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Abstract: (1) Background: Peach cv. GF305 is commonly used in breeding programs due to its
susceptibility to numerous viruses. In this study, we aimed to achieve a methodology for rapid and
uniform seed germination of peach cv. GF305 in order to obtain vigorous seedlings; (2) Methods: A
combination of cold stratification and H2O2 imbibition was tested on peach seeds with or without
endocarp. In addition, the levels of non-enzymatic antioxidants ascorbate and glutathione as well as
the hormone profile in seedling roots and shoots were determined; (3) Results: We found that H2O2

imbibition of peach seeds without endocarp after 8 weeks of stratification increased germination
rate and resulted in seedlings displaying good vegetative growth. The H2O2 imbibition also affected
the levels of ascorbate, glutathione, and the phytohormones abscisic acid and jasmonic acid in
peach seedlings; (4) Conclusions: Although stratification periods of 12 weeks have been previously
established as being appropriate for this cultivar, we have been able to reduce this stratification time
by up to 4 weeks, which may have practical implication in peach nurseries.

Keywords: ascorbate; endocarp removal; hydrogen peroxide; glutathione; peach; phytohormones;
seed germination; stratification

1. Introduction

In stone fruit species, stratification (moist chilling of seeds) has been described as the
most widely method to break seed dormancy and promote germination. Stratification
simulates winter conditions keeping seeds chilled for 3 to 4 months [1]. In order to reduce
this waiting period, the application of chemicals and the mechanical removal of the seed
coat have been widely used in breeding programs [2]. The germination process is associated
with many molecular, metabolic, and cellular events enabling radicle emergence and
seedling establishment [3,4]. In both dormant and non-dormant seeds, the crucial role
of phytohormones regulating seed dormancy breaking and germination has been long
established, with reactive oxygen species (ROS) and hence the antioxidative metabolism
closely linked [4]. ROS control many different processes in plants via redox-sensitive
proteins that act as sensors and messengers of different regulatory pathways [5]. Seed
germination must be included among these processes, with the antioxidative metabolism
playing a key role [4,6]. However, the biochemical basis of seed dormancy regulation is
still poorly understood [7].

Hydrogen peroxide (H2O2) has been described as an enhancer of seed germination
in many species [3,4]. Different mechanisms have been suggested to explain the H2O2
stimulation of seed germination, with the following being the most common: the pro-
duction of O2 for mitochondrial metabolism and respiration as a consequence of H2O2
scavenging [8], the facilitation of seed cracking, the oxidation of germination inhibitors [9],
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and the activation of redox-sensitive proteins, inducing changes at proteome, transcriptome,
and hormonal levels [4,10]. In this sense, the decrease of abscisic acid (ABA) levels or its
transport impairment from cotyledons to the embryo, as well as the mobilization of seed
storage proteins, have been suggested as possible mechanisms underlying seed germina-
tion promotion through H2O2 [10]. In stone fruit seeds, ABA is the main hormone involved
in seed dormancy, and a significant decrease in ABA has been recorded as the stratification
time increases [1,11]. Moreover, in pea seeds, a role of H2O2 in orchestrating the inter-
play among phytohormones and the cellular redox state leading to seed germination and
seedling establishment has been reported [3,10].

Stimulated germination by exogenous H2O2 has been reported on endocarp-less seeds
of several Prunus species when applied before stratification. In this sense, a significant
increase in the percentage and speed of seed germination by H2O2 was described in the
wild almond species P. scoparia and P. communis [12] as well as in sweet cherry (P. avium) [1].
However, the effect of H2O2 on the main non-enzymatic antioxidants glutathione and
ascorbate and on the hormone profile in peach (P. persica) seedlings has not been previously
explored. Achieving a rapid and uniform seed germination and also obtaining vigorous
seedlings are key goals for peach breeding programs [2]. In this work, we used the peach cv.
GF305, which is commonly used in breeding programs due to its susceptibility to numerous
viruses [2]. H2O2 imbibition following cold stratification of GF305 was applied in order to
increase the germination rate and reduce the stratification time. The levels of ascorbate,
glutathione, ABA, 1-aminocyclopropane carboxylic acid (ACC), indol acetic acid (IAA),
jasmonic acid (JA), salicylic acid (SA), zeatin-riboside (ZR), and zeatin (Z) were analyzed in
the seedlings in order to associate changes in these variables with enhanced germination
and seedling growth.

2. Materials and Methods

GF305 seeds were obtained from Pépinières Lafond (Valréas Cedex, France). Seeds
(approximately 500) were treated with a 2% tetramethylthiuram disulfide (TMTD) fungicide
solution for 30 min and then incubated for 3 days in distilled water at 25 ◦C in the dark,
with the water renewed daily. Then, the seeds were introduced in mesh bags and placed in
plastic trays with vermiculite previously moistened in a cold chamber at 5 ◦C in order to
fulfill vernalization requirements. After 4, 6, and 8 weeks of stratification, the endocarp
of 50% of the peach seeds was manually removed. Three batches of seeds with endocarp
(+ endo) and three without endocarp (− endo) were treated as follows: seeds without
imbibition (C); seeds imbibed in distilled water (Im); and seeds imbibed in 10 mM H2O2
(ImH2O2). For seeds without endocarp, the imbibition lasted for 24 h, whereas for seeds
with endocarp, the imbibition lasted for 48 h. Afterwards, the seeds were sowed in 48-cell
trays containing peat substrate and incubated in a growth chamber at 25 ◦C, 70% relative
humidity, and 500 µmol m−2 s−1 white light with a 16/8 h photoperiod (light/dark) for
14 days. Finally, seedlings were divided into shoots and roots and weighed to register the
fresh weight (FW). The samples were then snap-frozen in liquid nitrogen and stored at
−80 ◦C for further analyses.

The non-enzymatic antioxidants ascorbate and glutathione were determined as pre-
viously described [13–15]. Briefly, samples were homogenized in 1 M HClO4, then cen-
trifuged at 12,000× g for 10 min and the pH supernatant was adjusted to 5.5–6 with 5 M
K2CO3. Then, reduced (GSH) and oxidized (GSSG) glutathione were analyzed using
dithio-bis-2-nitrobenzoic acid and glutathione reductase in the presence of NADPH at
412 nm [13–15], whereas reduced ascorbate (ASC) was measured by recording the absorp-
tion at 265 nm, and the total ascorbate was determined via oxidation to non-absorbing
oxidized ascorbate (DHA) in the presence of ascorbate oxidase [13–15]. Hormones (abscisic
acid (ABA), 1-aminocyclopropane carboxylic acid (ACC), indol acetic acid (IAA), zeatin (Z),
zeatin-riboside (ZR), salicylic acid (SA), and jasmonic acid (JA)) were extracted from plant
tissues and analyzed using a high-performance liquid chromatography/mass spectrometry
(HPLC/MS) system consisting of an Agilent 1100 Series HPLC (Agilent Technologies,
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Santa Clara, CA, USA) connected to an Agilent Ion Trap XCT Plus mass spectrometer
(Agilent Technologies, Santa Clara, CA, USA) following previously published methodol-
ogy [3]. In order to reduce analysis costs and taking into account that no differences were
observed between C and Im seeds in terms of germination rate and seedling development,
the determination of non-enzymatic antioxidants and hormones levels were carried out by
comparing the seeds submitted to imbibition (Im vs. ImH2O2).

The experiments were repeated twice with similar results. Analyses for germination
and FW measurements were done on the data of 20–40 specimens, whereas analyses for
antioxidants and hormones contents were done on at least three biological replicates, each
one based on the pull of shoots or roots of 10 specimens. The data were analyzed by one-
or two-way ANOVA using SPSS 22 (IBM Corp., Armonk, NY, USA) software, followed by
Duncan’s multiple range test (p ≤ 0.05) in the case of data of germination percentage and
seedling FW.

3. Results and Discussion

Cold wet stratification has been widely used for the germination of seeds from Prunus
species. In this sense, 12 weeks of stratification has been proven to fulfill vernalization
requirements in Prunus, leading to dormancy breaking and germination percentages near
95% [1,2], whereas decreasing stratification time to 8 weeks reduced germination percentage
up to 40% [1]. In this work, we attempted to reduce the stratification time by using
H2O2 imbibition after stratification. Four weeks of stratification resulted in a very low
germination rate (below 10%) with no significant differences among treatments (data not
shown). Six weeks of stratification led to germination percentages below 50% in all cases
(Figure 1). In this sense, although seeds without endocarp showed significantly higher
germination rates than seeds with endocarp, no significant differences among imbibition
treatments were found (Figure 1). On the other hand, in 8 weeks-stratified seeds, the
imbibition in H2O2 remarkably increased the percentage of seeds germination without
endocarp up to 86%, compared to non-imbibed seeds (53% germination) and water-imbibed
seeds (55% germination; Figure 1). However, the seeds with endocarp showed a lower
germination rate (both imbibed and non-imbibed seeds), with the values being statistically
comparable to those of 6 weeks-stratified seeds without endocarp (Figure 1). This inhibitory
effect of the endocarp on peach seed germination was previously described in peach and
could be due to a water uptake delay and the presence of germination inhibitors, such as
ABA [2]. According to these results, the subsequent analyses were carried out on seedlings
obtained from seeds subjected to 8 weeks of stratification followed by removal of endocarp.

Regarding the seedling growth, in 8 weeks-stratified seeds, the imbibition with H2O2
had no effect on it, whereas the imbibition with water after stratification slightly decrease
the FW of seedling roots (Figure 2). Thus, after 8 weeks of stratification, H2O2-imbibided
seeds showed good development and vigor. In comparison to our results, it was previously
described that after 12 and 13 weeks of stratification, the resulting plants displayed good
development, with no differences between seeds with or without endocarp, whereas a
negative effect on seedling growth was observed when a longer period of stratification
was applied [2]. Moreover, different authors have pointed out that stratification periods
between 10 and 13 weeks were appropriate for peach cultivars [2]. In seeds from wild
almond species, the combined treatment of cold stratification with H2O2 and GA3 reduced
the time for germination and increased the germination rate, although a synergistic effect
was not found [16]. According to these results and our own results, H2O2 appears to be an
economic and effective agent for large-scale application in seed germination in Prunus.
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Figure 1. Effect of H2O2 imbibition on the germination percentage (%) of peach seeds after 6 (6w)
and 8 weeks (8w) of stratification at 5 ◦C. After stratification, the endocarp of 50% of the peach
seeds were manually removed. Three batches of seeds with endocarp (+ endo) or without endocarp
(− endo) were treated as follows: seeds without imbibition (C), placed directly from the stratification
to the growing trays; seeds imbibed in water (Im); and seeds imbibed in 10 mM H2O2 (ImH2O2).
Seeds were then sowed in trays and incubated at 25 ◦C with a 16/8-h photoperiod (light/dark) for
14 days. Different letters indicate statistical significance among treatments according to Duncan’s test
(p ≤ 0.05).
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Figure 2. Effect of H2O2 treatment on the growth (measured as fresh weight, FW) of peach seedlings
resulting from seeds subjected to 8 weeks of stratification followed by endocarp removal. Data
represent the mean ± SE of at least 20 repetitions. Different letters indicate statistical significance
among treatments according to Duncan’s test (p ≤ 0.05).

Seed dormancy is an evolutionary adaptation present in seeds of all temperate fruit
species, including peach, that allows seed germination in a favorable season adequate for
seedling growth [2]. The presence of a seed coat in stone fruits seeds negatively affects
germination, as it constitutes a physical barrier and also contains high levels of ABA [1,2,17].
On the other hand, it has been previously described that H2O2 imbibition stimulates seed
germination in both dormant and non-dormant seeds, in a manner dependent on the
species, as well as the concentration and the timing of application [1–4,6,10,18]. In P. scoparia,
the combination of cold stratification and 0.5% H2O2 was more effective at breaking
dormancy than the widely used phytohormone gibberellic acid [12]. This stimulation
has been often associated with changes in antioxidative metabolism. In this sense, we
observed that in shoots of peach seedlings, H2O2 imbibition resulted in a decrease in
reduced glutathione (GSH) content, although the glutathione redox state was not affected
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because the oxidized form (GSSG) also showed a slight decrease (Table 1). In pea seeds,
enhanced seedling growth by 20 mM H2O2 and 0.25 mM KNO3 treatments was also
correlated with decreased GSH and GSSG levels [3,19]. However, in seedlings roots, an
increase in GSH leading to a higher glutathione redox state was recorded following H2O2
imbibition (Table 1). Regarding ascorbate levels, H2O2 imbibition produced an increase in
both reduced ascorbate (ASC) and oxidized ascorbate (DHA) in seedlings shoots, although
the differences were not statistically significant (Table 1). In pea seeds treated with different
H2O2 concentrations, enhanced seedling vigor was correlated with changes in the levels of
enzymatic and non-enzymatic antioxidants [3]. The authors observed that H2O2 imbibition
led to a slight decline in the glutathione and ascorbate redox state due to a GSH decrease
and a DHA increase, respectively. Moreover, a rise in ascorbate peroxidase (APX) activity
was also recorded in pea seedlings [3]. Similarly, in peach seedling shoots, we observed a
decrease in GSH as well as an increase in DHA (Table 1). In this sense, it has been suggested
that ascorbate plays a crucial role during seed germination via stimulation of ascorbate
biosynthesis and APX activity, although the possibility that they are the consequence rather
than the cause of seed vigor cannot be ruled out [20].

Table 1. Effect of water and H2O2 imbibition on the ascorbate and glutathione concentrations in
the shoots and roots of peach seedlings resulting from seeds submitted to 8 weeks of stratification
followed by endocarp removal. The table displays data for reduced and oxidized glutathione (GSH
and GSSG, respectively), glutathione redox state (GSH/(GSH+GSSG)), and reduced and oxidized
ascorbate (ASC and DHA, respectively).

GSH
nmol−1 FW

GSS
Gnmol−1 FW

GSH/
(GSH+GSSG)

ASC
nmol−1 FW

DHA
nmol−1 FW

IM_SHOOT 274.2 ± 13.7 13.1 ± 0.9 0.95 ± 0.01 884.4 ± 62.1 116.6 ± 26.1
IMH2O2_SHOOT 211.5 ± 6.9 * 12.2 ± 0.4 0.94 ± 0.00 1184.6 ± 67.0 162.8 ± 39.0

IM_ROOT 105.7 ± 7.4 12.1 ± 0.5 0.89 ± 0.01 nd nd
IMH2O2_ROOT 148.6 ± 4.9 * 12.2 ± 0.4 0.92 ± 0.00 * nd nd

Data represent the mean ± SE of at least three repetitions. The “*” symbol indicates statistical significance between
treatments for either shoots or roots (p ≤ 0.05). nd: non-detected.

The germination process is linked to important changes in the redox state of the seeds,
and a relationship between ROS and plant hormones in this process is well known [21].
It has been widely described that ROS interact in a complex manner with phytohormone
networks, triggering signaling pathways that regulate many physiological processes in
plants, including seed germination and seedling establishment [4]. In this work, we
analyzed the ABA, ACC, IAA, SA, and JA levels and the ratio Z/ZR in shoots and roots
of peach seedlings resulting from seeds submitted to 8 weeks of stratification and manual
endocarp removal. Seed imbibition with H2O2 produced a decrease in ABA and JA in
seedling roots. Regarding the rest of the phytohormones, no significant differences were
recorded following the H2O2 imbibition (Figure 3).

In pea seedlings, H2O2 treatment decreased the ABA, IAA, ZR, SA, and JA levels [3].
A decrease in ABA has been traditionally associated with successful seed germination [4,7],
with H2O2 treatments resulting in a drop in ABA levels [4,10,22], similarly to the one
observed in the peach seedling roots (Figure 3). Regarding JA, opposite results have been
reported, with either JA inhibiting or promoting the germination process; therefore, the role
of JA acid in seed germination is far from being totally understood [4]. Recently, it has been
suggested that JA and ABA act synergistically in most of the biological processes, including
seed germination [23,24]. A H2O2-mediated decrease in ABA and JA levels, such as the one
described in pea seeds and seedlings [3,10] as well as peach seedlings (Figure 3), seems to
be necessary for seedling growth. In fact, the inhibitory effect of ABA on seed germination
in rice was alleviated by impairing JA biosynthesis, suggesting that ABA stimulates JA
biosynthesis to then synergistically inhibit seed germination [25]. In this sense, in pea seeds,
imbibition with H2O2 and ABA overcame the positive effect on seedling growth achieved
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by H2O2 alone in terms of seedling development, which correlated with a decline in the
endogenous H2O2 level [26].
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Figure 3. Effect of water and H2O2 imbibition on the hormone profile in the shoots and roots of peach
seedlings resulting from seeds subjected to 8 weeks of stratification followed by endocarp removal.
Data are expressed as nmol g−1 FW. Data represent the mean ± SE of at least three repetitions. The
symbol “*” indicates statistical significance between treatments for either shoots or roots (p ≤ 0.05).

It has been suggested that keeping the Z/ZR ratio towards the active form (Z) could
be important for seedling establishment [3], in a process in which ROS are likely involved
in the homeostatic regulation of Z and ZR levels [27]. In this study, the Z/ZR ratio
increased in root samples and decreased in shoot samples upon H2O2 treatment, although
significant differences were not found (Figure 3). In addition to its role in the induction
of pathogenesis-related proteins and systemic acquired resistance, the role of SA as a
developmental regulator is well reported [28]; however, no significant differences among
treatments were found under our experimental conditions. In spite of the well-reported role
of ethylene in seed germination and seedling development [4,29], no significant differences
were observed in the ethylene precursor ACC (Figure 3), as has also been observed in
pea seedlings [3]. However, in soybean, it has been suggested that ROS-induced ethylene
production during germination stimulates cell elongation in the root tip [29].
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4. Conclusions

In this paper, we have described a method for an efficient and unexpensive reduction
of the stratification time required for the germination of peach cv. GF305. After a cold
stratification period of 8 weeks, endocarp was removed and seeds were imbibed in 10 mM
H2O2, resulting in seedlings that displayed good development. Compared to non-treated
seeds, for which a stratification period of 12 weeks has been established, we reduced the
stratification time by 4 weeks. Moreover, stimulation of seedling growth was also achieved,
which correlated with changes in non-enzymatic antioxidants and ABA and JA contents.
In general, our findings may have practical application on peach breeding programs and
nurseries, as well as on other Prunus species.
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