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Abstract: Consumer-grade range cameras such as the Kinect sensor have the potential to 

be used in mapping applications where accuracy requirements are less strict. To realize this 

potential insight into the geometric quality of the data acquired by the sensor is essential. In 

this paper we discuss the calibration of the Kinect sensor, and provide an analysis of the 

accuracy and resolution of its depth data. Based on a mathematical model of depth 

measurement from disparity a theoretical error analysis is presented, which provides an 

insight into the factors influencing the accuracy of the data. Experimental results show that 

the random error of depth measurement increases with increasing distance to the sensor, 

and ranges from a few millimeters up to about 4 cm at the maximum range of the sensor. 

The quality of the data is also found to be influenced by the low resolution of the  

depth measurements. 

Keywords: range camera; calibration; sensor; RGB-D; point cloud; triangulation; imaging; 

error budget; laser scanning 

 

1. Introduction 

Low-cost range sensors are an attractive alternative to expensive laser scanners in application areas 

such as indoor mapping, surveillance, robotics and forensics. A recent development in consumer-grade 

range sensing technology is Microsoft’s Kinect sensor [1]. Kinect was primarily designed for natural 

interaction in a computer game environment [2]. However, the characteristics of the data captured by 
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Kinect have attracted the attention of researchers from other fields [3–11] including mapping and 3D 

modeling [12–15]. A demonstration of the potential of Kinect for 3D modeling of indoor environments 

can be seen in the work of Henry et al. [16]. 

The Kinect sensor captures depth and color images simultaneously at a frame rate of up to 30 fps. 

The integration of depth and color data results in a colored point cloud that contains about 300,000 points 

in every frame. By registering the consecutive depth images one can obtain an increased point density, 

but also create a complete point cloud of an indoor environment possibly in real time. To realize the 

full potential of the sensor for mapping applications an analysis of the systematic and random errors of 

the data is necessary. The correction of systematic errors is a prerequisite for the alignment of the 

depth and color data, and relies on the identification of the mathematical model of depth measurement 

and the calibration parameters involved. The characterization of random errors is important and useful 

in further processing of the depth data, for example in weighting the point pairs or planes in the 

registration algorithm [17,18]. 

Since Kinect is a recent development—it was released in November 2010—little information about 

the geometric quality of its data is available. Geometric investigation and calibration of similar range 

sensors, such as the SwissRanger [19] and PMD [20], has been the topic of several previous  

works [21–26]. However, these sensors are based on the time-of-flight measurement principle, and are 

fundamentally different from the Kinect which is a triangulation sensor. 

In this paper our primary focus is on the depth data. The objective of the paper is to provide an 

insight into the geometric quality of the Kinect depth data through calibration and an analysis of the 

accuracy and density of the points. We present a mathematical model for obtaining 3D object 

coordinates from the raw image measurements, and discuss the calibration parameters involved in the 

model. Further, a theoretical random error model is derived and verified by an experiment. 

The paper proceeds with a description of the depth measurement principle, the mathematical model 

and the calibration parameters in Section 2. In Section 3, the error sources are discussed, and a 

theoretical error model is presented. In Section 4, the models are verified through a number of 

experiments and the results are discussed. The paper concludes with some remarks in Section 5. 

2. Depth Measurement by Triangulation 

The Kinect sensor consists of an infrared laser emitter, an infrared camera and an RGB camera. The 

inventors describe the measurement of depth as a triangulation process [27]. The laser source emits a 

single beam which is split into multiple beams by a diffraction grating to create a constant pattern of 

speckles projected onto the scene. This pattern is captured by the infrared camera and is correlated 

against a reference pattern. The reference pattern is obtained by capturing a plane at a known distance 

from the sensor, and is stored in the memory of the sensor. When a speckle is projected on an object 

whose distance to the sensor is smaller or larger than that of the reference plane the position of the 

speckle in the infrared image will be shifted in the direction of the baseline between the laser projector 

and the perspective center of the infrared camera. These shifts are measured for all speckles by a 

simple image correlation procedure, which yields a disparity image. For each pixel the distance to the 

sensor can then be retrieved from the corresponding disparity, as described in the next section.  

Figure 1 illustrates the depth measurement from the speckle pattern. 
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Figure 1. (a) Infrared image of the pattern of speckles projected on a sample scene.  

(b) The resulting depth image. 

2.1. Mathematical Model 

Figure 2 illustrates the relation between the distance of an object point k to the sensor relative to a 

reference plane and the measured disparity d. To express the 3D coordinates of the object points we 

consider a depth coordinate system with its origin at the perspective center of the infrared camera. The 

Z axis is orthogonal to the image plane towards the object, the X axis perpendicular to the Z axis in the 

direction of the baseline b between the infrared camera center and the laser projector, and the Y axis 

orthogonal to X and Z making a right handed coordinate system. 

Figure 2. Relation between relative depth and measured disparity. 

Assume that an object is on the reference plane at a distance Zo to the sensor, and a speckle on the 

object is captured on the image plane of the infrared camera. If the object is shifted closer to (or further 

away from) the sensor the location of the speckle on the image plane will be displaced in the X 
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direction. This is measured in image space as disparity d corresponding to a point k in the object space. 

From the similarity of triangles we have: 
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where Zk denotes the distance (depth) of the point k in object space, b is the base length, f is the focal 

length of the infrared camera, D is the displacement of the point k in object space, and d is the 

observed disparity in image space. Substituting D from Equation (2) into Equation (1) and expressing 

Zk in terms of the other variables yields: 
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Equation (3) is the basic mathematical model for the derivation of depth from the observed disparity 

provided that the constant parameters Zo, f, and b can be determined by calibration. The Z coordinate 

of a point together with f defines the imaging scale for that point. The planimetric object coordinates of 

each point can then be calculated from its image coordinates and the scale: 
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where xk and yk are the image coordinates of the point, xo and yo are the coordinates of the principal 

point, and δx and δy are corrections for lens distortion, for which several models with different 

coefficients exist; see for instance [28]. Note that here we assume that the image coordinate system is 

parallel with the base line and thus with the depth coordinate system. 

2.2. Calibration 

As mentioned above, the calibration parameters involved in the mathematical model for the 

calculation of 3D coordinates from the raw image measurements include:  

 focal length (f); 

 principal point offsets (xo, yo); 

 lens distortion coefficients (in δx, δy); 

 base length (b); 

 distance of the reference pattern (Zo). 

In addition, we may consider a misalignment angle between the x-axis of the image coordinate 

system and the base line. However, this does not affect the calculation of the object coordinates if we 

define the depth coordinate system to be parallel with the image coordinate system instead of the base 

line. We may, therefore, ignore this misalignment angle. 
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From the calibration parameters listed above the first three can be determined by a standard 

calibration of the infrared camera. In practice, however, the calibration parameters of the infrared 

camera do not directly correspond to the disparity images, because the size of the disparity images 

computed by the internal processor of Kinect is 640 × 480 pixels, which is smaller than the actual size 

of the infrared sensor (1,280 × 1,024 pixels) [29]. Due to the bandwidth limitation of the USB 

connection, the images of the infrared sensor are also streamed in a reduced size of 640 × 480 pixels 

corresponding to the disparity images (that is the images are resized and cropped).  

Therefore, a convenient approach to the calibration is to estimate the calibration parameters from 

the reduced infrared images instead of the actual sensor, provided that a pixel-to-pixel correspondence 

exists between the reduced infrared images and the disparity images. By examining the images we 

observed a shift of 4 pixels in the x direction between the disparity and infrared images (supposedly 

implying the application of a 9-pixel wide correlation window for calculating disparities [30]). Once 

this shift is corrected for, the calibration parameters estimated from the reduced infrared images can be 

applied to the measurements in the disparity images.  

The determination of the base length and the reference distance is more complicated for the 

following reason. In practice, the raw disparity measurements are normalized and quantized between 0 

and 2,047, and streamed as 11 bit integers. Therefore, in Equation (3) d should be replaced with md’ + n 

with d’ the normalized disparity and m, n the parameters of a (supposedly) linear normalization (in fact 

denormalization). Including these in Equation (3) and inverting it yields: 
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(5)  

Equation (5) expresses a linear relation between the inverse depth of a point and its corresponding 

normalized disparity. By observing the normalized disparity for a number of object points (or planes) 

at known distances to the sensor the coefficients of this linear relation can be estimated in a  

least-squares fashion. However, the inclusion of the normalization parameters does not allow 

determining b and Zo separately. 

The calibration parameters mentioned above completely define the relation between the image 

measurements (x, y, d’) and object coordinates (X, Y, Z) of each point. Once estimated, they enable the 

generation of a point cloud from each disparity image. Note that these parameters do not describe the 

internal geometry of the infrared camera as they are estimated from the resized and cropped images. 

2.3. Adding Color to the Point Cloud 

The integration of the depth and color data requires the orientation of the RGB camera relative to 

the depth coordinate system. Since we defined the depth coordinate system at the perspective center of 

the infrared camera we can estimate the orientation parameters by a stereo calibration of the two 

cameras. The parameters to be estimated include three rotations between the camera coordinate system 

of the RGB camera and that of the infrared camera, and the 3D position of the perspective center of the 

RGB camera in the coordinate system of the infrared camera. In addition, the interior orientation 

parameters of the RGB camera, i.e., the focal length, principal point offsets and the lens distortion 

parameters must be estimated.  



Sensors 2012, 12 1442 

 

 

In practice, the images of the RGB camera are also streamed in a reduced size; therefore, it is more 

convenient to perform a stereo calibration of the reduced images instead of the physical cameras. The 

resulting parameters describe the relation between the 3D coordinates of each point and its 

corresponding pixel-coordinates in the reduced RGB image. Once these parameters are estimated, we 

can add color to the point cloud by projecting each 3D point to the RGB image and interpolating  

the color. 

3. Depth Accuracy and Resolution 

Accuracy and point density are two important measures for evaluating the quality of a point cloud. 

In the following sections factors influencing the accuracy and density of Kinect data are discussed, and 

a theoretical random error model is presented. 

3.1. Error Sources 

Error and imperfection in the Kinect data may originate from three main sources:  

- The sensor; 

- Measurement setup; 

- Properties of the object surface. 

The sensor errors, for a properly functioning device, mainly refer to inadequate calibration and 

inaccurate measurement of disparities. Inadequate calibration and/or error in the estimation of the 

calibration parameters lead to systematic error in the object coordinates of individual points. Such 

systematic errors can be eliminated by a proper calibration as described in the previous section. 

Inaccurate measurement of disparities within the correlation algorithm and particularly the 

quantization of the disparities also influence the accuracy of individual points. 

Errors caused by the measurement setup are mainly related to the lighting condition and the 

imaging geometry. The lighting condition influences the correlation and measurement of disparities. In 

strong light the laser speckles appear in low contrast in the infrared image, which can lead to outliers 

or gap in the resulting point cloud. The imaging geometry includes the distance to the object and the 

orientation of the object surface relative to the sensor. The operating range of the sensor is between 0.5 m 

to 5.0 m according to the specifications, and, as we will see in the following section, the random error 

of depth measurement increases with increasing distance to the sensor. Also, depending on the imaging 

geometry, parts of the scene may be occluded or shadowed. In Figure 1, the right side of the box is 

occluded as it cannot be seen by the infrared camera though it may have been illuminated by the laser 

pattern. The left side of the box is shadowed because it is not illuminated by the laser but is captured in 

the infrared image. Both the occluded areas and shadows appear as gaps in the point cloud. 

The properties of the object surface also impact the measurement of points. As it can be seen in 

Figure 1, smooth and shiny surfaces that appear overexposed in the infrared image (the lower part of 

the box) impede the measurement of disparities, and result in a gap in the point cloud. 
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3.2. Theoretical Random Error Model 

Assuming that in Equation (5) the calibration parameters are determined accurately and that d’ is  

a random variable with a normal distribution we can propagate the variance of the disparity 

measurement to obtain the variance of the depth measurement as follows:  
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After simplification this yields the following expression for the standard deviation of depth: 
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with σd’ and σZ respectively the standard deviation of the measured normalized disparity and the 

standard deviation of the calculated depth. Equation 7 basically expresses that the random error of 

depth measurement is proportional to the square distance from the sensor to the object. Since depth is 

involved in the calculation of the planimetric coordinates, see Equation (4), we expect the error in X 

and Y to be also a second order function of depth. By propagating the errors in Equation (4), and 

assuming that the random error of image coordinates x, y can be ignored, we obtain the random error 

of X and Y: 
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3.3. Depth Resolution and Point Density 

The resolution of the infrared camera, or more precisely the pixel size of the disparity image, 

determines the point spacing of the depth data on the XY plane (perpendicular to camera axis). Since 

each depth image contains a constant 640 × 480 pixels, the point density will decrease with increasing 

distance of the object surface from the sensor. Considering the point density as the number of points 

per unit area, while the number of points remains constant the area is proportional to the square 

distance from the sensor. Thus, the point density on the XY plane is inversely proportional to squared 

distance from the sensor. 

The depth resolution refers to the minimum depth difference that can be measured, and is 

determined by the number of bits per pixel used to store the disparity measurements. The Kinect 

disparity measurements are stored as 11-bit integers, where one bit is reserved to mark the pixels for 

which no disparity is measured, so-called no-data. Thus, a disparity image contains 1,024 levels of 

disparity. Since depth is inversely proportional to disparity, the resolution of depth is also inversely 

related to the levels of disparity. Let Z(d’) denote depth as a function of normalized disparity d’, then 

depth resolution is simply the depth difference corresponding to two successive levels of disparity; i.e., 

ΔZ(d’) = Z(d’) – Z(d’ – 1), and as we learned the differential yields: 

2)( Z
fb

m
Z   (9)  



Sensors 2012, 12 1444 

 

 

Thus, the depth resolution is also a quadratic function of depth, and decreases with increasing 

distance from the sensor. 

4. Experiments and Results 

Experiments were carried out to first determine the calibration parameters of the sensor and then 

investigate the systematic and random errors in the depth data. The following sections describe the 

tests and discuss the results. 

4.1. Calibration Results 

A standard camera calibration was performed using the reduced images of both the infrared camera 

and the RGB camera to estimate the calibration parameters in the Photomodeler
®

 software. A total of 

eight images of a target pattern were taken by both cameras from different angles. To avoid the 

disturbance of the laser speckles in the infrared images the aperture of the laser emitter was covered by 

a piece of opaque tape. To model the lens distortion we used the well-known model of Brown [31] 

with three radial distortion parameters (K1, K2, K3) and two decentering parameters (P1, P2). The 

calibration was first performed with all lens distortion parameters as unknowns. Then, those parameters 

whose standard deviation was large compared to the estimated parameter value were removed from the 

estimation model, and the remaining parameters were estimated again. As a result, parameter K3 was 

excluded from the parameter sets of both cameras, and P2 was excluded from the parameter set of the 

RGB camera. Table 1 summarizes the results of the calibration procedure. The overall calibration 

accuracy as the RMS of point marking residuals in image space was 0.14 pixels for the IR images  

and 0.09 pixels for the RGB images. In the parameters of the RGB images notice the very large principal 

point offset (yo) of 0.327 mm corresponding to 35 pixels; see also Figure 3(b). This value is close  

to 32 pixels, which is the offset we would expect if a reduced image was obtained by resizing a full 

resolution image to one-half and cropping it at the top (1024/2 − 480 = 32). The infrared images however 

do not have large principal point offsets, meaning that they were cropped at the center. The reason for 

this apparently inconsistent cropping and the large yo in the RGB images is not known to the authors. 

Table 1. Calibration parameters estimated for the infrared and RGB images. 

Calibration parameter IR images RGB images 

Focal length f 5.453 ± 0.012 [mm] 4.884 ± 0.006 [mm] 

Principal point offset 
xo −0.063 ± 0.003 [mm] 0.032 ± 0.002 [mm] 

yo −0.039 ± 0.008 [mm] −0.327 ± 0.005 [mm] 

Frame dimension 
w 5.996 ± 0.001 [mm] 6.012 ± 0.002 [mm] 

h 4.5 [mm] 4.5 [mm] 

Pixel size 
px 9.3 [µm] 9.3 [µm] 

py 9.3 [µm] 9.3 [µm] 

Radial lens distortion 

K1 2.42e−3 ± 1.2e−4 −5.75e−3 ± 6.4e−5 

K2 −1.70e−4 ± 1.2e−5 4.42e−4 ± 5.8e−6 

K3 0 0 

Decentring lens distortion 
P1 −3.30e−4 ± 3.7e−5 −1.07e−4 ± 2.8e−5 

P2 5.25e−4 ± 7.5e−5 0 
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Figure 3. Lens distortions of (a) IR camera and (b) RGB camera. The principal points are 

marked by x and the image centers by +.  

Figure 3 shows the combined effect of radial and decentering distortions for both the IR and the 

RGB images. Notice the larger effect of decentering distortions in the IR image as compared to the 

RGB image. The magnitude of radial distortions however is larger in the RGB image, particularly in 

the upper left corner where radial distortions reach 9 pixels (0.08 mm). This can be verified by 

examining the radial distortion curves in Figure 4, which show that radial distortions of the RGB 

camera are generally larger than those of the IR camera. In practice, radial distortions in the RGB images 

lead to misalignments between the color and depth data in the point cloud. A distortion of 0.08 mm in the 

image space corresponds to a misalignment of 8 cm at the maximum range of the sensor (5 m). 

Figure 4. Radial distortion curves for the IR and RGB images. 

 

For the stereo calibration images of a checkerboard pattern were taken simultaneously by the two 

cameras, and the relative orientation parameters were estimated in a bundle adjustment. Table 2 lists 

the resulting parameters. As it can be seen the rotations are quite small, and the relative position 

 

(a) 

 

(b) 
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parameters indicate that the center of the RGB camera is approximately on the base line between the 

IR camera and the laser emitter. 

Table 2. Exterior orientation parameters of the RGB camera relative to the IR camera. 

To determine the parameters involved in the disparity-depth relation (Equation 5) depth values were 

measured at eight different distances to the sensor using a measuring tape. The inverse of the measured 

distances were then plotted against the corresponding normalized disparities observed by the sensor, 

see Figure 5. As it can be seen the relation is linear as we expected from the mathematical model in 

Equation (5). The parameters of the disparity-depth relation were obtained by a simple least-squares 

line regression. These were found to be −2.85e−5 as the slope and 0.03 as the intercept of the line. 

Using these parameters we can now calculate depth values from the observed normalized disparities. 

Figure 5. Linear relation of normalized disparity with inverse depth. 

 

4.2. Comparison of Kinect Point Cloud with the Point Cloud of a High-End Laser Scanner 

To investigate the systematic errors in Kinect data a comparison was made with a point cloud 

obtained by a high-end laser scanner. The Kinect point cloud was obtained from the disparity image 

using Equations (4) and (5) and the calibration parameters from the previous step. The laser scanner 

point cloud was obtained of the same scene by a calibrated FARO LS 880 laser scanner. The nominal 

range accuracy of the laser scanner is 0.7 mm for a highly reflective target at a distance of 10 m to the 

scanner [32,33]. The average point spacing of the laser scanner point cloud on a surface perpendicular 

to the range direction (and also the optical axis of the infrared camera of Kinect) was 5 mm. It was 

therefore assumed that the laser scanner point cloud is sufficiently accurate and dense to serve as 

reference for the accuracy evaluation of the Kinect point cloud. In the absence of any systematic errors 

the mean of discrepancies between the two point clouds is expected to be close to zero. 

To enable this analysis, first, an accurate registration of the two point clouds is necessary. The 

registration accuracy is important because any registration error may be misinterpreted as error in the 

Rotation parameters [degree] Position parameters [mm] 

rx ry rz tx ty tz 

0.56 0.07 0.05 −25.60 0.34 2.91 
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Kinect point cloud. To achieve the best accuracy two registration methods were tested. The first 

method consisted of a manual rough alignment followed by a fine registration using the iterative 

closest point (ICP) algorithm [34]. To make ICP more efficient a variant suggested by Pulli [35] was 

followed in which 200 randomly selected correspondences (closest points) with a rejection rate of 40% 

were used. In the second method the two roughly-aligned point clouds were segmented into planar 

surfaces and 20 corresponding segments were manually selected. Then, a robust plane fitting using 

RANSAC [36,37] was applied to obtain plane parameters and the inlying points. The registration was 

then performed by minimizing the distances from the points in one point cloud to their corresponding 

planes in the other point cloud [38]. 

In both registrations the estimated transformation parameters consisted of a 3D rotation and a 3D 

translation. To reveal a possible scale difference between the point clouds a third registration was 

performed using the plane-based method augmented with a scale parameter.  

Table 3 summarizes the registration residuals pertaining to the three methods. It is clear that the 

methods perform similarly, all yielding very comparable residuals. Furthermore, the scale parameter 

obtained from the third registration was found to be 1.01. The largest effect of such a scale on the 

furthest point of the point cloud is 5 cm, which is not larger than the random error and depth resolution 

of the data as will be shown later. Thus, we can conclude that there is no scale difference between the 

Kinect point cloud and the laser scanner point cloud. 

Table 3. Registration results of the three methods. 

 Transformation parameters Residuals 

s rx, ry, rz  

[deg] 

tx, ty, tz  

[cm] 

Min 

[cm] 

Mean 

[cm] 

Med 

[cm] 

Std 

[cm] 

Max 

[cm] 

point-point distances 

(icp) 

- −88.16, 0.03, 

0.07 

1.20, −0.81, 

3.56 

0.1 1.2 0.9 0.9 4.4 

point-plane distances 

without scale 

- −91.52, 0.14, 

−0.23 

0.07, −0.32, 

0.82 

0.0 1.1 0.8 0.9 7.1 

point-plane distances 

with scale 

1.01 −90.64, −0.02, 

0.04 

−0.27, −3.53, 

−5.60 

0.0 1.1 0.9 0.9 7.0 

For the comparison between the two point clouds the result of the ICP registration method was 

used. A total of 1,000 points were randomly selected from the Kinect point cloud and for each point 

the nearest neighbor was found in the laser scanner point cloud. These closest point pairs were the 

basis for evaluating the accuracy of the Kinect point cloud. However, it was considered that the point 

pairs might contain incorrect correspondences, because the two sensors had slightly different viewing 

angles, and therefore, areas that could not be seen by one sensor might be captured by the other and 

vice versa. Figure 6 shows the two point clouds and the closest point pairs. 

Figure 7 shows the histograms of discrepancies between the point pairs in X, Y and Z. Table 4 lists 

the statistics related to these discrepancies. The mean and median discrepancies are close to zero, 

which is an indication that there are no systematic shifts between the two point clouds. For comparison, 

the last three rows of Table 4 show the discrepancies between the laser scanner point cloud and an 

uncalibrated Kinect point cloud, measured on the same number of sampled point pairs. The discrepancies 

are clearly larger when the uncalibrated point cloud is used, indicating the effect of calibration. 
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Figure 6. Comparison of Kinect point cloud (cyan) with the point cloud obtained by 

FARO LS880 laser scanner (white). The larger points are samples randomly selected from 

the Kinect data (blue) and their closest point in the laser scanner data (red). The thumbnail 

on the lower right is a color image of the setup. 

  

Figure 7. Histograms of discrepancies between the closest point pairs in X, Y and Z direction. 

 

 

Figure 8 shows the distribution of the point pair distances in the X-Z plane. In general, points that 

are located further away from the sensor, particularly those at the sides of the point cloud, show larger 

discrepancies. This is what we expected based on the theoretical random error model. Overall, the 

comparison of the two point clouds shows that about 84% of the point pairs are less than 3 cm apart. 
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Table 4. Statistics of discrepancies between the closest point pairs. The last three rows 

show, for comparison, the same statistics obtained for an uncalibrated Kinect point cloud. 

Figure 8. Distribution of point pair distances in the X-Z plane. 

 

4.3. Plane Fitting Test 

To verify the relation between the random error and the distance to the sensor a plane fitting test 

was carried out. The planar surface of a door was measured at various distances from 0.5 m to 5.0 m 

(the operation range of the sensor) with 0.5 m intervals. 

In each resulting point cloud a same part of the door was selected and a plane was fitted to the 

selected points. The RANSAC plane fitting method was used to avoid the influence of outliers.  

Figure 9 shows the measurement setup. 

Figure 9. The planar surface of a door measured at different distances to the sensor. The 

boxes show the plane fitting area. 

 

1.0 m            2.0 m           3.0 m          4.0 m         5.0 m 

 
Mean  

[cm] 

Median 

[cm] 

Standard 

deviation [cm] 

Interquartile 

range [cm] 

Percentage in  

[−0.5 cm, 0.5 cm] 

Percentage in  

[−1.0 cm, 1.0 cm] 

Percentage in  

[−2.0 cm, 2.0 cm] 

dx 0.1 0.0 1.0 0.6 63.4 83.4 95.0 

dy 0.0 0.0 1.1 0.6 63.4 80.7 93.2 

dz 0.1 −0.1 1.8 1.3 38.9 61.6 82.1 

dx * −0.5 −0.2 1.4 1.0 55.0 74.3 90.9 

dy * −0.6 −0.1 1.5 1.1 56.8 72.7 82.9 

dz * −0.1 −0.4 1.8 1.8 25.1 51.6 81.2 
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Since in all measurements the selected planar surface was approximately perpendicular to the 

optical axis of the sensor the residuals of the plane fitting procedure can be seen as a representation of 

the depth random error. To evaluate this random error at different distances an equal number of 

samples (4,500 samples) were randomly selected from each plane, and the standard deviation of the 

residuals was calculated over the selected samples. Figure 10 shows the calculated standard deviations 

plotted against the distance from the plane to the sensor (the black squares). It can be seen that the 

errors increase quadratically from a few millimeters at 0.5 m distance to about 4 cm at the maximum 

range of the sensor. Although the plane fitting residuals can be seen as an indication of random error of 

depth measurement, they are also influenced by the depth resolution at each plane. Having determined 

the calibration parameters we can now evaluate Equations (7) and (9) to obtain the theoretical random 

error and resolution of individual depth measurements at different distances from the sensor. In  

Figure 10, the red curve shows the theoretical random error obtained from Equation (7) with  

| m/fb | = 2.85e−5 from the depth calibration result (Figure 5) and assuming a disparity measurement 

error (σd’) of ½ pixel. The blue curve is a plot of depth resolution obtained by evaluating Equation (9). 

The disparity error of ½ pixel seems a fair estimate since the theoretical random error curve is 

consistent with the observed standard deviations, considering that the low depth resolution has a minor 

effect on the estimate of the standard deviation of plane fitting residuals when a large number of 

samples are used. 

Figure 10. Standard deviation of plane fitting residuals at different distances of the plane to 

the sensor. The curves show the theoretical random error (red) and depth resolution (blue). 

 

Although depth resolution does not have a large influence on the standard deviation of plane fitting 

residuals, its effect on the level of individual points should not be understated. This effect is more 

pronounced at larger distances from the sensor such that at the maximum range of 5 meters the point 

spacing in the depth direction is 7 centimeters. The combined effect of the random error and low depth 

resolution at large distances results in a planar surface (perpendicular to the sensor) appearing as 

several layers of points in the data when seen from side-view. Figure 11 shows the point clouds of the 

door plane at three distances projected on the Y-Z plane (Z being the depth direction; see Section 2.1 

for the definition of the coordinate system). While at 1 m the point spacing in the depth direction is 
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quite small (about 2 mm), at 3 m and 5 m the points are clearly distributed in several layers at intervals 

corresponding to the depth resolution, which is about 2.5 cm for the plane at 3 m distance and close  

to 7 cm at 5 m.  

Figure 11. Point cloud of a planar surface at 1 meter (a), 3 meter (b) and 5 meter (c) 

distance from the sensor projected on the Y-Z plane. Colors represent distance to the  

best-fit plane in centimeters. 

   

(a) (b) (c) 

5. Conclusions 

The paper presented a theoretical and experimental analysis of the geometric quality of depth data 

acquired by the Kinect sensor. The geometric quality measures represent the depth accuracy and 

resolution for individual points. Indoor mapping applications are often based on the extraction of 

objects instead of an irregular set of points. In order to describe the quality of extracted objects, some 

basic error propagation would be needed. While fitting geometric object models to the data can reduce 

the influence of random errors and low depth resolution, the effect of systematic errors can only be 

eliminated through a proper calibration procedure.  

From the results of calibration and error analysis the following main conclusions can be drawn:  

 To eliminate distortions in the point cloud and misalignments between the colour and depth data 

an accurate stereo calibration of the IR camera and the RGB camera is necessary; 

 The random error of depth measurements increases quadratically with increasing distance from 

the sensor and reaches 4 cm at the maximum range of 5 meters; 

 The depth resolution also decreases quadratically with increasing distance from the sensor. The 

point spacing in the depth direction (along the optical axis of the sensor) is as large as 7 cm at the 

maximum range of 5 meters. 

In general, for mapping applications the data should be acquired within 1–3 m distance to the 

sensor. At larger distances, the quality of the data is degraded by the noise and low resolution of the 

depth measurements. 
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