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Abstract: This paper presents the design concept of a bio-botanic robot which 

demonstrates its behavior based on plant growth. Besides, it can reflect the different phases 

of plant growth depending on the proportional amounts of light, temperature and water. 

The mechanism design is made up of a processed aluminum base, spring, 

polydimethylsiloxane (PDMS) and actuator to constitute the plant base and plant body. The 

control system consists of two micro-controllers and a self-designed embedded 

development board where the main controller transmits the values of the environmental 

sensing module within the embedded board to a sub-controller. The sub-controller 

determines the growth stage, growth height, and time and transmits its decision value to the 

main controller. Finally, based on the data transmitted by the sub-controller, the main 

controller controls the growth phase of the bio-botanic robot using a servo motor and leaf 

actuator. The research result not only helps children realize the variation of plant growth 

but also is entertainment-educational through its demonstration of the growth process of 

the bio-botanic robot in a short time.  
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1. Introduction 

Recently, owing to the advancement in digitalized life technology and promotion of Micro-Electro 

Mechanical Systems (MEMS) technology, the robotics industry has developed rapidly and moved 

closer to the improvement of human life quality and demand, among which bio-robots have become a 

popular topic recently. Besides the interactive amusement that bio-robot systems bring to people, the 

systems can serve as vehicles to aid people. Currently, amusement robots enjoy great popularity. The 

amusement bio-robots available on the market are not only equipped with lively and lovely body 

language but are also capable of interacting with people, which subverts people’s view about the 

inactive traditional toys [1-5]. 

The amusement bio-robots on the market are various, and consist of maritime class, terrestrial and 

birds. Plants occupy two categories among the three. Surprisingly, related products available in market 

are quite rare despite the fact that plants are so essential and common in life. Edible plants can adjust 

our diet and physical condition and ornamental plants can soothe people, soften the atmosphere and 

condition the air. 

Many cases of bionic system development have taken place. For example, the website of The 

Center of Biologically Inspired Design at the Georgia Institute of Technology has offered prolific 

research results on bionics [6], and the Department of Mechanical Engineering of the University of 

Maryland and the University of Reading are both engaged in the development and research of bionic 

design products, with whole websites presenting abundant research results [7,8]. 

Among the design methods of bionic system, the website of the Biomimicry Institute has provided 

the design concept, process, bionic methods, and has classified those cases [9]. The classification 

consists of material, product, architecture, and process. The design spiral concept is proposed and the 

concept includes several steps, such as identify, interpret, discover, abstract, emulate, and evaluate. 

Vakili and Shu propose a method to analyze the problem in the design of bionics [10]. 

Chiu and Shu published several papers utilizing the analysis of natural language, which 

systematically employs engineering to mimic the natural behavior of creatures [11-13]. The birth of 

bionic design originates from the fact that human technology development encounters bottlenecks and 

is accidentally inspired by the behavior characteristics of creatures in the search for solutions in Nature. 

Thus, bionics are generated and this design has been termed Bio-Inspired Design by scientists. Many 

famous products come from such a design, such as shark swimsuit, water pump, architecture design, 

etc. Therefore, Golden classified the function and concept of Bio-Inspired Design and established a 

database so that engineers are provided a solution from the design concepts and function [14]. 

Afterwards, lots of literature reviews have also focused on the design and control of intelligent 

mechanisms [15-18]. Most of them utilize some intelligent algorithms to simulate the behavior of 

creatures and adopt automatic mechanisms to implement those gestures and behavior. 

No product is currently available on market that can mimic the behavior of plants. The solar flower 

product developed in Japan is simple in function and is not interactive [19]. In view of this, this 

research mimics the growth model of plants through bionics and proposes a multisensor-based  

bio-botanic robot.  

With regard to the structure design of the robot, the root design adopts an aluminum screw base. 

The pulley and spring are employed to mimic the growth and bending features of plant bodies. 
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Polydimethylsiloxane (PDMS) is adopted as the material of leaves and petals. The swing of leaves and 

flowing of petals is accomplished using shape memory alloy (SMA) and self-designed actuator. In 

terms of design of control system, this paper aims to regulate the growth speed and behavior of plants 

using multi-staged fuzzy logic scheme on the basis of light, water, and temperature in an experimental 

environment through expert data. The result is implemented in the robot system. The environment 

sensor module, SMA actuator and motor control device are integrated in the self-designed  

sensor-fusion based embedded board. After the environment sensor data is processed through the 

micro-controller algorithm, the micro-controller sends different control signals to the motor control 

and actuator module of the embedded board so that the robot can present different growth behaviors.  

The development of bio-botanic robot system (BRPS) aim to balance body and soul, usher people 

to a digitalized green life and create an environment in harmony with Nature. The following chapter 

will depict the design process of robot and the test results. Meanwhile, it takes a longer time to teach 

children the growth process of plants. Through the establishment of bio-robots, children can 

experience such a process within a shorter time by means of the rapid and dynamic response of plants. 

On the other hand, the bio-botanic robot serves as an experimental tool of automatic cultivation 

through the establishment of an environmental database. 

2. Overall Design of the Bio-Botanic Robot  

2.1. Planning of the Bio-Botanic Robot Growth System 

The sunflower is an extraordinary and magical flower, whose uplifting stance is associated with 

aspiration, the big face embracing the sunshine is indicative of positive thinking for humans and the 

downward flower due to the weight of mature seeds is a reminder of maturity and humility. More 

significantly, it can be used for ornamental gardening, agriculture, as an economic plants and for 

spiritual therapy. Based on those factors, this paper takes sunflower as an example to implement a 

bionic plant mechanism according to its growth characteristics. Before the design and setup of the 

BRPS, it is necessary to be familiar with the characteristics and mechanism of plants. 

This research adopted sunflowers as the subject for growth simulation due to its wide applicability 

as a source of food, oil, animal feed, and biofuel. In accordance with the literature, the growth process 

of sunflowers was divided into eight stages that mark the approximate range of time required for each 

stage [20-24]. To simplify the analysis and facilitate the design of the growth regulation system, this 

study divided the plant growth process into stages according to the number of environmental factors 

influencing growth height and growth time. In previous research, the authors presented the 

environmental factors required by sunflowers in each stage of growth as well as the corresponding 

growth height and growth time [25]. The authors also developed a multi-layer parallel fuzzy inference 

system with the objective of establishing an expert system to monitor plant growth. The steps involved 

in designing the BRPS are as follows: 

Step 1: Based on the eight growth stages identified in this study, we used the proportions of 

individual environmental factors obtained from literature and the experience of experts to 

establish environmental parameters suitable for each stage of growth. 
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Step 2: We produced a bionic botanical growth fuzzy controller comprising a fuzzy main-controller 

and sub-controllers. 

Step 3: The results obtained by the fuzzy controller were compared with data from the literature. 

In general, fuzzy controllers are designed in the following order: (1) Definition of input variables, 

output variables, and linguistic variable database; (2) Determination of fuzzification strategies;  

(3) Design of controlling rule database; (4) Develop methods of fuzzy inference; (5) Defuzzification. 

As seen in [25], environmental factors indeed influence plant growth height and growth time, even 

without considering the generic characteristics of the plant itself. This research divided the plant 

growth process into stages according to the number of environmental factors influencing growth height 

and growth time. Excluding the wither stage, we established seven stages numbered from 0 to 6. This 

research utilizes the previously proposed control method to be implemented in an embedded 

development system. Based on the above description, we will define the mechanism and control 

component that constitute the bionic mechanism and system. 

2.2. Architecture and Feature of Bio-Botanic Robot  

This chapter describes the bio-botanic robot design process. The use of a small size robot base, 

flower institutions, and control motor with linearity are the main concepts in this study. Meanwhile, the 

body curvature of plant can not only move up and down but also to make curved, swinging action. The 

system design steps are as follows: 

2.2.1. Plant Root 

The root of plant can move up and down and its goal is to represent the growth process. Firstly, the 

plant is contained in the flowerpot. The transmission concept is based on that between gear and rack 

and the spring is employed as a substitute for the rack. The spring is better suited to match the gear 

because the spring is shaped in the form of a rack pitch and can bite perfectly with gear. The design is 

shown in Figure 1. 

2.2.2. Plant Stem 

The plant stem should present ductility, curvature and swinging function to sustain leaves and 

flowers so that the plant appears more vivid. Thus, the spring is adopted to substitute stem part because 

the spring can also present ductility and curvature like the plant itself. The spring at the bottom is fixed 

and its top point is pressed, which allows the spring to present curvature movement. It is like the 

natural vertical drop of sunflower leaves. 

The parameter setup of the spring is based on the actual shape and weight of a real sunflower to 

give setup values of different ratio. The diameter of sunflower stems vary according to their variety 

and is typically about 10~25 mm. The height of plants is 1.5~3 m and the diameter of the faceplate at 

maturity is about 80~120 mm. The weight of receptacle and leaf is roughly 68 g. The diameter of plant, 

growth height and weight can help calculate the proper specifications of the spring. 
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Figure 1. The 3D view of the growth base. 

 
 

With regards to the setup of spring parameters, the outer diameter is set as 19.5 mm and length is 

2.5 cm. Since the weight is 0.068 kg, the coefficient of spring is estimated as 0.07 Kgf/mm to prevent 

over buckling failure due to overweight or inadequate weight. Then, the spring diameter is set as  
d = 2 mm. These parameters are substituted into (1) to calculate spring turns  = 39 shown as 

follows: 

        (1) 

where G = 8,000 kg/mm2 denotes the modules of rigidity of wire, = (D − d) = 17.5 mm indicates 

the average diameter and k = 0.07 kgf/mm represents the modulus of elasticity of spring.  is 

substituted into (2) to calculate spring pitch  = 6.4 mm: 

        (2) 

where L = 250 mm denotes length of spring. The outer diameter of spring, diameter, turns, and pitches 

can help determine the required spring. Figure 2 shows the specification of the purchased spring.  

To realize the buckling degree the spring can withstand, we utilize the buckling theory to calculate 

the threshold for spring buckling to estimate the required power to produce buckling. The safety factor 

of spring buckling is estimated as 0.043. References for the detailed depiction are given in [26]. 
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Figure 2. Spring specifications. 

 

2.2.3. Leafs and Petals 

Leaf (petal) design requires plasticity and elasticity features. Thus, polydimethylsiloxane (PDMS) is 

utilized to construct the body of the leaves (petals) and a solid-state method is used to make  

them [27-29]. Because silicone belongs to the polymeric organosilicon compounds, it has good 

translucency and biocompatibility. Meanwhile, because it has a low Young’s modulus, the structure is 

high in structural flexibility and heat resistance, which is quite suitable for the material of leaves  

and petals.  

Figure 3. 3D view of the leaves mold. 

 
 

The PDMS material of leafs and petals can withstand the heat produced from the driving SMA. The 

silicone design process consists of six steps: (1) design of the mold for leaves and petals; (2) carved 

molding; (3) ratio blending of silicone and hardener; (4) mixing, pouring into template and pumping 
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under vacuum; (5) placment under regular temperature for hardening; (6) template demolition and 

cutting of the silicone mold. Figures 3 and 4 depict the mold size of leaves and petals. Figure 5 shows 

the leaf and petal templates and the work after infusion molding.  

2.2.4. Leafs and Petals Swing Method  

Because the stems of leaves and petals are tinier, the spring cannot be utilized to swing in order to 

mimic a realistic effect. Thus, SMA is adopted to overcome this drawback. The SMA material serves 

as a blade branch. It can retain shape memory after heating. Thus, we utilize the characteristics of 

SMA to construct the leaves (petals), which results in the desired swing phenomenon. Firstly, the 

processed SMA is implemented in the silicone leaves. Second, the actuator that can control SMA is 

designed. The pulse width modulation (PWM) technique is employed to control the curvature of SMA 

and have the tip of leaf present displacement. Meanwhile, a thermal imager is adopted to analyze the 

generated temperature value of SMA under different voltages, which can help investigate the relation 

between the swings of leaves and petals of the bio-robot and the output voltage of the micro-controller. 

This can yield the optimal swing quality. Reference [30] describes the process in detailed. The final 

product is shown in Figure 6. 

Figure 4. 3D view of petals mold. 
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Figure 5. Leaf and petals of the template (right); finished product (left). 

 

Figure 6. Silicone leaf with SMA. 
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Figure 7. 3D in view of pot. 

 

2.2.5. Pot Incorporating Design 

The design specifications of the pot are presented in Figure 7, where the units are in mm. The pot 

consists of three layers. The bottom layer is used to place the controller and the peripheral modules of 

hardware system, etc. The middle layer is for the servomotor. The top layer is for the plant mechanism. 

The pot is covered with a clapboard and turf, which can add some sort of atmosphere. 

2.3. Hardware Circuit Design  

In this study, a self-designed embedded system is developed and the proposed system consists of 

DC motor control module, encoder, SMA actuator, light sensor modules, etc. The data is received from 

the multi-sensor modules, processed in micro-controller and then sent to the peripheral module to 

control the height and growth time of the bio-botanic robot. 

System Architecture  

The bio-botanic robot system consists of a BASIC Stamp module [31] and multi-sensor embedded 

board. Its detailed information is as follows: 
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(a) Power supply module.  

The input voltage of each module in BRPS consists of 9 V, 6 V, and 5 V and the required power of 

each module is provided by three DC voltage regulator ICs, such as MC 7805, MC7806, and MC 7809, 

respectively. The power supply comes from a 12 V and 2.3 A battery.  

(b) BASIC Stamp 2 (BS2) microcontroller module.  

The BS2 microcontroller module is produced by the Parallax Company and it combines a micro-

controller, EEPROM memory chip, serial transmission interface, voltage regulator IC, oscillator and 

noise filter, etc. [31]. What is special about the chip is that it has an inbuilt PBASIC interpreter, which 

can allow the user to rapidly develop the required control application programs. Thus, the BS2 module 

serves as the sub-core control unit of BRPS to control the signal transmission between each module.  

(c) USB communication modules.  

Bi-directional serial communication between BS2 and PC. 

(d) Inter-Integrated Circuit (I2C) communication modules.  

The BRPS multi-staged fuzzy control technique [25] is implemented via a PIC microcontroller. To 

maintain smooth communication between the PIC and the BS2 microcontroller so as to have the values 

of environmental factors collected by the BS2 microcontroller sent to the PIC one to determine the 

growth mode and have the decision value sent back to the BS2 microcontroller to effect the 

corresponding output control, the I2C communication interface serves as the bridge between the PCI 

and the BS2 micro-controllers. The greatest feature of the I2C module lies in the use of the 

communication clock pin and data pin of the PIC micro-controller and the connection of one pull-up 

resistance to these two signal pins to accomplish the I2C serial data communication interface. 

(e) Light sensor module.  

It consists of a photosensitive resister and IC 555 oscillator. The goal of these modules is to detect 

the strength of light and to convert the light power into the signal so that the module can identify it; 

(f) Temperature and humidity sensing module.  

Water and temperature are the environmental factors of the proposed system and this module adopts 

the module designed by the Parallax Company. The model of this module is SHT11 [32]; its range of 
temperature is between -40 °C to +123.8 °C, precision is ±0.5 °C, humidity is between 0 and 100%RH 

and precision is ±3.5%RH. 

(g) DC motor control module.  

The design purpose of this module is to effectively and precisely adjust the growth rate of the robot. 

This research designs a DC motor control module to control the motor. Firstly, the motor is defined 

based on the growth time of plants. This research defines the optimal growth time as 120 seconds and 

growth height as 30 cm. Thus, the longest rotation time of motor is 2 minutes. The growth height is 

regarded as the circumference length of the driving wheel and the diameter of driving wheel is 

calculated as 30/π = 9.549 cm. To reduce the space occupied by the transmission, the diameter of the 

driving wheel is shortened and a commercially available driving wheel is chosen, whose diameter is 
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2.4 cm. That is, the motor rotates four times to reach growth height of 30 cm. Thus, the rotations per 

minute (rpm) are calculated as 2. Besides, the growth rate of plant in each stage differs, where the 

greatest difference lies in the second and the third stage. In that stage, the plant grows 1 cm each 

second. In this research, the motor purchase is based on the criteria of the second and third stage. Thus, 

the driving wheel only needs to rotate 0.133 times in order to grow 1 cm, which is calculated as 8 rpm 

for the motor. As a result, we can select a driving wheel with a motor speed as 8 rpm and 2.4 cm 

diameter for the drive component of the rising mechanism in this system. The DC motor control 

module is powered by a TA7291P DC driver to achieve the functions of speed control, rotation, stop 

and emergency stop [33]. The TA7291P is composed of one H bridge driver circuit and a compensation 

circuit. It is equipped with a maximum voltage 25 V and a maximum output current of 2 A. In this 

control module, the output pin of the BASIC stamp microcontroller is employed to transmit a PWM 

signal to adjust the reference pin (pin 4) of the TA7291P chip to control motor speed and to give the 

high and low voltage to pin 5 and pin 6 of TA7291P to change work mode. 

(h) Motor encoder module.  

The module is completed by using SG-206 photo-interrupters [34]. The main function of the motor 

encoder module is to estimate the growth height of the robot. 

(i) SMA actuator.  

The module is to derive the leaf and petals of the swing. 

(j) Servo motor control module. 

The servo motor employed in this system is used to control the degree of blending of stems. One 

point of the turntable of the servo motor is illustrated with a fixed rope and on the other point of the 

rope is fixed on the spring point. The rope is moved by the operation of the servo motor so as to 

represent the curvature of the spring. The motor control module uses what is already on the basic 

stamp development board. In addition, a light emitting diode circuit is utilized to indicate whether the 

communication between Basic stamp microcontroller and servo motor is smooth.  

2.4. Software Programming Design 

The software system consists of a personal computer (PC) side and BASIC stamp controller. In this 

research, the a PC program is adopted to initialize and acquire the related parameters of the robot. 

BASIC Stamp utilizes Basic stamp editor v2.5 developed by Parallax as the program development tool, 

which has one specific programming language interpreter called PBASIC. Thus, BASIC Stamp 

controller is applied to the experimental board of the bio-botanic robot to control data transmission and 

reception of each module. Besides, a Fuzzy Knowledge Base (FKB) is inserted in the memory to 

execute programs [25]. The following will describe the program design process of each function in  

the system. 

2.4.1. The Flow Chart of Main Program 

Figure 8 depicts the flow chart of the main program. When the system power is on, the system 

restarts, initializes, and the internal parameter is to be setup within the controller. Firstly, the 
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parameters of plant height, amount of light, temperature, humidity, and the growth stage are initialized. 

The status information of the system is to be displayed on the screen of PC and then the system enters 

standby mode.  

Figure 8. Flow chart of the main program. 

 

2.4.2. The Control Command 

Two types of command are executed in the bio-botanic robot. The first one is to select growth mode, 

which includes the optimal growth function, fuzzy growth function, and manual function. The second 

type is scenario mode that consists of light tracking function and light scenario function. Figure 9 

depicts the flow chart of the control process.  

Each function is demonstrated in the following paragraphs: 

(A) Growth mode: 

Set_ Best: To perform the optimal growth function. If the system is switched to this function, the 

robot will grow in full accordance with the desired parameters. Firstly, the speed control value of 

motor is calculated based on different growth rate in each stage. Next, the driving wheel drives the 

spring to move the stem of the plant upwards. Meanwhile, the encoder module begins to calculate the 

growth height. Figure 10 demonstrates the flow chart of the optimal growth mode program. 
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Figure 9. Sub-program for mode selection. 

 
 

Set_FC: To perform the fuzzy growth function. If this function is in operation, the growth rule of 

robot is established by the expert knowledge data. The rule data can adjust the amounts of 

environmental factors and meet the desired values. Firstly, the initial parameters are sent to the fuzzy 

controller. After the fuzzy logic process, the output from the fuzzy controller is then stored in the 

memory on the BASIC Stamp board. Meanwhile, the output value of fuzzy controller is then sent back 

to the input of fuzzy system. After several iteration processes, the control value is sent to the BRPS 

embedded board to control the motor speed and rotatation direction. At the same time, the encoder 

records the times and growth rate of the robot. When the height of plant reaches the wither stage, the 

robot stops growing. Figure 11 shows the flow chart of program of fuzzy-based growth mode.  

Jump_Manual: To execute the manual function. The main purpose of this function is to prevent the 

occurrence of emergencies. Meanwhile, the function is also used to test each growth modes for the  

bio-botanic robot. Figure 12 depicts the flow chart of program of “Jump_Manual”. 
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Figure 10. Flow chart of the optimal growth mode program. 

 
 

(B) Scenario mode: 

Track_Sun: To start the light tracking function. The output of the maximum value from the four 

light sensor modules is selected through a photosensitive resistor. The controller is used to start the 

servo motor and the motor location corresponds to the maximum output of the resistors. Finally, the 

motor pulls the spring at the top of the fixed wires and the stem of robot is bent toward the direction of 

maximum light intensity swing.  

Star_Light: To start the light scenario function. Once the function is started, the system firstly 

identifies the status of the robot and then decides whether to turn on the light within the robot. 
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Figure 11. Flow chart of the fuzzy control mode program.  

 

Figure 12. Flow chart of the manual mode program. 

 

Commend 
execution?

Plant rise

Plant down

Stem 
swing (right)

Stem 
swing (left)

Stem 
swing (later)

Leaf swing

Flowering

DC motor 
forward

DC motor 
reversal

Servo motor #1 
forward

Servo motor #1  
reversal

Servo motor #2 
resversal

SMA actuator 
#1

SMA actuator 
#2

Manual mode

Error message 

End

Scenario mode

Light tracking

LED Lights 
turn on

Light tracking 
mode

Stem 
swing 

(forward)

Servo motor #2 
forward

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No

Yes

END



Sensors 2011, 11              
 

 

11644

3. Experimental Results  

This chapter demonstrates the experiment test results of our bio-botanic robot. Figure 13 shows the 

self-designed embedded board and experimental equipment. The embedded development board 

integrates the required modules for BRPS to execute each function, which includes power supply 

module, main-controller, sub-controller, random access memory (RAM)/read only memory (ROM) 

modules, DC motor driver module, motor encoder module, SMA driver modules, temperature/ 

humidity sensors modules, light sensors modules, and universal serial bus (USB) communication 

module. The BRPS consists of plant base, embedded board, micro-controller, and is contained within 

the pot. 

Figure 13. Multisensor-based bio-botanic robot system. (a) Proposed embedded board;  

(b) Experimental equipment. 

  

(a)      (b) 

Three different growth modes are considered in these experiments. Different parameter settings 

allow observation of changes in growth rate and environment factors are regulated by the fuzzy 

controllers. Figure 14 the depicts status of plant growth, which is divided into eight stages shown as 

follows (first scenario): (a) STG0 stage; (b) STG1 stage; (c) STG2 stage; (d) STG3 stage; (e) STG4 

stage; (f) STG5 stage; (g) STG6 stage; (h) STG7 stage. Figures 15 and 16 illustrate the growth curve of 

BRPS and real plants. The two figures show that the experiment of growth height under three different 

environmental factors almost resembles the growth process of real plants. It shows that the proposed 

BRPS can mimic the plant growth based on different environmental factors. Figure 17 demonstrates 

the flowering stage (STG6) of the robot for three scenarios.  
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Figure 14. Different growth stages of the bio-botanic system. 

 
(a)   (b)   (c)   (d) 

 
(e)    (f)   (g)   (h) 

Figure 15. Curve of growth rate (simulated). 
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Figure 16. Curve of growth rate (experimental). 

 

Figure 17. Curve of flowering (STG6). 

 

4. Conclusions 

The design concept of a bio-botanic robot is proposed in this paper. The robot receives information 

from an expert database and multi-layer fuzzy controllers, which are utilized to complete the plant 

growth, light tracking, etc. The magnitudes of environmental factors are implemented and quantized 

using MEMs technology and all of the sensor modules are integrated in a self-designed embedded 

board. Meanwhile, the implementation of a fuzzy control system also allows BRPS to have 

autonomous growth behavior. The system presents the novel concept, which could be used for a future 

automated cultivation system. In addition, the use of the scenario functions within the robot can also 

serve as a teaching tool and material. 

Diameter
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