (7.14%),

Sesquiterpene,
monoterpene [75]

Rhizomes Hydrodistillation
α-Cyperone (38.46%),

cyperene (12.84%),
α-selinene (11.66%)

Sesquiterpene [76]

Rhizomes Hydrodistillation
α-Cyperone (38.46%),

cyperene (12.84%),
α-selinene (11.66%)

Sesquiterpene [77]

Rhizomes Hydrodistillation

Elemenone (13.59%),
α-cyperone (13.14%),

caryophyllene
oxide (13.03%)

Sesquiterpene [78]

Rhizomes Hydrodistillation
Humulene epoxide (38.43%),

caryophyllene
oxide (21.03%)

Sesquiterpene [79]

Rhizomes Hydrodistillation Longiverbenone (18.53%),
cyperotundone (12.75%) Sesquiterpene [80]
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Table 1. Cont.

Genus/Species Part of the Plant Extraction Method Major Compounds Chemical
Class References

Rhizomes Hydrodistillation
Caryophyllene oxide

(25.2%), humulene epoxide
II (35.0%)

Sesquiterpene [25]

Cyperus sesquiflorus
(Torr.) Mattf. & Kük.
(Syn. Kyllinga odorata

Vahl)

Whole plant Distillation Dihydrokaranone (53.1%),
aristolochene (11.3%) Sesquiterpene [81]

Aerial parts Hydrodistillation Neopetasan (77.8%),
aristolochene (10.9%) Sesquiterpene [82]

Cyperus tuberosus
Rottb. Rhizomes Hydrodistillation Humulene (30.04%),

β-caryophyllene (12.13%) Sesquiterpene [83]

Eleocharis
Eleocharis

quinqueflora
(Hartmann)

O.Schwarz (Syn.
Eleocharis pauciflora

(Lightf.) Link)

Aerial parts Hydrodistillation

Cyperene (35.4%),
cyperotundone (12.7%),

isorotundene (9.3%),
cyperol (7.8%)

Sesquiterpene [84]

Eleocharis uniglumis
(Link) Schult. Aerial parts Hydrodistillation

Cyperene (28.8%),
cyperotundone (8.9%),
isorotundene (8.7%),

cyperol (8.5%)

Sesquiterpene [84]

Fimbristylis
Fimbristylis falcata

(Vahl) Kunth Aerial parts Steam distillation Dehydroabietal (24.5%),
dehydroabietol (4.9%) Diterpene [85]

Rhynchospora
Rhynchospora colorata

(L.) H.Pfeiff. (Syn.
Cyperus kyllingia

Endl.)

Roots, rhizomes n-Hexane
extraction

α-Cyperone (30.9%),
β-selinene (28.1%),

α-humulene (11.3%),
α-copaene (8.5%)

Sesquiterpene [29]

Aerial parts Hydrodistillation

α-Cadinol (19.32%),
caryophyllene oxide
(12.17%), α-muurolol

(11.58%),
α-humulene (9.85%)

Sesquiterpene [86]

Roots Hydrodistillation

α-Cadinol (18.62%),
caryophyllene oxide
(12.18%), α-muurolol

(11.56%), cyperene (10.15%)

Sesquiterpene [21]

Schoenoplectus
Schoenoplectus

subulatus (Vahl) Lye
(Syn. Scirpus

wardianus
J.R.Drumm.)

Aerial parts Hydrodistillation Cyperene (24.1%),
cyperotundone (11.1%) Sesquiterpene [33]

Scleria

Scleria hirtella Sw. Not specified Hydrodistillation Nonanal (42.0%), geranial
(25.3%), neral (15.3%)

Saturated fatty
aldehyde,

monoterpene
[87]

Scleria woodii
C.B.Clarke (Syn.
Scleria striatonux

De Wild.)

Rhizomes Hydrodistillation Cyperene (8.0%), capric
acid (6.0%)

Sesquiterpene,
saturated
fatty acid

[88]

1 The scientific names of the species were verified on the website World Flora Online (WFO) Plant List (https:
//wfoplantlist.org/ (accessed on 1 November 2024)).

https://wfoplantlist.org/
https://wfoplantlist.org/
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3.1. Chemical Composition of Essential Oils from Cyperaceae Species

In total, 72 major compounds were identified in the EOs of Cyperaceae species (Table 1).
These phytochemicals belong to the following classes: sesquiterpenes (67%), monoterpenes
(15%), diterpenes (10%), fatty acids (6%), phenolic compounds (1%), and benzenoids (1%)
(Figure 2A). Among the plant parts used for the extraction of EOs, rhizomes were the most
frequent (39%), followed by aerial parts (28%), tubers (14%), and roots (8%) (Figure 2B). Of
all the species investigated, C. rotundus stood out for the largest number of studies on the
chemical composition of its EOs (Figure 3). Regarding extraction methods, hydrodistillation
using the Clevenger apparatus was the predominant technique. In some cases, methods
such as steam distillation and extraction with n-hexane were also employed. The analysis
of the chemical composition of EOs was performed mainly by gas chromatography coupled
to mass spectrometry (GC-MS), consolidating itself as the standard technique to identify
the chemical constituents of EOs from Cyperaceae species.
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3.1.1. Sesquiterpenes

As previously reported, sesquiterpenes represent the majority of compounds identified
in EOs of Cyperaceae species, with an emphasis on cyperene, cyperotundone, caryophyllene
oxide, mustakone, and α-humulene (Figure 4). Cyperene has been widely identified
by GC-MS in EOs from several species, including Carex pseudofoetida Kük. [35], Cyperus
difformis L. [36,50], Cyperus arenarius Retz. [36], Cyperus articulatus L. [39], Cyperus esculentus
L. [40], Cyperus capitatus Vand. [50], Cyperus compressus L. [51], Cyperus conglomeratus
Rottb. [52], Cyperus distans L.f. [54], Cyperus giganteus Vahl [60], Cyperus papyrus L. [67],
Cyperus rotundus L. [71,77], and Eleocharis uniglumis (Link) Schult. [84]. Furthermore,
cyperotundone has also been identified as one of the predominant compounds in several
Cyperaceae species [23,24,37,60].
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The anticancer potential of sesquiterpenes isolated from C. rotundus has been doc-
umented. According to Ahn et al. [26], 6-acetoxy cyperene isolated from C. rotundus
rhizomes induced apoptosis in human ovarian cancer cell lines, as demonstrated by the
accumulation of A2780 and SKOV3 cells in the sub-G1 phase. Additionally, treatment
with this sesquiterpene stimulated the activation of caspase-3, caspase-8, caspase-9, and
poly (ADP-ribose) polymerase, in a dose-dependent manner (40–120 µM). Shao et al. [28]
observed that the combination of cyperotundone and adriamycin significantly inhibited
the growth of MCF-7 cells, promoting cell cycle arrest and apoptosis, suggesting that cyper-
otundone may increase the sensitivity of chemotherapy in the treatment of breast cancer.
Other studies have shown that combining natural products with synthetic anticancer drug
formulations can enhance cancer cells’ death rates [14,89]. This synergy improves cytotoxic
effects, particularly in cells resistant to conventional treatments.

Another notable sesquiterpene is caryophyllene oxide, widely identified in the EOs
of Cyperus species [25,38,40]. According to Pan et al. [90], this isolated compound showed
high cytotoxicity against human osteosarcoma MG-63 cells, with IC50 values between 24.2
and 43.2 µM. Furthermore, the compound was effective in inhibiting cell migration and
inducing apoptosis, evidenced by features such as cell shrinkage, formation of apoptotic
bodies, and chromatin condensation. In an in vivo study, Xiu et al. [27] demonstrated
that caryophyllene oxide significantly increased the tumor inhibition rate in treated mice
(50–200 mg/kg) by suppressing the proliferation of HuH7 cells (hepatocellular carcinoma).

Mustakone was reported as the major component of EOs extracted from the rhizomes
of C. articulatus [25,43–47]. Although studies indicate that the EO of C. articulatus has anti-
cancer activity in vitro and in vivo against HepG2 cells [45], the cytotoxic effect of isolated
mustakone has not yet been evaluated. On the other hand, Rukunga et al. [91] reported
its promising antiplasmodial activity against Plasmodium falciparum (IC50 = 0.14 µg/mL),
suggesting its use as a marker compound in antimalarial herbal medicines based on
C. articulatus.

3.1.2. Monoterpenes

Similarly to sesquiterpenes, several monoterpenes were also identified in the EOs of
Cyperaceae species (Figure 5). Analyses conducted by GC-MS indicated that α-pinene
is one of the major compounds in the EOs of C. articulatus [38,42,45], C. distans [54], C.
esculentus [58], and C. rotundus [73]. Regarding its anticancer activity, several studies have
demonstrated that α-pinene has cytotoxic potential against different cell lines [92–96].

According to Chen et al. [92], α-pinene (8 mg/L) inhibited cell growth of the BEL-7402
cell line (hepatocellular carcinoma) by up to 79.3% in vitro. When tested in an in vivo
xenograft model, it was observed that the monoterpene, at a dose of 2.67 mL/kg, inhibited
tumor growth in mice by 69.1%. The authors also reported that a reduction in cyclin
B protein in BEL-7402 cells is associated with cell cycle arrest in the G2/M phases after
α-pinene treatment. In a more recent study by Abe et al. [96], it was observed that α-pinene
inhibited the proliferation of EL-4 and Molt-4 tumor cell lines (T cells). Furthermore, the
compound induced mitochondrial dysfunction and the accumulation of reactive oxygen
species and inhibited the translocation of the NF-κB p65 protein to the nucleus, leading
to significant apoptosis in EL-4 cells. Zhao et al. [93] also observed that treatment with
α-pinene, at a dose of 200 mg/kg, significantly inhibited the proliferation of the PC-3 cell
line (prostate cancer) and induced apoptosis in an in vivo xenograft model.
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3.1.3. Diterpenes

Seven compounds belonging to the diterpene class (Figure 6) were identified in the
EOs of Kyllinga brevifolia Rottb. (Cyperus brevifolius (Rottb.) Hassk.) [41,48], Kyllinga erecta
Schumach. (Cyperus erectus (Schumach.) Mattf. & Kük.) [56], Cyperus laevigatus L. [63], and
Fimbristylis falcata (Vahl) Kunth [85]. Manoyl oxide was the main compound present in
the EOs of C. brevifolius [41] and K. erecta [56]. According to Gani et al. [97], manoyl oxide
showed anticancer potential in vitro and exhibited an IC50 of 50 µM against the MCF-7
cell line.

Sci. Pharm. 2025, 93, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 5. Monoterpenes identified in essential oils of Cyperaceae species. 

3.1.3. Diterpenes 

Seven compounds belonging to the diterpene class (Figure 6) were identified in the EOs 
of Kyllinga brevifolia Rottb. (Cyperus brevifolius (Rottb.) Hassk.) [41,48], Kyllinga erecta Schu-
mach. (Cyperus erectus (Schumach.) Mattf. & Kük.) [56], Cyperus laevigatus L. [63], and Fim-
bristylis falcata (Vahl) Kunth [85]. Manoyl oxide was the main compound present in the EOs of 
C. brevifolius [41] and K. erecta [56]. According to Gani et al. [97], manoyl oxide showed anti-
cancer potential in vitro and exhibited an IC50 of 50 µM against the MCF-7 cell line. 

 

Figure 6. Diterpenes identified in essential oils of Cyperaceae species. 

  

Figure 6. Diterpenes identified in essential oils of Cyperaceae species.



Sci. Pharm. 2025, 93, 9 12 of 21

3.1.4. Fatty Acid

Compounds such as capric acid, nonanal, palmitic acid, and linolenic acid (Figure 7)
were identified in the EOs of Carex meyeriana Kunth [34], Scleria hirtella Sw. [87], and Scleria
striatonux De Wild. [88]. The anticancer activity of fatty acids has been widely reported in
the literature [98–101]. Zhu et al. [100] reported that after 48 h of treatment, palmitic acid
(0.1–50 µM) inhibited the growth of PC-3 and DU145 cell lines in a dose-dependent manner,
exhibiting IC50 values of 10.72 and 16.83 µM, respectively. According to Wang et al. [101],
the main anticancer mechanism of palmitic acid involves the induction of cellular apoptosis
via the mitochondrial pathway and interference with the cancer cell cycle, predominantly
resulting in cell cycle arrest in the G1 phase.
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3.1.5. Phenolic Compound and Benzenoid

The phenolic compound eugenol was identified in the EO of the rhizomes of Cyperus
conglomeratus Rottb. [53], while the benzenoid remirol stood out as the major compound
of the EO of Remirea maritima Aubl. (Cyperus pedunculatus (R.Br.) J.Kern) [68] (Figure 8).
Several studies have already reported the anticancer properties of eugenol [102–104]. This
potential is mainly attributed to its antimetastatic, antiproliferative, antiangiogenic, anti-
inflammatory, cell cycle arrest induction, apoptotic, and autophagic effects [103]. According
to Padhy et al. [104], eugenol acts on multiple signaling pathways to exert its anticancer
effects, the major ones being the MAPK/ERK, JNK/STAT3, WnT/β-Catenin pathway,
E2F1/survivin, and NF-κB signaling cascades.
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3.2. Anticancer Activity of Essential Oils from Cyperaceae Species

The anticancer activity, both in vitro and in vivo, of EOs from four Cyperaceae species
is well documented in the literature (Table 2). Significant results were observed on murine
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melanoma (B16-F10), colon cancer (HCT-116 and HT-29), cervical cancer (HeLa), hepato-
cellular carcinoma (HepG2), human promyelocytic leukemia (HL-60), leukemia (L1210),
breast carcinoma (MCF-7 and MDA-MB231), lung carcinoma (NCI-H187), prostate car-
cinoma (PC-3), and neuroblastoma (SH-SY5Y) cell lines. Based on the evaluation cri-
teria of Boik [31] and Niksic et al. [32], the EO of C. rotundus demonstrated high cyto-
toxic activity against HCT-116 (IC50 = 1.06 µg/mL), HepG2 (IC50 = 1.17 µg/mL), MCF-7
(IC50 = 2.22 µg/mL), and HeLa (IC50 = 8.307 µg/mL) cell lines [20,105]. Furthermore, the
EO of C. kyllingia exhibited significant potential against NCI-H187 (IC50 = 6.7 µg/mL) and
MCF-7 (IC50 = 13.3 µg/mL) cells [21]. In contrast, EOs from other species showed IC50

values exceeding 20 µg/mL against cancer cells, suggesting they are not suitable for further
antitumor activity testing in in vivo experimental models.

Table 2. Anticancer activity of Cyperaceae species essential oil.

Species Part of
the Plant

Major Compounds
in EOs

Concentrations
or Doses Method Cancer

Cell Lines Results References

Cyperus
articulatus L. Rhizomes Mustakone (11.60%) 0.4–50 µg/mL

Alamar
blue

(in vitro)

HepG2,
HCT-116,

MCF-7, HL-60,
B16-F10

HepG2
(IC50 = 28.5 µg/mL),

HCT-116
(IC50 = >50 µg/mL),

MCF-7
(IC50 = 36.7 µg/mL),

HL-60
(IC50 = 33.51 µg/mL),

B16-F10
(IC50 = 39.7 µg/mL)

[45]

Rhizomes Mustakone (11.60%) 40 and
80 mg/kg

Xenograft
model

(in vivo)
HepG2 Tumor inhibition:

46.5–50.0% [45]

Cyperus longus
L.

Whole
plant Not reported 12.5–

200 µg/mL
MTT

(in vitro) PC-3, MCF-7
PC-3

(IC50 = 39.91–43.65 µg/mL),
MCF-7

(IC50 = 12.55–31.35 µg/mL)
[65]

Cyperus
rotundus L. Tuber

α-Cyperone
(25.23%),

cyperene (20.38%)
50–800 µg/mL MTT

(in vitro) L1210 IC50 = 49 µg/mL [72]

Tuber α-Cyperone (21.1%) 1.56–
100 µg/mL

CVS
(in vitro)

HCT-116,
HepG2, MCF-7

HCT-116
(IC50 = 1.06 µg/mL),

HepG2
(IC50 = 1.17 µg/mL),

MCF-7
(IC50 = 2.22 µg/mL)

[20]

Rhizomes
2,5,9-

Trimethylcycloundeca-
4,8-dienone (13.44%)

50 or
200 mg/mL

MTT
(in vitro)

MCF-7,
MDA-MB231,

HT-29, HCT-116

MCF-7
(IC50 = 41.28 µg/mL),

MDA-MB231
(IC50 = 44.31 µg/mL),

HT-29
(IC50 = 28.81 µg/mL),

HCT-116
(IC50 = 21.33 µg/mL)

[75]

Rhizomes α-Cyperone (38.46%) 50–1000 µg/mL MTT
(in vitro) SH-SY5Y

Decreased cell viability at
concentrations above

150 µg/mL
[77]

Tubers Not reported 3.9–500 µg/mL MTT
(in vitro) HeLa IC50 = 35.062 µg/mL [106]

Rhizomes

Humulene epoxide
(38.43%),

caryophyllene
oxide (21.03%)

Not specified MTT
(in vitro)

HepG2, MCF-7,
PC-3

HepG2
(IC50 = 204.1 µg/mL),

MCF-7
(IC50 = 170.8 µg/mL),

PC-3
(IC50 = >1000 µg/mL)

[79]

Rhizomes Not reported 0.625–
80 µg/mL

MTT
(in vitro) HeLa IC50 = 8.307 µg/mL [105]

Rhynchospora
colorata (L.)

H.Pfeiff. (Syn.
Cyperus kyllingia

Endl.)

Roots
α-Cadinol (18.62%),

caryophyllene
oxide (12.18%)

5 µL REMA
(in vitro)

NCI-H187,
MCF-7

NCI-H187
(IC50 = 6.7 µg/mL), MCF-7

(IC50 = 13.3 µg/mL)
[21]

CVS: crystal violet staining. EOs: essential oils. IC50: inhibitory concentration 50%. MTT: 3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide. REMA: resazurin microplate assay. Cancer cell lines: B16-
F10: mouse melanoma. HCT-116: colon cancer. HeLa: cervical cancer. HepG2: hepatocellular carcinoma.
HL-60: human promyelocytic leukemia. HT-29: colon cancer. L1210: leukemia. MCF-7: breast carcinoma.
MDA-MB231: breast cancer. NCI-H187: lung carcinoma. PC-3: prostate carcinoma. SH-SY5Y: neuroblastoma.

The mechanisms of action of EOs from Cyperaceae species possibly involve DNA
fragmentation, cell cycle arrest, and induction of apoptosis (Figure 9). Kilani et al. [72]
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reported that a 50 µg/mL concentration of EO from C. rotundus tubers caused DNA
fragmentation and apoptosis in L1210 cells (leukemia). Memariani et al. [65] observed that
EO from the whole plant of C. longus significantly inhibited the proliferation of MCF-7 cells,
with an IC50 of 12.55 µg/mL after 48 h of exposure. Furthermore, at a concentration of
75 µg/mL, EO from C. longus induced apoptosis in MCF-7 (78.23%) and PC-3 (65.35%) cells.
Nogueira et al. [45] reported that concentrations of 12.5, 25, and 50 µg/mL of EO from C.
articulatus rhizomes induced DNA fragmentation in HepG2 cells by up to 22.0, 26.0, and
36.4%, respectively. This same cell line showed cell cycle arrest in the G2/M phase after
treatment with EO.
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In the literature, there is only one study reporting the in vivo anticancer activity of the
EOs of Cyperaceae. Nogueira et al. [45] evaluated the antitumor potential of EO from C.
articulatus rhizomes in an experimental xenograft model with HepG2 cells (hepatocellular
carcinoma). According to these authors, C.B-17 mice treated with EO at doses of 40 and
80 mg/kg intraperitoneally, showed tumor inhibition rates of 46.5 and 50.0%, respectively.
These values were similar to those in the positive control group treated with the standard
drug 5-fluorouracil (5-FU, 10 mg/kg), for which there was a tumor mass inhibition rate of
44.2%. These findings indicate the potential of EO of C. articulatus as a promising natural
alternative for the treatment of liver cancer [45].

Nanotechnological applications in formulations containing EOs from Cyperaceae
species may be an effective alternative to increase the potential of these natural products
against cancer cells. According to Sharma et al. [14], EOs have an unsurpassed potential for
cancer treatment when administered in the form of nanoencapsulation (nanoemulsions,
niosomes, nanoparticles, and liposomes), as these products act on target cancer cells and

BioRender.com
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mediate the release of specific drugs. Some studies have reported that nanoparticles derived
from natural compounds offer several advantages, including greater stability, solubility in
biological media, controlled release of encapsulated compounds, greater cellular uptake,
and the ability to overcome biological barriers [12,107,108]. However, it is important to
emphasize that the exact mechanism for the synthesis of metal nanoparticles by terpenoids
in EO is not yet fully elucidated. But it is likely that terpenoids may play a key role in
the reduction of bivalent metals to zero-valent metal atoms in phytochemical reduction
reactions [109].

3.3. Acute Oral Toxicity of Essential Oils from Cyperaceae Species

Although several studies have investigated the chemical composition of EOs from
Cyperaceae species, there is a gap regarding the assessment of the acute toxicity in vivo
of these products. In the literature, only the EO of C. articulatus has been studied in this
context, showing no serious toxic effects at doses of up to 2000 mg/kg administered orally
in rodents [43,47,110]. According to Metuge et al. [110], among six mice treated with EO
from C. articulatus rhizomes, only one presented rough hair and weight loss in the first
days after administration. However, it was observed that the mice remained active, healthy,
and showed continuous weight gain. No significant behavioral changes were recorded,
and no deaths occurred during the 14 days of follow-up.

Silva et al. [43] demonstrated that Balb/c mice orally treated with doses of 50, 300, and
2000 mg/kg of EO from C. articulatus rhizomes did not exhibit clinical changes, weight loss,
or mortality throughout the experimental period. Similarly, Ferreira et al. [47] observed that
Swiss mice and Wistar rats treated with 2000 mg/kg of EO also showed no signs of toxicity,
changes in body weight, or deaths during the 14 days of follow-up. These results indicate
that the EO of C. articulatus is biologically safe. More research is needed to explore its
potential as an herbal medicine in the treatment of inflammation, nociception, and cancer.

Despite the scarcity of investigations related to volatile oils from other Cyperaceae
species, the acute toxicity of different polar and nonpolar extracts of C. rotundus and C.
esculentus have already been well reported in the literature [111–114]. These products
have also demonstrated a broad spectrum of in vitro and in vivo biological activities and
biological safety in rodents.

4. Conclusions and Future Perspectives
The essential oils from 33 Cyperaceae species showed a wide diversity of major com-

pounds in their chemical composition. These phytochemicals belong to the classes of
sesquiterpenes, monoterpenes, diterpenes, fatty acids, phenolic compounds, and ben-
zenoids. Among the sesquiterpenes, the major compounds were cyperene, cyperotundone,
caryophyllene oxide, and mustakone, identified in several species.

From a pharmacological point of view, EOs from Cyperus rotundus, C. kyllingia, and
C. longus exhibited high cytotoxic activity in vitro against the HCT-116, HepG2, MCF-7,
HeLa, and NCI-H187 cell lines. In this perspective, the EOs from these species are strongly
recommended for in vivo evaluation of their anticancer potential. Molecular findings
suggest that the mechanisms of action associated with EOs of Cyperaceae include DNA
fragmentation, cell cycle arrest, and induction of apoptosis.

To date, only the EO from C. articulatus has been investigated for its in vivo antitumor
potential and acute toxicity in rodents. Consequently, further preclinical research is urgently
needed to evaluate the anticancer activity of EOs from other Cyperaceae species with high
in vitro cytotoxicity. Additionally, studies on acute oral toxicity are essential to assess
biological safety and determine potential side effects.
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Considering that the Cyperaceae family comprises approximately 5687 species, it is
evident that it is underexplored both in chemical and pharmacological terms, revealing
vast potential for future research.
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