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Abstract: Despite the discovery of many chemotherapeutic drugs that prevent uncontrolled
cell division processes, the development of compounds with higher anticancer efficacy
and a lower level of side effects is an important task in modern pharmaceutical chemistry.
Herein, a mild and convenient method for the preparation of N1-substituted 3-(1,2,3-
triazolyl-methoxycarbonyl)coumarins or bis(coumarine-3-carboxylate)bis(triazole)alkandiyl
by the copper(I)-catalyzed Huisgen cycloaddition reaction of readily available coumarin-3-
carboxylic acid propynyl ester with azides or diazides has been presented. The synthesized
compounds have been tested for their cytotoxicity on various cancer and noncancerous
cell lines using the MTT assay. All new compounds were nontoxic on normal epithelial
VERO cells. Two derivatives exhibited selectivity towards HPV-negative human cervical
cancer cells, C33 A, with excellent activities in low concentrations (GI50 4.4–7.0 µM). In vitro
mechanistic studies showed that bis(coumarine)bis(triazolylester) conjugate 3 induced time-
dependent apoptosis in cervical cancer cell lines C33 A and CaSki, at the GI50 concentration,
as measured by Annexin V-FITC/PI staining. The most active coumarin–triazolyl ester
conjugate 2g possessed anticancer activities, as indicated by its ability to induce S/G2 phase
cell cycle arrest at a low concentration and early apoptosis in CaSki cells. The obtained
results revealed the potential of new compounds as anticancer agents, particularly against
cervical cancer.

Keywords: coumarin-3-carboxylic acid; alkyne; azides; triazoles; CuAAC reaction; cytotox-
icity; anticancer agents

1. Introduction
Coumarin represents a core structural motif that is widely present in natural and syn-

thetic pharmaceuticals [1] and small-molecule fluorescent chemosensors [2]. The synthesis
and functionalization of coumarins have given rise to much interest from the synthetic com-
munity over the past two decades [3]. Among various coumarins, 3-substituted compounds
have attracted significant attention due to their important applications in medicine and
chemical biology [4]. Several anticoagulant drugs belong to 3-substituted coumarins [5,6].
Among these compounds, derivatives of coumarin-3-carboxylic acid deserve attention
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as inhibitors for certain kallikreins, serine protease, α-chymotrypsin, human leukocyte
elastase, and matriptase [7]. The structure–activity analysis of derivatives listed in Figure 1
allows us to determine their importance. Therefore, the anti-inflammatory activity of
coumarin esters (general structure A) that acted as inhibitors of the kallikrein-related pep-
tidase 9 (KLK9) involved in inflammatory processes of the skin was reported [8]. The
anticoagulant and anti-thrombosis agents B and C (Figure 1) with coumarin ester structures
were synthesized using a fragment-based drug discovery approach. Compound B was
characterized as an inhibitor of the trypsin-like enzymes factor Xa and thrombin [9], as
well as coumarin C, which represented a perspective group of inhibitors of factor XIIa (Ki
value of 62.2 nM on FXIIa), a promising target for artificial surface-induced thrombosis and
different inflammatory diseases [10]. Coumarin-thiazolyl ester derivatives D exhibited a
bacteriostatic effect with MIC values of 4 µg/mL, which were characterized as potential
bactericides targeting DNA gyrase enzymes (IC50 inhibition values of 0.13 µM) and were
effective against resistant bacterial strains and biofilms [11]. On the base of coumarin
3-carboxylic acid, some hybrid compounds with a furoxan moiety were synthesized as
perspective anticancer agents. Thus, the compound of type E exerts strong effects against
the breast cancer MDA-MB-231 and 4T1 BC lines (IC50 ≤ 1.0 µM) but show relatively weak
cytotoxicity (IC50 ≥ 10 µM) toward healthy MCF-10A (normal cell lines), indicating its ex-
cellent selectivity profile [6]. In addition, hybrid E generate nitric oxide (NO) in substantial
quantities in MDA-MB-231 breast cancer cells, inhibited colony formation, and cause cell
death via apoptosis without causing cell cycle arrest [12]. Hybrid compound F showed
strong antiproliferative activity against human cancer cell lines A549, HT-29, HepG2 and
MCF-7 (IC50 = 2.10–7.22 µM) and was nontoxic toward normal LO2 cells (IC50 > 50 µM).
A preliminary in vivo study of this compound in mice indicates that it is well tolerated,
evidenced by zero mortality and normal body weight gains in treated mice [13].
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Figure 1. Reported coumarin ester derivatives (structures A, B, C, D, E, F) as prototypes for the ra-
tional design of the target compounds. 
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Figure 1. Reported coumarin ester derivatives (structures A–F) as prototypes for the rational design
of the target compounds.

1,2,3-Triazoles scaffold is well known for its pharmacological properties, which could
play a major role in the common mechanisms associated with various disorders like
cancer, inflammation and neurodegeneration. Triazoles are characterized by low toxicity
and superior pharmacokinetics due to the structure of five-membered heterocycles and
abundant electron cloud density. As a heteroaromatic motif, the 1,2,3-triazole structure
can interact with multiple aromatic amino acids in the receptor–ligand binding process,
preferentially engaging with the enzyme binding site [14–17]. Triazole rings mostly act
as linkers between various heterocyclic motifs in molecular hybrids. Because of the large
dipole moment, 1,2,3-triazoles can act as hydrogen bond donors, mimicking the amide
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functional group. More importantly, they are resistant to metabolic degradation and
hydrolysis and are stable under acidic, basic and redox conditions in living biological
systems [18]. Small molecules with the structure of coumarin–1,2,3-triazole conjugates have
been extensively exploited in the molecular design of different derivatives in an attempt to
access new molecules with improved anticancer profiles [18–23].

Based on the research literature and our previous work on the structural modification
and bioscreening of coumarin–triazole hybrids as antibacterial [24], anticoagulant [25]
and anticancer [26] agents, herein, we focused on the synthesis and analysis of the anti-
cancer potential of 3-triazolylmethoxycarbonyl-substituted coumarins and 3,3′-substituted
bis(coumarino-1,2,3-triazolyl) derivatives obtained from readily available coumarin-3-
carboxylic acid 1. The new series of 1,2,3-triazolyl-modified coumarins was evaluated
for their in vitro anticancer activity against human cancer cell lines using the conventional
MTT assay. All compounds were nontoxic towards normal epithelial VERO cells and
showed differential effects against the tested cell lines, exhibiting a greater impact against
the cervical cancer cell lines, especially on the HPV-negative human cancer cells C33 A, and
caused cell death by the induction of apoptosis in cervical cancer cells C33 A and CaSki.

2. Materials and Methods
2.1. Materials and Instrumentations

The melting points were determined using thermosystem Mettler Toledo FP900
(Columbus, OH, USA). 1H NMR and 13C NMR spectra were recorded by using a Bruker
AV-300 [300.13 (1H), 75.48 MHz (13C)], AV-400 [400.13 (1H), 100.78 MHz (13C)] or DRX-
500 [500.13 (1H), 125.77 MHz (13C)] spectrometer. Deuterochloroform (CDCl3) was used
as a solvent, with residual CHCl3 (δH = 7.24 ppm) or CDCl3 (δC = 77.0 ppm) being
employed as the internal standard. 1H NMR and 13C NMR spectra for compound 2g
were recorded in DMSO-d6 by using DMSO-d6 as the reference standard (δH = 2.50 and
δC = 39.5 ppm). NMR signal assignments were carried out with the aid of a combina-
tion of 1D and 2D NMR techniques that included 1H, 13C, COSY, Heteronuclear Single
Quantum Correlation (HSQC) and Heteronuclear Multiple Bond Correlation (HMBC).
Chemical shifts were reported in parts per million (ppm), and coupling constants were
expressed in Hz. Copies of 1H and 13C NMR spectra for all new compounds are given in
the Supplementary Materials (Figures S1–S20). IR spectra were recorded by means of the
KBr pellet technique on a Bruker Vector-22 spectrometer. UV spectra were obtained on an
HP 8453 UV–Vis spectrometer (Hewlett-Packard, Waldbronn, Germany) in EtOH solution.
Mass spectra were recorded with a Thermo Scientific DFS high-resolution mass spec-
trometer (Bremen, Germany) (evaporator temperature 200–250 ◦C, EI ionization at 70 V).
Elemental analysis was carried out on a Carlo-Erba 1106-Elemental analysis instrument
(Carlo-Erba, Milan, Italy).

The reaction progress and the purity of the obtained compounds were monitored
by TLC on Silufol UV−254 plates (Kavalier, Czech Republic, CHCl3/EtOH, 100:1; de-
tection under UV light or by spraying the plates with a 10 % water solution of H2SO4

followed by heating at 100 ◦C). Column chromatography was performed with 60H silica
gel (0.063–0.200 mm, Merck KGaA, Darmstadt, Germany). Propargyl bromide, coumarin-
3-carboxylic acid 1, DCC, DMAP and AcsNa were purchased from Alfa Aesar (GmbH,
Karlsruhe, Germany). The starting materials: coumarin 4 [27,28], benzyl azide (5a) [29], aryl
azides 5b,c,h [30], azidobenzoic acid methyl ester isomers (5d–f) and 4-asidobensoic acid
(5g) [31], n-butyl azide (5i) [32] and 1,5-diazidopentane (6) [33] were prepared following
the literature procedures. The solvents (DMF, CHCl3 and CH2Cl2) were purified according
to the standard methods.
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2.2. Synthesis
General Procedure for the Synthesis of Coumarino-1,2,3-triazolyl derivatives (2a–i)

To a stirred solution of alkynylcoumarin 4 (0.3 g, 1.3 mmol), substituted azide 5a–i
(1.1–1.5 mmol) or 1,5-diazidopentane (6) (0.6 mmol) in DMF (6 mL), copper sulfate CuSO4

× 5H2O (0.032 g, 0.13 mmol) and sodium ascorbate (0.026 g, 0.13 mmol) were added. The
reaction mixture was kept under stirring at 75 ◦C for 6–8 h. After reaction completion, as
indicated by TLC, the solvent was removed under reduced pressure, and the residue was
treated with brine (30 mL) and extracted with EtOAc (3 × 30 mL). The organic layers were
combined, washed with water (10 mL), dried over magnesium sulfate and filtered. The
solvent was removed under reduced pressure, and the residue was subjected to column
chromatography (chloroform-EtOH, 100:1→100:9). The initial coumarin (if conversion was
incomplete) and reaction products are sequentially isolated. If necessary, the products are
separated by repeated column chromatography to give compounds 2a–i as white powders.

2.3. Characterization of Compounds 2a–i

(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl 2-oxo-2H-chromene-3-carboxylate (2a).
White powder (260 mg, 56%); mp 176–178 ◦C; IR (KBr, νmax, cm−1): 1757 (C=O), 1707

(C=O), 1618 (C=C), 1565 (C=N), 1494 (C=C), 1457 (C=C); UV (EtOH, λmax, nm): 232, 295,
336; 1H NMR (400 MHz, CDCl3) δ 8.55 (s, 1H, H-4), 7.62 (m, 3H, H-5, 7, 12), 7.30 (m, 7H, H-6,
8, 15, 16, 17, 18, 19), 5.50 (s, 2H, H-10), 5.44 (s, 2H, H-13) ppm; 13C NMR (125 MHz, CDCl3)
δ 162.3 (C-9), 156.4 (C-2), 155.1 (C-8a), 149.2 (C-7), 142.7 (C-11), 134.5 (C-5), 134.2 (C-14),
129.5 (C-17), 129.0 (C-16, 18), 128.7 (C-6), 128.1 (C-15, 19), 124.8 (C-12), 124.1 (C-4), 117.6
(C-4a), 117.2 (C-3), 116.7 (C-8), 58.7 (C-10), 54.1 (C-13) ppm; HRMS: found m/z 361.1054
[M]+; calcd. for C20H15N3O4: M = 361.1057.

(1-Phenyl-1H-1,2,3-triazol-4-yl)methyl 2-oxo-2H-chromene-3-carboxylate (2b).White
solid (290 mg, 65%); mp 139–141 ◦C; IR (KBr, νmax, cm−1): 1770 (C=O) 1705 (C=O), 1608
(C=C), 1563 C=N), 1504 (C=C), 1449 (C=C); UV (EtOH, λmax, nm): 240, 295, 337; 1H NMR
(300 MHz, CDCl3) δ 8.59 (s, 1H, H-4), 8.21 (s, 1H, H-12), 7.72 (d, J = 8.0 Hz, 2H, H-14, 18),
7.64 (t, J = 7.8 Hz, 1H, H-7), 7.58 (d, J = 7.8 Hz, 1H, H-5), 7.49 (t, J = 8.0 Hz, 2H, H-15, 17),
7.43 (d, J = 8.0 Hz, 1H, H-16), 7.33 (m, 2H, H-6, 8), 5.55 (s, 2H, H-10) ppm; 13C NMR (125
MHz, CDCl3) δ 162.3 (C-9), 156.5 (C-2), 155.0 (C-8a), 149.4 (C-7), 142.9 (C-11), 136.6 (C-13),
134.6 (C-5), 129.6 (C-14, 18), 128.8 (C-6), 124.8 (C-12), 122.5 (C-4), 120.4 (C-15, 17), 117.5
(C-4a), 116.9 (C-3), 116.7 (C-8), 58.6 (C-10) ppm; HRMS: found m/z 347.0901 [M]+; calcd.
for C19H13N3O4: M = 347.0903.

(1-(3,4-Dimethylphenyl)-1H-1,2,3-triazol-4-yl)methyl 2-oxo-2H-chromene-3-carboxylate
(2c). White solid (430 mg, 88%); mp 133–135 ◦C; IR (KBr, νmax, cm−1): 1751 (C=O), 1707
(C=O), 1613 (C=C), 1564 (C=N), 1510 (C=C), 1454 (C=C); UV (EtOH, λmax, nm): 257, 292,
337; 1H NMR (500 MHz, CDCl3) δ 8.60 (s, 1H, H-4), 8.16 (s, 1H, H-12), 7.65 (t, J = 7.8 Hz,
1H, H-7), 7.59 (d, J = 7.8 Hz, 1H, H-5), 7.50 (s, 1H, H-14), 7.41 (d, J = 8.1 Hz, 1H, H-18), 7.32
(m, 2H, H-6, 8), 7.23 (d, J = 8.1 Hz, 1H, H-17), 5.54 (s, 2H, H-10), 2.31 (s, 3H, H-20), 2.29 (s,
3H, H-19) ppm; 13C NMR (125 MHz, CDCl3) δ 162.3 (C-9), 156.5 (C-2), 155.1 (C-8a), 149.3
(C-7), 142.6 (C-11), 138.3 (C-15), 137.6 (C-16), 134.6 (C-5), 134.5 (C-13), 130.5 (C-18), 129.5
(C-6), 124.9 (C-17), 122.6 (C-4), 121.5 (C-12), 117.7 (C-14), 117.5 (C-14), 116.9 (C-3), 116.7
(C-8), 58.6 (C-10), 19.7 (C-20), 19.3 (C-19) ppm; HRMS: found m/z 375.1211 [M]+; calcd. for
C21H17N3O4: M = 375.1214.

(1-(2-(Methoxycarbonyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl 2-oxo-2H-chromene- 3-
carboxylate (2d). Brownish powder (350 mg, 67%); mp 114–117 ◦C; IR (KBr, νmax, cm−1):
1765 (C=O), 1725 (C=O), 1705 (C=O), 1609 (C=C), 1566 (C=N), 1498 (C=C), 1448 (C=C); UV
(EtOH, λmax, nm): 239, 293, 336; 1H NMR (300 MHz, CDCl3) δ 8.60 (s, 1H, H-4), 8.04 (s,
1H, H-12), 8.00 (d, J = 7.5 Hz, 1H, H-15), 7.60 (m, 4H, H-5, 7, 16, 17), 7.47(d, J = 7.8 Hz, 1H,
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H-18), 7.33 (m, 2H, H-6, 8), 5.57 (s, 2H, H-10), 3.70 (s, 3H, OCH3) ppm; 13C NMR (75 MHz,
CDCl3) δ 165.0 (C-19), 162.0 (C-9), 156.1 (C-2), 154.8 (C-8a), 149.0 (C-7), 141.8 (C-11), 135.5
(C-14), 134.3 (C-5), 132.4 (C-15), 130.9 (C-17), 129.6 (C-18), 129.2 (C-16), 126.9 (C-13), 126.4
(C-6), 125.9 (C-4), 124.5 (C-12), 117.3 (C-4a), 116.8 (C-3), 116.4 (C-8), 58.5 (C-10), 52.3 (C-20)
ppm; HRMS: found m/z 405.0957 [M]+; calcd. for C21H15N3O6: M = 405.0955

(1-(3-(Methoxycarbonyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl 2-oxo-2H-chromene- 3-
carboxylate (2e). White powder (490 mg, 75%); mp 184–186 ◦C; IR (KBr, νmax, cm−1): 1753
(C=O), 1722 (C=O), 1703 (C=O), 1614 (C=C), 1563 (C=N), 1495 (C=C), 1447 (C=C); UV
(EtOH, λmax, nm): 240, 294, 337; 1H NMR (400 MHz, CDCl3) δ 8.60 (s, 1H, H-4), 8.35 (t,
J = 1.8 Hz, 1H, H-14), 8.29 (s, 1H, H-12), 8.10 (dt, J = 7.8, 1.8 Hz, 1H, H-16), 8.01 (ddd, J = 8.0,
2.3, 1.2 Hz, 1H, H-18), 7.63 (m, 3H, H-5, 7, 17), 7.33 (m, 2H, H-6, 8), 5.56 (s, 2H, H-10), 3.95
(s, 3H, OCH3) ppm; 13C NMR (75 MHz, CDCl3) δ 165.6 (C-19), 162.4 (C-9), 156.5 (C-2), 155.1
(C-8a), 149.5 (C-7), 143.3 (C-11), 136.9 (C-13), 134.7 (C-5), 132.2 (C-15), 130.0 (C-16), 129.8
(C-17), 129.6 (C-18), 124.9 (C-6), 124.7 (C-14), 122.5 (C-4), 121.1 (C-12), 117.6 (C-4a), 117.0
(C-3), 116.8 (C-8), 58.6 (C-10), 52.5 (C-20) ppm; HRMS: found m/z [M]+ 405.0955; calcd. for
C21H15N3O6: M = 405.0951.

(1-(4-(Methoxycarbonyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl 2-oxo-2H-chromene- 3-
carboxylate (2f). White powder (340 mg, 65%); mp 161–165 ◦C; IR (KBr, νmax, cm−1): 1771
(C=O), 1714 (C=O), 1705 (C=O), 1640 (C=C), 1611 (C=C), 1565 (C=N), 1520 (C=C), 1445
(C=C); UV (EtOH, λmax, nm): 240, 281, 337; 1H NMR (400 MHz, CDCl3) δ 8.60 (s, 1H, H-4),
8.30 (s, 1H, H-12), 8.19 (d, J = 8.8 Hz, 2H, H-15, 17), 7.84 (d, J = 8.8 Hz, 2H, H-14, 18), 7.64 (t,
J = 8.0 Hz, 1H, H-7), 7.59 (d, J = 8.0 Hz, 1H, H-5), 7.33 (m, 2H, H-6, 8), 5.56 (s, 2H, H-10),
3.93 (s, 3H, OCH3) ppm; 13C NMR (75 MHz, CDCl3) δ 165.4 (C-19), 162.1 (C-9), 156.2 (C-2),
154.8 (C-8a), 149.2(C-7), 143.2 (C-11), 139.4 (C-13), 134.5 (C-5), 131.0 (C-15, 17), 130.1 (C-16),
129.4 (C-6), 124.7 (C-12), 122.0 (C-4), 119.6 (C-14, 18), 117.4 (C-4a), 116.6 (C-3), 116.5 (C-8),
58.3 (C-10), 52.1 (C-20) ppm; HRMS: found m/z 405.0952[M]+; calcd. for C21H15N3O6:
M = 405.0955.

4-(4-((2-Oxo-2H-chromene-3-carbonyloxy)methyl)-1H-1,2,3-triazol-1-yl)-benzoic acid
(2g). White powder (460 mg, 90%); mp 260–262 ◦C (with decomp.); IR (KBr, νmax, cm−1):
3349 (OH), 1766 (C=O), 1716 (C=O), 1700 (C=O), 1640 (C=C), 1610 (C=C), 1565 (C=N), 1518
(C=C), 1445 (C=C); UV (EtOH, λmax, nm): 235, 273, 337; 1H NMR (400 MHz, DMSO-d6) δ

9.05 (s, 1H, H-4), 8.81 (s, 1H, H-12), 8.11 (m, 4H, H-14,15,17,18), 7.93 (d, J = 7.4 Hz, 1H, H-5),
7.74 (t, J = 7.4 Hz, 1H, H-7), 7.42 (m, 2H, H-6,8), 5.50 (s, 2H, H-10) ppm; 13C NMR (125 MHz,
DMSO-d6) δ 162.4(C-19), 162.1 (C-9), 155.9 (C-2), 154.7 (C-8a), 149.5(C-7), 143.2 (C-11), 139.4
(C-13), 134.9 (C-5), 131.4 (C-16), 130.5 (C-15, 17), 124.9 (C-14, 18), 123.5 (C-6), 120.2 (C-12),
117.9 (C-4), 116.9 (C-4a), 116.2 (C-3,8), 58.1 (C-10) ppm; HRMS: found m/z 391.0796 [M]+;
calcd. for C20H13N3O6: M = 391.0799.

(1-(4-Iodophenyl)-1H-1,2,3-triazol-4-yl)methyl 2-oxo-2H-chromene-3-carboxylate (2h).
White powder (275 mg, 47%); mp 198–201 ◦C; IR (KBr, νmax, cm−1): 1739 (C=O), 1724
(C=O), 1612 (C=C), 1565 (C=N), 1495 (C=C), 1459 (C=C), 622 (C-I); UV (EtOH, λmax, nm):
237, 265, 337; 1H NMR (300 MHz, CDCl3) δ ppm 8.58 (s, 1H, H-4), 8.20 (s, 1H, H-12), 7.83
(d, J = 8.6 Hz, 2H, H-15, 17), 7.67 (t, J = 7.8 Hz, 1H, H-7), 7.59 (d, J = 7.8 Hz, 1H, H-5), 7.49
(d, J = 8.6 Hz, 2H, H-14, 18), 7.33 (m, 2H, H-6, 8), 5.55 (s, 2H, H-10); 13C NMR (75 MHz,
CDCl3) δ 162.5 (C-9), 156.5 (C-2), 155.2 (C-8a), 149.4 (C-7), 143.4 (C-11), 138.8 (C-15, 17),
136.4 (C-13), 134.7 (C-5), 129.6 (C-6), 124.9 (C-12), 122.3 (C-4), 122.0 (C-14, 18), 117.7 (C-4a),
117.2 (C-3), 116.8 (C-8), 93.8 (C-16), 58.7 (C-10) ppm; HRMS: found m/z 472.9966[M]+; calcd.
for C19H12IN3O4: M = 472.9867.

(1-Butyl-1H-1,2,3-triazol-4-yl)methyl 2-oxo-2H-chromene-3-carboxylate (2i). White
powder (180 mg, 42%); mp 102–104 ◦C; IR (KBr, νmax, cm−1): 1774 (C=O), 1715 (C=O), 1648
(C=C), 1612 (C=C), 1566 (C=N), 1500 (C=C), 1453 (C=C); UV (EtOH, λmax, nm): 238, 295,
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335; 1H NMR (300 MHz, CDCl3) δ 8.60 (s, 1H, H-4), 7.75 (s, 1H, H-12), 7.63 (t, J = 7.8 Hz, 1H,
H-7), 7.59 (d, J = 7.8 Hz, 1H, H-5), 7.32 (m, 2H, H-6, 8), 5.46 (s, 2H, H-10), 4.34 (t, J = 7.3 Hz,
2H, H-13), 1.87 (m, 2H, H-14), 1.33 (m, 2H, H-15), 0.93 (t, J = 7.0 Hz, 3H, H-16) ppm; 13C
NMR (125 MHz, CDCl3) δ 162.3 (C-9), 156.6 (C-2), 155.1 (C-8a), 149.4 (C-7), 142.2 (C-11),
134.6 (C-5), 129.6 (C-6), 124.9 (C-12), 124.1 (C-4), 117.6 (C-4a), 117.0 (C-3), 116.7 (C-8), 58.7
(C-10), 50.0 (C-13), 32.1 (C-14), 19.6 (C-15), 13.3 (C-16) ppm; HRMS m/z found 327.1210
[M]+; calcd. for C17H17N3O4: M = 327.1214.

Synthesis of (1,1′-(Pentane-1,5-diyl)bis(1H-1,2,3-triazole-4,1-diyl))bis(methylene)
bis-(2-oxo-2H-chromene-3-carboxylate) (3)

To a stirred solution of alkynylcoumarin 4 (0.30 g, 1.3 mmol), 1,5-diazidopentane (6)
(0.12 g, 0.66 mmol) in DMF (15 mL), copper sulfate CuSO4 × 5H2O (0.032 g, 0.13 mmol)
and sodium ascorbate (0.026 g, 0.13 mmol) were added. The reaction mixture was kept un-
der stirring at 75 ◦C for 12 h (TLC control). The solvent was removed under reduced
pressure, and the residue was treated with brine (30 mL) and extracted with EtOAc
(3 × 30 mL). The organic layers were combined, washed with water (10 mL), dried over
magnesium sulfate and filtered. The solvent was removed under reduced pressure, and
the residue was subjected to column chromatography (chloroform-EtOH, 100:1→100:9).
Repeated column chromatography of the product fractions afforded compound 3 (260 mg,
66%). White powder; mp 171–173 ◦C; IR (KBr, νmax, cm−1): 1758 (C=O), 1709 (C=O), 1611
(C=C), 1565 (C=N), 1499 (C=C), 1453 (C=C); UV (EtOH, λmax, nm): 239, 295, 336; 1H NMR
(300 MHz, CDCl3) δ 8.57 (s, 2H, H-4, 4′), 7.75 (s, 2H, H-12, 12′), 7.61 (m, 4H, H-5, 5′, 7, 7′),
7.32 (m, 4H, H-6, 6′, 8, 8′), 5.44 (s, 4H, H-10, 20), 4.33 (m, 4H, H-13, 17), 1.94 (m, 4H, H-14,
16), 1.33 (m, 2H, H-15) ppm; 13C NMR (75 MHz, CDCl3) δ 162.3 (C-9, 21), 156.6 (C-2, 2′),
155.1 (C-8a, 8′a), 149.3 (C-7, 7′), 142.4 (C-11, 19), 134.6 (C-5, 5′), 129.7 (C-6, 6′), 124.9 (C-12,
18), 124.3 (C-4, 4′), 117.6 (C-4a, 4′a), 117.1 (C-3, 3′), 116.8 (C-8, 8′), 58.7 (C-10, 20), 49.8 (C-13,
17), 29.4 (C-14, 16), 23.3 (C-15) ppm; Found, %: C 59.55; H 4.60; N12.98. C31H26N6O8 ×
H2O. Calculated,%: C 59.23; H 4.45; N 13.17.

2.4. Biological Studies
2.4.1. Cell Culture and Cytotoxicity Assay

The HPV-negative human cervical cancer cell line C33 A, HPV16-positive human
cervical cancer cell line CaSki, HPV18-positive human cervical cancer cell line HeLa, breast
cancer (adenocarcinoma MCF-7) and prostate cancer (DU-145) were obtained from the
American Type Culture Collection (ATCC). Normal epithelial VERO cells derived from the
kidney of an African green monkey were used as a non-cancer control. This cell line was
obtained from the cell collection of the State Research Center for Virology and Biotechnology
“Vector” of Rospotrebnadzor, Koltsovo, Novosibirsk Region. The cells were cultured in
DMEM/F12 medium containing 10% embryonic calf serum, L-glutamine (2 mmol/L) and
gentamicin (80 µg/mL) in a CO2 incubator at 37 ◦C. The tested compounds (2a–i, 3) and a
reference drug doxorubicin were dissolved in DMSO and added to the cellular culture at
the required concentrations. Three wells were used for each concentration. The cells that
were incubated without the compounds were used as controls. Cells were placed in 96-well
microplates and cultivated at 37 ◦C in 5% CO2/95% air for 48 h. The cell viability was
assessed through a MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-phenyl-2H-tetrazolium bromide]
conversion assay [34], where 1% MTT was added to each well. Four hours later, the
medium was removed, leaving the formazan crystals, and isopropanol was added and
mixed for 15 min. The optical density of the samples was measured on a Thermo Multiskan
FC spectrophotometer (Thermo Fisher Scientific, USA) at a wavelength of 540 nm, with a
reference of 670 nm. The 50% cytotoxic dose (GI50) of each compound (i.e., the compound
concentration that lowers the amount of cells to 50% in a culture or decreases the optical
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density twofold as compared to the control wells) was calculated from the obtained data.
All data are presented as the mean ± SEM from at least three independent experiments.
Statistical analysis of the results was performed using the Microsoft Excel 2007, STATISTICA
6.0 and GraphPad Prism 5.0 programs, and significance was defined as p < 0.05 (t-test). The
results are given as the average value ± standard deviation from the average.

2.4.2. Cell Cycle Analysis

For the cell cycle analysis, cells were seeded in 6-well plates (3 × 105 per plate) and
incubated for adhesion for 24 h. After that, cells were washed twice in an ice-cold PBS
buffer and treated with the tested compounds dissolved in DMSO in GI50 concentration,
then incubated for 24 and 48 h. Control wells received only 0.1% DMSO. Cells were
washed with PBS twice, harvested, pelleted and resuspended in 0.5 mL of PBS. For staining,
the propidium iodide (PI, Sigma-Aldrich) was used according to the instructions. A
BD FACSCanto™ II flow cytometer (Becton Dickinson FACScan, Sunnyvale, CA, USA)
equipped with CellQuest 3.2 software (Becton Dickinson) was used to analyze the cell cycle
phase distribution. The results were presented as a percentage of cell population standing
in different stages of the cell cycle. To perform statistical analyses, pairwise comparisons
were made between untreated and treated cells at the same stage of the cell cycle. For
example, growth inhibition after treatment with doxorubicin or a test compound was
compared to the growth inhibition of untreated cells. At least 3 × 105 cells acquired for
each sample were recorded and analyzed.

2.4.3. Cell Death by Annexin V-FITC/PI Staining Analyzed by Flow Cytometry

The Annexin V-FITC and PI apoptosis assay kits were used to distinguish early and
late stage apoptotic cell death from necrosis by the standard FACS assay. The C33 A and
CaSki cells (3 × 105 cell/mL) were seeded in a 24-well plate and incubated for 24 h. The
compounds at a concentration of 1 × GI50 (4.4 µM for 2g or 7.0 µM for 3) were added and
incubated for 12 and 24 h. After that, the cells were washed with PBS twice. The cells
were then resuspended with 95 mL of binding buffer, followed by staining with 100 mL of
Annexin V-FITC (5 mL in 95 mL of buffer) for 15 min (dark condition). Then, the cells were
stained with 100 mL of PI solution (5 µL of PI in 95 µL of binding buffer) and incubated
for another 15 min in the dark at RT. The cells were analyzed by flow cytometry (BD
FACSCanto™ II, BD Biosciences, San Jose, CA, USA). The percentage viable, apoptotic and
necrotic cells were detected by BD FACSDiva Software 6.0 (BD Biosciences, San Jose, CA,
USA). Data analysis was performed using BD FACSDiva software (BD Biosciences, San
Jose, CA, USA).

3. Results
3.1. Chemistry

Scheme 1 shows a brief description of the route used for the synthesis of new
3-substituted coumarin derivatives 2a–i and 3. The key alkyne coumarin 4 was syn-
thesized in a quantitative yield by the propargylation of coumarin-3-carboxylic acid 1 with
propargyl alcohol according to reported methods [27,28]. 3-Alkynyl substituted coumarin
4 was obtained in excellent yield and was pure enough for further reactions. Next, the
Cu(I)-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC reaction) was used for
the synthesis of 3-triazolyl-methoxycarbonyl-substituted coumarins 2a–i and 3. We have
chosen the most simple and well-characterized variant, namely, carrying out the reaction
in DMF, with catalysis of the Cu(I) ions generated in situ from CuSO4 and sodium ascor-
bate [35–37]. CuAAC reaction of ethynyl coumarin 4 with azides, namely, benzyl azide
5a, phenyl azide 5b, 4-azido-1,2-dimethylbenzene 5c, three positional azidobenzoic acid
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methyl ester isomers 5d–f, 4-azidobensoic acid 5g, 1-azido-4-iodobenzene 5h or n-butyl
azide 5i, afforded the 1-benzyl-, 1-aryl- or 1-butyl-substituted (1,2,3-triazol-4-yl)methyl
2-oxo-2H-chromene-3-carboxylates (2a–i) in 42–90% yields (Scheme 1). The higher yield
(88–90%) was observed in the reaction of 4 with aryl azides 5b,g.
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carbodiimide; DMAP = 4-dimethylaminopyridine; AscNa = sodium ascorbate.

It is known that functionalized bis-coumarins are often shown to be more effective
against cancer cell lines than the monomeric species [38–40]. We successfully employed the
CuAAC reaction of 3-alkynyl-substituted coumarin 4 with diazide for the synthesis of the
bis(coumarino-3carboxylate)-bis(triazolyl) compound. The reaction of compound 4 with
1,5-diazidopentane 6 (0.51 equiv.) under higher dilution conditions by using the simple
copper(II) sulfate and sodium ascorbate system to generate the cooper(I) catalyst proceeded
with the formation of (pentane-1,5-diyl-bis(1H-1,2,3-triazole-1,4-diyl))bis(methylene) bis(2-
oxo-2H-chromene-3-carboxylate) 3 isolated in the yield 66% after column chromatography
on silica gel (Scheme 1).

The composition and structure of the synthesized compounds were confirmed by IR,
1H and 13C NMR spectroscopy; mass spectrometry and elemental analysis data. The 1H and
13C NMR spectra of the obtained compounds contained one set of signals characteristic for
the coumarin backbone and the corresponding substituent. Formation of the 1,2,3-triazole
ring in compounds 2a–i and 3 was confirmed by the NMR data. The 1H NMR spectra
exhibited singlet signals for the H-triazole proton (δ 7.75–8.30 ppm). The 13C NMR signals
of the C-4 and C-5 triazole carbon atoms were observed in the regions of δ = 136.6–142.2 ppm
and δ = 120.8–124.9 ppm, respectively. These data confirm the regioselectivity of the studied
copper-catalyzed azide-alkyne cycloaddition, giving 1,4-disubstituted 1,2,3-triazoles 2a–i
or (pentane-1,5-diyl-bis (1H-1,2,3-triazole-1,4-diyl))- bis(methylene) bis(2-oxo-2H-chromene-
3-carboxylate) 3 [41].

3.2. Biological Study
3.2.1. Cytotoxicity Assay

All new compounds 2a–i and 3 were screened for their in vitro cytotoxicity and growth
inhibitory activities against three different tumor types, namely, the HPV-negative human
cervical cancer cell line C33 A, HPV16-positive human cervical cancer cell line CaSki,
HPV18-positive human cervical cancer cell line HeLa, breast cancer (adenocarcinoma
MCF-7) and prostate cancer DU-145 cell lines, in comparison with the activity of the known
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anticancer reference drug doxorubicin (DOX). Normal epithelial VERO cells were used as
a non-cancer control. Cell viability was assessed by the 3-[4,5-dimethyl-thiazol-2-yl]- 2,5-
diphenyltetrazolium bromide (MTT) assay. The cytotoxic activities of the tested compounds
were expressed as the GI50 µM value (the dose that reduces growth inhibition to 50%)
(Table 1). All tested triazole–coumarin derivatives 2a–i and 3 were nontoxic for VERO cells
(GI50 >100 µM) relative to doxorubicin (GI50 = 8 ± 1.8 µM) (Table 1). The substituent at
position N1 in the triazole ring can enhance bioactivity, and differential bioactivity exhibited
by coumarin might be associated with its substitution position. Compounds with the N1
aryl-substituted triazolyl–coumarin esters 2d–h exhibited selective cytotoxicity towards
cervical cancer cell lines C33 A.

Table 1. Concentrations of half-maximal inhibition (GI50 ± SEM, µM) on five cancer cell lines and
VERO cells for compounds 2a–i and 3.

Compound Growth Inhibition of Cells (GI50 ± SEM, µM) [a, b]
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2i R = C4H9 36 ± 2.5 31 ± 1.6 29 ± 1.1 34 ± 1.5 56 ± 3.6 >100 

81 ± 0.2 38 ± 3.2 35 ± 4.0 41 ± 2.1 >100 >100

2c
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1,4-disubstituted 1,2,3-triazoles 2a–i or (pentane-1,5-diyl-bis (1H-1,2,3-triazole-1,4-diyl))- 
bis(methylene) bis(2-oxo-2H-chromene-3-carboxylate) 3 [41]. 

3.2. Biological Study 

3.2.1. Cytotoxicity Assay 

All new compounds 2a–i and 3 were screened for their in vitro cytotoxicity and 
growth inhibitory activities against three different tumor types, namely, the 
HPV-negative human cervical cancer cell line C33 A, HPV16-positive human cervical 
cancer cell line CaSki, HPV18-positive human cervical cancer cell line HeLa, breast cancer 
(adenocarcinoma MCF-7) and prostate cancer DU-145 cell lines, in comparison with the 
activity of the known anticancer reference drug doxorubicin (DOX). Normal epithelial 
VERO cells were used as a nоn-cancer control. Cell viability was assessed by the 
3-[4,5-dimethyl-thiazol-2-yl]- 2,5-diphenyltetrazolium bromide (MTT) assay. The cyto-
toxic activities of the tested compounds were expressed as the GI50 µM value (the dose 
that reduces growth inhibition to 50%) (Table 1). All tested triazole–coumarin derivatives 
2a–i and 3 were nontoxic for VERO cells (GI50 >100 µM) relative to doxorubicin (GI50 = 
8±1.8 µM) (Table 1). The substituent at position N1 in the triazole ring can enhance bio-
activity, and differential bioactivity exhibited by coumarin might be associated with its 
substitution position. Compounds with the N1 aryl-substituted triazolyl–coumarin esters 
2d–h exhibited selective cytotoxicity towards cervical cancer cell lines C33 A. 

Table 1. Concentrations of half-maximal inhibition (GI50 ± SEM, µM) on five cancer cell lines and 
VERO cells for compounds 2a–i and 3. 

Compound Growth Inhibition of Cells (GI50 ± SEM, μM) [a, b] 

 

C33 A 
(HPV- 

Negative) 

CaSki 
(HPV-16) 

HeLa 
(HPV-18) 

 
MCF-7 DU-145 VERO 

2a 
 

>100 56 ± 3.6 29 ± 2.0 51 ± 2.9 >100 >100 

2b  81 ± 0.2 38 ± 3.2 35 ± 4.0 41 ± 2.1 >100 >100 

2c 
 

76 ± 4.1 33 ± 1.5 29 ± 1.8 62 ± 1.5 >100 >100 

2d 
 

21 ± 1.7 19 ± 0.9 27 ± 1.7 40 ± 2.7 34 ± 2.0 >100 

2e 
 

31 ± 3.1 25 ± 1.4 32 ± 2.5 36 ± 1.1 41 ± 2.9 >100 

2f  25 ± 1.1 22 ± 1.8 23 ± 0.9 30 ± 1.7 48 ± 1.6 >100 

2g  4.4 ± 0.5  18 ± 2.5 22 ± 1.4 24 ± 1.6 19 ± 1.0 >100 

2h  17 ± 1.1 20 ± 0.2 18 ± 1.3 31 ± 0.9 35 ± 1.1 >100 

2i R = C4H9 36 ± 2.5 31 ± 1.6 29 ± 1.1 34 ± 1.5 56 ± 3.6 >100 

76 ± 4.1 33 ± 1.5 29 ± 1.8 62 ± 1.5 >100 >100

2d
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bis(methylene) bis(2-oxo-2H-chromene-3-carboxylate) 3 [41]. 

3.2. Biological Study 

3.2.1. Cytotoxicity Assay 

All new compounds 2a–i and 3 were screened for their in vitro cytotoxicity and 
growth inhibitory activities against three different tumor types, namely, the 
HPV-negative human cervical cancer cell line C33 A, HPV16-positive human cervical 
cancer cell line CaSki, HPV18-positive human cervical cancer cell line HeLa, breast cancer 
(adenocarcinoma MCF-7) and prostate cancer DU-145 cell lines, in comparison with the 
activity of the known anticancer reference drug doxorubicin (DOX). Normal epithelial 
VERO cells were used as a nоn-cancer control. Cell viability was assessed by the 
3-[4,5-dimethyl-thiazol-2-yl]- 2,5-diphenyltetrazolium bromide (MTT) assay. The cyto-
toxic activities of the tested compounds were expressed as the GI50 µM value (the dose 
that reduces growth inhibition to 50%) (Table 1). All tested triazole–coumarin derivatives 
2a–i and 3 were nontoxic for VERO cells (GI50 >100 µM) relative to doxorubicin (GI50 = 
8±1.8 µM) (Table 1). The substituent at position N1 in the triazole ring can enhance bio-
activity, and differential bioactivity exhibited by coumarin might be associated with its 
substitution position. Compounds with the N1 aryl-substituted triazolyl–coumarin esters 
2d–h exhibited selective cytotoxicity towards cervical cancer cell lines C33 A. 

Table 1. Concentrations of half-maximal inhibition (GI50 ± SEM, µM) on five cancer cell lines and 
VERO cells for compounds 2a–i and 3. 

Compound Growth Inhibition of Cells (GI50 ± SEM, μM) [a, b] 

 

C33 A 
(HPV- 

Negative) 

CaSki 
(HPV-16) 

HeLa 
(HPV-18) 

 
MCF-7 DU-145 VERO 

2a 
 

>100 56 ± 3.6 29 ± 2.0 51 ± 2.9 >100 >100 

2b  81 ± 0.2 38 ± 3.2 35 ± 4.0 41 ± 2.1 >100 >100 

2c 
 

76 ± 4.1 33 ± 1.5 29 ± 1.8 62 ± 1.5 >100 >100 

2d 
 

21 ± 1.7 19 ± 0.9 27 ± 1.7 40 ± 2.7 34 ± 2.0 >100 

2e 
 

31 ± 3.1 25 ± 1.4 32 ± 2.5 36 ± 1.1 41 ± 2.9 >100 

2f  25 ± 1.1 22 ± 1.8 23 ± 0.9 30 ± 1.7 48 ± 1.6 >100 

2g  4.4 ± 0.5  18 ± 2.5 22 ± 1.4 24 ± 1.6 19 ± 1.0 >100 

2h  17 ± 1.1 20 ± 0.2 18 ± 1.3 31 ± 0.9 35 ± 1.1 >100 

2i R = C4H9 36 ± 2.5 31 ± 1.6 29 ± 1.1 34 ± 1.5 56 ± 3.6 >100 

21 ± 1.7 19 ± 0.9 27 ± 1.7 40 ± 2.7 34 ± 2.0 >100

2e
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1,4-disubstituted 1,2,3-triazoles 2a–i or (pentane-1,5-diyl-bis (1H-1,2,3-triazole-1,4-diyl))- 
bis(methylene) bis(2-oxo-2H-chromene-3-carboxylate) 3 [41]. 

3.2. Biological Study 

3.2.1. Cytotoxicity Assay 

All new compounds 2a–i and 3 were screened for their in vitro cytotoxicity and 
growth inhibitory activities against three different tumor types, namely, the 
HPV-negative human cervical cancer cell line C33 A, HPV16-positive human cervical 
cancer cell line CaSki, HPV18-positive human cervical cancer cell line HeLa, breast cancer 
(adenocarcinoma MCF-7) and prostate cancer DU-145 cell lines, in comparison with the 
activity of the known anticancer reference drug doxorubicin (DOX). Normal epithelial 
VERO cells were used as a nоn-cancer control. Cell viability was assessed by the 
3-[4,5-dimethyl-thiazol-2-yl]- 2,5-diphenyltetrazolium bromide (MTT) assay. The cyto-
toxic activities of the tested compounds were expressed as the GI50 µM value (the dose 
that reduces growth inhibition to 50%) (Table 1). All tested triazole–coumarin derivatives 
2a–i and 3 were nontoxic for VERO cells (GI50 >100 µM) relative to doxorubicin (GI50 = 
8±1.8 µM) (Table 1). The substituent at position N1 in the triazole ring can enhance bio-
activity, and differential bioactivity exhibited by coumarin might be associated with its 
substitution position. Compounds with the N1 aryl-substituted triazolyl–coumarin esters 
2d–h exhibited selective cytotoxicity towards cervical cancer cell lines C33 A. 

Table 1. Concentrations of half-maximal inhibition (GI50 ± SEM, µM) on five cancer cell lines and 
VERO cells for compounds 2a–i and 3. 

Compound Growth Inhibition of Cells (GI50 ± SEM, μM) [a, b] 

 

C33 A 
(HPV- 

Negative) 

CaSki 
(HPV-16) 

HeLa 
(HPV-18) 

 
MCF-7 DU-145 VERO 

2a 
 

>100 56 ± 3.6 29 ± 2.0 51 ± 2.9 >100 >100 

2b  81 ± 0.2 38 ± 3.2 35 ± 4.0 41 ± 2.1 >100 >100 

2c 
 

76 ± 4.1 33 ± 1.5 29 ± 1.8 62 ± 1.5 >100 >100 

2d 
 

21 ± 1.7 19 ± 0.9 27 ± 1.7 40 ± 2.7 34 ± 2.0 >100 

2e 
 

31 ± 3.1 25 ± 1.4 32 ± 2.5 36 ± 1.1 41 ± 2.9 >100 

2f  25 ± 1.1 22 ± 1.8 23 ± 0.9 30 ± 1.7 48 ± 1.6 >100 

2g  4.4 ± 0.5  18 ± 2.5 22 ± 1.4 24 ± 1.6 19 ± 1.0 >100 

2h  17 ± 1.1 20 ± 0.2 18 ± 1.3 31 ± 0.9 35 ± 1.1 >100 

2i R = C4H9 36 ± 2.5 31 ± 1.6 29 ± 1.1 34 ± 1.5 56 ± 3.6 >100 

31 ± 3.1 25 ± 1.4 32 ± 2.5 36 ± 1.1 41 ± 2.9 >100

2f
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1,4-disubstituted 1,2,3-triazoles 2a–i or (pentane-1,5-diyl-bis (1H-1,2,3-triazole-1,4-diyl))- 
bis(methylene) bis(2-oxo-2H-chromene-3-carboxylate) 3 [41]. 

3.2. Biological Study 

3.2.1. Cytotoxicity Assay 

All new compounds 2a–i and 3 were screened for their in vitro cytotoxicity and 
growth inhibitory activities against three different tumor types, namely, the 
HPV-negative human cervical cancer cell line C33 A, HPV16-positive human cervical 
cancer cell line CaSki, HPV18-positive human cervical cancer cell line HeLa, breast cancer 
(adenocarcinoma MCF-7) and prostate cancer DU-145 cell lines, in comparison with the 
activity of the known anticancer reference drug doxorubicin (DOX). Normal epithelial 
VERO cells were used as a nоn-cancer control. Cell viability was assessed by the 
3-[4,5-dimethyl-thiazol-2-yl]- 2,5-diphenyltetrazolium bromide (MTT) assay. The cyto-
toxic activities of the tested compounds were expressed as the GI50 µM value (the dose 
that reduces growth inhibition to 50%) (Table 1). All tested triazole–coumarin derivatives 
2a–i and 3 were nontoxic for VERO cells (GI50 >100 µM) relative to doxorubicin (GI50 = 
8±1.8 µM) (Table 1). The substituent at position N1 in the triazole ring can enhance bio-
activity, and differential bioactivity exhibited by coumarin might be associated with its 
substitution position. Compounds with the N1 aryl-substituted triazolyl–coumarin esters 
2d–h exhibited selective cytotoxicity towards cervical cancer cell lines C33 A. 

Table 1. Concentrations of half-maximal inhibition (GI50 ± SEM, µM) on five cancer cell lines and 
VERO cells for compounds 2a–i and 3. 

Compound Growth Inhibition of Cells (GI50 ± SEM, μM) [a, b] 

 

C33 A 
(HPV- 

Negative) 

CaSki 
(HPV-16) 

HeLa 
(HPV-18) 

 
MCF-7 DU-145 VERO 

2a 
 

>100 56 ± 3.6 29 ± 2.0 51 ± 2.9 >100 >100 

2b  81 ± 0.2 38 ± 3.2 35 ± 4.0 41 ± 2.1 >100 >100 

2c 
 

76 ± 4.1 33 ± 1.5 29 ± 1.8 62 ± 1.5 >100 >100 

2d 
 

21 ± 1.7 19 ± 0.9 27 ± 1.7 40 ± 2.7 34 ± 2.0 >100 

2e 
 

31 ± 3.1 25 ± 1.4 32 ± 2.5 36 ± 1.1 41 ± 2.9 >100 

2f  25 ± 1.1 22 ± 1.8 23 ± 0.9 30 ± 1.7 48 ± 1.6 >100 

2g  4.4 ± 0.5  18 ± 2.5 22 ± 1.4 24 ± 1.6 19 ± 1.0 >100 

2h  17 ± 1.1 20 ± 0.2 18 ± 1.3 31 ± 0.9 35 ± 1.1 >100 

2i R = C4H9 36 ± 2.5 31 ± 1.6 29 ± 1.1 34 ± 1.5 56 ± 3.6 >100 

25 ± 1.1 22 ± 1.8 23 ± 0.9 30 ± 1.7 48 ± 1.6 >100

2g
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1,4-disubstituted 1,2,3-triazoles 2a–i or (pentane-1,5-diyl-bis (1H-1,2,3-triazole-1,4-diyl))- 
bis(methylene) bis(2-oxo-2H-chromene-3-carboxylate) 3 [41]. 

3.2. Biological Study 

3.2.1. Cytotoxicity Assay 

All new compounds 2a–i and 3 were screened for their in vitro cytotoxicity and 
growth inhibitory activities against three different tumor types, namely, the 
HPV-negative human cervical cancer cell line C33 A, HPV16-positive human cervical 
cancer cell line CaSki, HPV18-positive human cervical cancer cell line HeLa, breast cancer 
(adenocarcinoma MCF-7) and prostate cancer DU-145 cell lines, in comparison with the 
activity of the known anticancer reference drug doxorubicin (DOX). Normal epithelial 
VERO cells were used as a nоn-cancer control. Cell viability was assessed by the 
3-[4,5-dimethyl-thiazol-2-yl]- 2,5-diphenyltetrazolium bromide (MTT) assay. The cyto-
toxic activities of the tested compounds were expressed as the GI50 µM value (the dose 
that reduces growth inhibition to 50%) (Table 1). All tested triazole–coumarin derivatives 
2a–i and 3 were nontoxic for VERO cells (GI50 >100 µM) relative to doxorubicin (GI50 = 
8±1.8 µM) (Table 1). The substituent at position N1 in the triazole ring can enhance bio-
activity, and differential bioactivity exhibited by coumarin might be associated with its 
substitution position. Compounds with the N1 aryl-substituted triazolyl–coumarin esters 
2d–h exhibited selective cytotoxicity towards cervical cancer cell lines C33 A. 

Table 1. Concentrations of half-maximal inhibition (GI50 ± SEM, µM) on five cancer cell lines and 
VERO cells for compounds 2a–i and 3. 

Compound Growth Inhibition of Cells (GI50 ± SEM, μM) [a, b] 

 

C33 A 
(HPV- 

Negative) 

CaSki 
(HPV-16) 

HeLa 
(HPV-18) 

 
MCF-7 DU-145 VERO 

2a 
 

>100 56 ± 3.6 29 ± 2.0 51 ± 2.9 >100 >100 

2b  81 ± 0.2 38 ± 3.2 35 ± 4.0 41 ± 2.1 >100 >100 

2c 
 

76 ± 4.1 33 ± 1.5 29 ± 1.8 62 ± 1.5 >100 >100 

2d 
 

21 ± 1.7 19 ± 0.9 27 ± 1.7 40 ± 2.7 34 ± 2.0 >100 

2e 
 

31 ± 3.1 25 ± 1.4 32 ± 2.5 36 ± 1.1 41 ± 2.9 >100 

2f  25 ± 1.1 22 ± 1.8 23 ± 0.9 30 ± 1.7 48 ± 1.6 >100 

2g  4.4 ± 0.5  18 ± 2.5 22 ± 1.4 24 ± 1.6 19 ± 1.0 >100 

2h  17 ± 1.1 20 ± 0.2 18 ± 1.3 31 ± 0.9 35 ± 1.1 >100 

2i R = C4H9 36 ± 2.5 31 ± 1.6 29 ± 1.1 34 ± 1.5 56 ± 3.6 >100 

4.4 ± 0.5 18 ± 2.5 22 ± 1.4 24 ± 1.6 19 ± 1.0 >100

2h
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1,4-disubstituted 1,2,3-triazoles 2a–i or (pentane-1,5-diyl-bis (1H-1,2,3-triazole-1,4-diyl))- 
bis(methylene) bis(2-oxo-2H-chromene-3-carboxylate) 3 [41]. 

3.2. Biological Study 

3.2.1. Cytotoxicity Assay 

All new compounds 2a–i and 3 were screened for their in vitro cytotoxicity and 
growth inhibitory activities against three different tumor types, namely, the 
HPV-negative human cervical cancer cell line C33 A, HPV16-positive human cervical 
cancer cell line CaSki, HPV18-positive human cervical cancer cell line HeLa, breast cancer 
(adenocarcinoma MCF-7) and prostate cancer DU-145 cell lines, in comparison with the 
activity of the known anticancer reference drug doxorubicin (DOX). Normal epithelial 
VERO cells were used as a nоn-cancer control. Cell viability was assessed by the 
3-[4,5-dimethyl-thiazol-2-yl]- 2,5-diphenyltetrazolium bromide (MTT) assay. The cyto-
toxic activities of the tested compounds were expressed as the GI50 µM value (the dose 
that reduces growth inhibition to 50%) (Table 1). All tested triazole–coumarin derivatives 
2a–i and 3 were nontoxic for VERO cells (GI50 >100 µM) relative to doxorubicin (GI50 = 
8±1.8 µM) (Table 1). The substituent at position N1 in the triazole ring can enhance bio-
activity, and differential bioactivity exhibited by coumarin might be associated with its 
substitution position. Compounds with the N1 aryl-substituted triazolyl–coumarin esters 
2d–h exhibited selective cytotoxicity towards cervical cancer cell lines C33 A. 

Table 1. Concentrations of half-maximal inhibition (GI50 ± SEM, µM) on five cancer cell lines and 
VERO cells for compounds 2a–i and 3. 

Compound Growth Inhibition of Cells (GI50 ± SEM, μM) [a, b] 

 

C33 A 
(HPV- 

Negative) 

CaSki 
(HPV-16) 

HeLa 
(HPV-18) 

 
MCF-7 DU-145 VERO 

2a 
 

>100 56 ± 3.6 29 ± 2.0 51 ± 2.9 >100 >100 

2b  81 ± 0.2 38 ± 3.2 35 ± 4.0 41 ± 2.1 >100 >100 

2c 
 

76 ± 4.1 33 ± 1.5 29 ± 1.8 62 ± 1.5 >100 >100 

2d 
 

21 ± 1.7 19 ± 0.9 27 ± 1.7 40 ± 2.7 34 ± 2.0 >100 

2e 
 

31 ± 3.1 25 ± 1.4 32 ± 2.5 36 ± 1.1 41 ± 2.9 >100 

2f  25 ± 1.1 22 ± 1.8 23 ± 0.9 30 ± 1.7 48 ± 1.6 >100 

2g  4.4 ± 0.5  18 ± 2.5 22 ± 1.4 24 ± 1.6 19 ± 1.0 >100 

2h  17 ± 1.1 20 ± 0.2 18 ± 1.3 31 ± 0.9 35 ± 1.1 >100 

2i R = C4H9 36 ± 2.5 31 ± 1.6 29 ± 1.1 34 ± 1.5 56 ± 3.6 >100 

17 ± 1.1 20 ± 0.2 18 ± 1.3 31 ± 0.9 35 ± 1.1 >100

2i R = C4H9 36 ± 2.5 31 ± 1.6 29 ± 1.1 34 ± 1.5 56 ± 3.6 >100
3 7.0 ± 2.6 15 ± 1.6 20 ± 1.2 25 ± 2.0 22 ± 1.2 >100

Doxorubicin 2.5 ± 0.8 10.1 ± 0.7 6.1 ± 0.7 5.2 ± 0.8 15 ± 0.3 8 ± 1.8
[a] GI50: concentration at which 50% growth inhibition of tumor cells is observed after 48 h incubation. [b] The exper-
imental results are given as the data average values obtained from three independently conducted experiments.

3.2.2. Cell Cycle Analysis

At the next stage, we performed the cell cycle analysis in cervical cancer cell lines C33
A (Table 2 and Figure 2) and CaSki (Table 3 and Figure 3). For the analysis, only intact cells
were selected. At least 3 × 105 cells were acquired per each sample. Non-treated cells in
DMSO were taken as a control place.

Compound 3 suppressed cell proliferation in C33 A cells at a relatively low concentra-
tion (7.0 µM). Examining the data for compound 2g showed that a good number of cells
were distributed in the G1 phase, i.e., in the growth phase on the cell cycle. In contrast,
compound 3 induced a significant block of cells in the G2 phase after 24 h, while the
proportion of cells in the growth phases was reduced after 48 h of incubation (Table 2
and Figure 2). Compound 3 initiated the subG1 phase: 80.9% apoptotic and necrosis cells
were formed after 48 h of incubation. In contrast, cell cycle analysis in cervical cancer cell



Sci. Pharm. 2025, 93, 16 10 of 16

line C33 A for doxorubicin (DOX) (GI50 concentration) showed 20.5% cell death after 48 h
of incubation.

Table 2. Cell cycle analysis in cervical cancer cell line C33 A.

Compound Concentration, µM

Population (% Cell Distribution) [b]

24 h 48 h

G1 S G2 SubG1 G1 S G2 SubG1

2g 4.4 (GI50) 55.9 16.7 24.1 3.3 50.5 16.5 27.2 5.8
3 7.0 (GI50) 21.8 15.9 49.9 12.3 4.2 5.5 9.4 80.9

DOX 2.5 (GI50) 8.3 21.5 67.7 2.5 9.4 24.3 45.8 20.5
Control + DMSO [a] 57.6 19.3 20.7 2.4 61.4 18.8 17.7 2.1

Control [a] 59.3 14.7 24.2 1.8 61.7 17.5 18.4 2.4
[a] Non-treated cells. [b] The results are presented as a percentage of the cell population standing in different stages
of the cell cycle. All results obtained for the tested compounds are significantly different from the control (the
comparison was made with untreated cells).
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Figure 2. Effects of compounds 2g and 3 on the cell cycle phase distribution in C33 A cells after
treatment with the GI50 concentration during 24 and 48 h by using propidium iodide to determine
the DNA fluorescence.

Since compounds 2g and 3 showed their potential to reduce the cell viability of cervical
cancer cells, we further investigated whether this effect is due to programmed cell death
or necrosis. C33 A cells were treated with a 4.4 µM concentration of 2g or 7.0 µM of 3 for
12 and 24 h (Figure 4). The induction of apoptosis was measured by Annexin V-FITC/PI
staining. The flow cytometry data, as shown in Figure 4, depicted the increase in the
event of apoptosis of the treated cells, especially for compound 3 compared to the control
(DMSO-treated). The early apoptotic cell population increased to ~23% (early apoptosis)
and ~6% (late apoptosis), respectively.
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Table 3. Cell cycle analysis in cervical cancer cell line CaSki.

Compound Concentration, µM

Population (% Cell Distribution) [b]

24 h 48 h

G1 S G2 SubG1 G1 S G2 SubG1

2g 18.0 (GI50) 46.7 19.4 29.8 4.1 43.7 16.7 28.3 11.3
3 15.0 (GI50) 42.5 19.9 28.5 9.1 42.4 17.9 29.7 10.0

DOX 10.1 (GI50) 24.8 5.6 5.8 63.8 24.6 8.0 4.7 62.7
Control + DMSO [a] 60.3 17.7 19.6 1.4 59.7 15.7 19.1 2.2

Control [a] 61.8 16.0 21.0 1.2 61.1 17.6 19.5 1.8
[a] Non-treated cells. [b] The results are presented as a percentage of the cell population standing in different stages
of the cell cycle. All results obtained for the tested compounds are significantly different from the control (the
comparison was made with untreated cells).
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Figure 5. Flow cytometry histograms of the CaSki cells after being treated with compounds 2g and 3
and the untreated CaSki cells (C+DMSO). Cells were treated at the GI50 concentrations for 12 and
24 h.

4. Discussion
Currently, we are studying the synthesis and cytotoxicity of compounds with

coumarin-3-carboxylate and triazole pharmacophores. The SAR revealed that the sub-
stituent at the N1 position of the triazole ring has a great influence on the cytotoxicity.
Compounds 2a–c with benzyl, phenyl and 3,4-dimethylphenyl substituents exhibited low
or insignificant cytotoxicity with high GI50 values on the MCF-7 and DU-145 cancer cell
lines and showed much more potent cytotoxicity with significantly lower GI50 values on
the HeLa tumor cells. Spacing the aromatic ring with a methoxycarbonyl substituent (com-
pounds 2d,e,f) greatly increased the cytotoxicity, especially in relation to cervical cancer
cells C33 A and CaSki. The cytotoxicity was greatly dependent on the C-2, C-3 and C-4
substitution positions in the phenyl ring attached to the N1 position of the 1,2,3-triazole
moiety in the coumarin–triazolyl ester conjugates. Modification of the N1 position of
the triazole ring with a 4-carboxyphenyl or 4-iodophenyl substituent (compounds 2g,h)
can significantly potentiate the anticancer activity on the cervical cancer cell lines. The
great dependence of cytotoxicity on the substituents that are present at the C-2, C-3 and
C-4 positions of the phenyl ring that are directly attached to the 1,2,3-triazole moiety in
coumarin-tethered bis-triazoles was shown previously [42].

Comparatively reduced cytotoxicity was found for the linear 1-n-butyl-substituted
(monomeric) coumarin–triazolyl ester conjugate 2i. Overall, compounds 2g and 3 exhibited
general cytotoxicity on various forms of cervical cancer cells and possessed the highest
degree of cytotoxicity towards the HPV-negative human cervical cancer cells C33 A (GI50

4.4 ± 1.3 and 7.0 ± 2.6 µM, respectively) (Table 1).
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Substituted coumarins can show anticancer activity through diverse mechanisms.
These include inhibiting the expression or action of enzymes such as topoisomerase, human
carbonic anhydrase and telomerase, causing cell apoptosis, estrogen receptor modifica-
tion or cell cycle arrest at different phases [43,44]. The cell cycle analysis in cervical
cancer cell lines C33 A (Table 2 and Figure 2) and CaSki (Table 3 and Figure 3) produced
interesting results.

Compounds 2g and 3 suppress cell proliferation in C33 A cells at a relatively low
concentration (4.4 and 7.0 µM). Examining the data for compound 2g, showed that a good
number of cells was distributed in the G1 phase, i.e., in the growth phases of the cell cycle.
In contrast, compound 3 induced a significant block of cells in the G2 phase after 24 h,
while the proportion of cells in the growth phases was reduced after 48 h of incubation
(Table 2 and Figure 2). Compound 3 at a 1 × GI50 concentration initiated the subG1 phase:
80.9% apoptotic and necrosis cells were formed after 48 h of incubation. In contrast, cell
cycle analysis in cervical cancer cell line C33 A for doxorubicin (GI50 concentration, 7.0 µM)
showed 20.5% cell death after 48 h of incubation.

No significant difference in the actions of compound 2g and 3 on the cell cycle was
observed during the progression of the cell cycle in CaSki cells. All the treated tumor
cells showed significant morphological changes such as cell shrinkage, detachment and
membrane blebbing. The most pronounced effect was found for compound 2g: an increase
in the population of CaSki cells in the SubG1 phase to 11.3% was observed after 48 h of
treatment by decreasing the number of cells in the G1 phases. Compound 3 increased the
number of cells in the S/G2 phase compared to normal cancer cells and induced cell cycle
arrest in the S/G2 phase. In contrast, doxorubicin initiated the subG1 phase after 24 and
also 48 h to almost 63% (Table 3 and Figure 3). Our result suggests that compounds 2g and
3 in the GI50 concentration in CaSki cells induced cell cycle arrest in the S/G2 phase, which
seems to be partly responsible for the inhibition of cell proliferation.

Apoptosis and necrosis are among several forms of cell death mechanisms that are
involved in the elimination of cancer cells, leading to successful therapy [45,46]. Loss of
apoptosis is commonly found in most of the drug-resistant cancers [47]. Therefore, the
induction of apoptosis in the target cancer cells is the therapeutic goal for any cancer
therapy. In contrast, necrosis can trigger an inflammatory response that is not efficiently
cleared by macrophages [48].

Tumor cell death, triggered by the most active bis-coumarin 3 on the HPV-negative
human cervical cancer cells C33 A, resulted from apoptotic processes (Figure 4). At 24 h and
the GI50 concentration (7.0 µM), compound 3 induced C33 A apoptotic cell death (22.9%
early stage of apoptosis and 5.9% late stage of apoptosis). Interestingly, bis-coumarin 3 at
the GI50 concentration caused a low necrosis percentage (0.9%)

The data in Figure 5 indicated that both compounds 2g and 3 induced early apoptosis
in the CaSki cell line. At 24 h, compound 2 induced the greatest apoptosis percentage at
the GI50 concentration (51.4% of early stage and 9.1% of late stage apoptosis, respectively)
with low necrotic cell death (0.3%). The apoptosis induced by compound 2 at the GI50

concentration was higher when compared to bis-coumarin 3 (23.8% of the early stage and
4.9% of late stage apoptosis, respectively).

Overall, in the present study, we first observed that N1-substituted 3-(1,2,3-triazolyl-
methoxycarbonyl)coumarins 2d-h and, especially, bis(coumarine-3-carboxylate)bis(1,2,3-
triazole)pentan-1,5-diyl 3 possessed cell growth inhibition activity on cervical cancer cell
lines, especially on the HPV-negative human cancer cells C33 A, exhibited bioactivity to
induce apoptosis in cervical cancer cells C33 A and CaSki and were nontoxic to normal
epithelial cells VERO. Notably, C33 A cells are negative for both DNA and RNA of human
papillomavirus (HPV), distinguishing them from many other cervical cancer cell lines that
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often carry HPV integrations—in particular, CaSki and HeLa. This aspect makes the new
compounds particularly valuable for studying cervical cancer that develops independently
of HPV infection, including insights into alternative pathways of carcinogenesis.

5. Conclusions
Here, we describe a mild and convenient method for the preparation of 3-(triazolylmeth

oxycarbonyl)-substituted coumarins and (pentane-1,5-diyl-bis(1H-1,2,3-triazole-1,4-diyl))bis
(methylene) bis(2-oxo-2H-chromene-3- carboxylate). The copper catalyzed cycloaddition of
3-propynyl substituted 2-oxo-2H-chromene-3-carboxylate with several azides, and diazide
was the main synthetic method. The new series of 1,2,3-triazolyl-modified coumarins was
evaluated for their in vitro anticancer activity against human cancer cell lines using the con-
ventional MTT assay. All compounds were nontoxic towards normal epithelial VERO cells.
Among all 3-(1,2,3-triazolylmethoxycarbonyl)coumarins synthesized, coumarin derivatives
with a 4-carboxyphenyl substituent at the N1-position of the triazole ring 2g exhibited
better activity in the series on cervical cancer cells (C33 A, CaSki and HeLa); breast car-
cinoma cells MCF-7 and prostate cancer cells DU-145. The bis(coumarino-1,2,3-triazol)
with pentamethylene linker 3 possessed the most promising cytotoxic potential towards
cervical cancer cells (C33 A and CaSki). These results validate the potential of 3-(1,2,3-
triazolylmethoxycarbonyl)-substituted coumarins used as anticancer agents, particularly
against cervical cancer, and provide important, potentially helpful steps in drug designing
and discovery.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/scipharm93020016/s1: Copies of 1H and 13C NMR spectra for all
new compounds.
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