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Abstract: This paper presents a vehicle dynamics prediction system, which consists of

a sensor fusion system and a vehicle parameter identification system. This sensor fusion

system can obtain the six degree-of-freedom vehicle dynamics and two road angles without

using a vehicle model. The vehicle parameter identificationsystem uses the vehicle dynamics

from the sensor fusion system to identify ten vehicle parameters in real time, including

vehicle mass, moment of inertial, and road friction coefficients. With above two systems,

the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from

the parameter identification system, to propagate with timethe current vehicle state values,

obtained from the sensor fusion system. Comparing with mostexisting literatures in this

field, the proposed approach improves the prediction accuracy both by incorporating more

vehicle dynamics to the prediction system and by on-line identification to minimize the

vehicle modeling errors. Simulation results show that the proposed method successfully

predicts the vehicle dynamics in a left-hand turn event and arollover event. The prediction

inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event.

Keywords: dynamics predictions; sensor fusion system; vehicle parameter identifications;

road condition identifications
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1. Introduction

In recent years, many vehicle control research propose using the future vehicle dynamics information

to assist drivers’ maneuvers. For example, the vehicle pathpredictions can provide the future position

error for the vehicle guidance controls. Compared with the conventional “look-down” sensing system

that provides current position error, the path prediction not only provides the information that are

easier perceived by human drivers, but also provides additional information of road conditions, weather

conditions,etc.[1,2]. As another example, many researchers propose using vehicle rollover predictions

as anti-rollover measures [3–5]. The benefit is that the rollover prediction can trigger thecontrol input

earlier than the approaches without prediction. Consequently, the advance of the control action both

saves actuation power and improves the driving safety. These examples highlight the importance of

vehicle dynamics predictions.

In general, the future vehicle dynamics is predicted by using a vehicle mathematics model to

numerically propagate current state values with time. Therefore, a vehicle dynamics prediction system

needs a mathematic model and current vehicle state values [1–6]. There are two concerns regarding the

mathematic model. First, many reports employ simplified vehicle models in the dynamics prediction,

such as 2 DOF model [1], 4 DOF [2], and 2 DOF yaw-roll model [1–3,6]. The prediction results may

only be acceptable for limited purposes and driving conditions. The inaccurate prediction result can

be understood that, from the control viewpoint, the dynamics prediction is an open loop system. Thus,

any model simplification would affect prediction accuracy to some extent. Our previous work [7] shows

that even excluding the vehicle pitch dynamics from a 6 DOF vehicle model would result in an obvious

error in the rollover prediction. One of the key components that are often neglected in the vehicle

dynamics modeling is the road angle. Many research reports have shown that road angles have direct

influences on the vehicle dynamics [8–10]. Our previous report [7] also show that, under the same

driving maneuvers, a vehicle would roll over on a sloped roadbut would be under control on a flat road.

Therefore, it is important to include the road angle in the vehicle dynamics prediction.

The second concern is the parameter uncertainty in the vehicle model. Most dynamics prediction

methods use presumed vehicle parameters in the vehicle mathematics model [1–3,7]. This approach

can simplify the prediction problem but may be inaccurate inpractice. This is because the vehicle

property (mass, moment of inertia) and road conditions (road angles, friction coefficients) may change

from different driving situations, such as number of passengers, amount of fuel, road surface profiles,

weather conditions,etc. Therefore, it is preferred that the parameters associated with the vehicle

model can be identified in real time. From system identification viewpoint, the success of parameter

identification depends on the model accuracy, persistent excitation, and signal-to-noise ratio (SNR) of

the excitation signals [11]. Therefore, the vehicle parameter identification problemis closely related

to the accompanied sensor fusion system that provides the measurements of the vehicle dynamics.

In literatures, many vehicle parameter identification systems have been proposed to identify vehicle

parameters such as vehicle masses, moments of inertia, road-tire frictions,etc.[9,12–14]. So far, we have

not found a research report that identifies more than six vehicle parameters using their sensor systems.

As mentioned earlier, another key factor of the vehicle dynamics prediction is the sensor system

for obtaining current vehicle state values. Since the vehicle system is highly nonlinear and many
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of its dynamics cannot be measured directly, the vehicle dynamics are often obtained by two ways:

one is the observer-based sensor fusion system; the other isthe kinematics-based sensor fusion system.

The observer-based method needs a vehicle model and less number of sensors. On the contrary,

the kinematics-based method does not require a vehicle model but needs more sensors. Since the state

estimation accuracy of the observer-based method greatly relies on the incorporated model accuracy,

the observer-based method is less preferred as compared with the kinematics-based method. Lots of

kinematics-based sensor fusion systems employ a GPS and an IMU (three-axis accelerometer and

three-axis gyroscope) to measure 6 degree-of-freedom (DOF) motions of an object. This sensor

fusion system has been widely used in many applications, such as aircraft systems [15], ships [16],

and road vehicles [17–19]. However, it has some drawbacks when applied to road vehicles. First, the

rotation angles obtained by integrating the angular rates may suffer from the initial value ambiguity

problem and the error accumulation problem. Second, both GPS and IMU are inertial sensors. Thus,

the vehicle attitude and road angles are mingled together inthe GPS and IMU measurements. Third,

the measurement accuracy of the GPS is inadequate to determine the vehicle displacement in the

vertical direction.

From pervious discussion, it can be concluded that a precisevehicle model is important for the

accuracy of the dynamics prediction. How precise this vehicle model can be is determined by

the accompanied sensor fusion system that provides currentvehicle state values both for the state

propagations and for the real time identification of vehicleparameters. In our previous work [20],

we propose a kinematic based senor fusion system that employs a three-antenna global positioning

system (GPS), an inertial measurement unit (IMU), and four suspension displacement sensors. This

sensor fusion system can obtain the 6 DOF vehicle dynamics and two road angles. Based on this sensor

system, we develop a vehicle dynamics prediction system in this paper using a vehicle model that is

more complicated than most of the existing approaches. Moreover, the parameters of this vehicle model

that may change in different driving conditions are identified in real time. In this paper, the dynamics

prediction procedures, the parameter identification algorithms, the parameter observability, the SNR

influence, and the prediction accuracy are all discussed in detail.

2. Euler Angles and Coordinate Systems

Three coordinate systems are introduced to describe a vehicle moving on a sloped road (see, Figure1).

These three coordinate systems are: global frame{g}, road frame{r}, and vehicle frame{v}. Similar

to conventional research, the global frame is fixed to a pointon Earth, while the vehicle frame is fixed

to the center of gravity (CG) of the vehicle and rotates with the vehicle. The additional road frame is

introduced to describe the vehicle dynamics on a sloped road, which is fixed to a road and rotated with

the road terrain.

Three sets of Euler angles are used to describe the relationships between any two out of three

coordinate systems. The first set of Euler angles (ψg, θg, φg), which are referred to in this paper as

the “absolute yaw angle”, “absolute pitch angle” and “absolute roll angle”, are used to describe the
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absolute attitude of the vehicle (global framevs. vehicle frame). The rotation order of this set of Euler

angles is yaw-pitch-roll. Its direction cosine matrix (Cv
g) can be written as follows:

Cv
g = R(x, φg)R(y, θg)R(z, ψg) (1)

R(x, φg) =







1 0 0

0 cos(φg) sin(φg)

0 − sin(φg) cos(φg)







R(y, θg) =







cos(θg) 0 sin(θg)

0 1 0

− sin(θg) 0 cos(θg)







R(z, ψg) =







cos(ψg) sin(ψg) 0

− sin(ψg) cos(ψg) 0

0 0 1







Figure 1. A schematic plot a vehicle and four coordinate systems (global frame, road frame,

vehicle frame and auxiliary frame).
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The second set of Euler angles (θr, φr, ψr), which are referred to in this paper as the “road grade

angle”, “road bank angle” and “road curve angle”, are used todescribe the road grade profiles (global

framevs. road frame). The rotation order of this set of Euler angles ispitch-roll-yaw. Since a vehicle

may move on a terrain irrelevant to the human-defined road path, it is impossible to determine the road

curve angle from vehicle dynamics. Thus, it is assumed to be zero (ψr = 0) for simplicity. Its direction

cosine matrix (Cr
g) can be written as:

Cr
g = R(z, ψr)R(x, φr)R(y, θr) (2)

The third set of Euler angles (ψv, θv, φv), which are referred to in this paper as the “vehicle yaw

angle”, “vehicle pitch angle” and “vehicle roll angle”, areused to describe the vehicle attitude relative to a
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road plane (road framevs.vehicle frame). The rotation order of this set of Euler angles is yaw-pitch-roll.

Its direction cosine matrix (Cv
r ) can be written as:

Cv
r = R(x, φv)R(y, θv)R(z, ψv) (3)

Since two sets of Euler angles are enough to describe the relationships between three coordinate

systems, complying with the above angle definitions, the following relationship can be established for

these angles:

Cv
g = Cv

r C
r
g (4)

An additional auxiliary frame (aux-frame) is obtained by rotating the z-axis of the road frame until

the x-axis of the road frame is aligned with the x-axis of the body frame. The aux-frame is used because

it describes vehicle translational motions in an intuitivemanner while preserving the information of

other vehicle dynamics relative to the road level. In the following vehicle modeling, vehicle translational

motions are described in the aux-frame, and the rotational motions are described by anglesψv, θv, φv.

3. A Sensor Fusion System for Road Vehicles

Since lots of the vehicle dynamics cannot be directly measured by individual sensors, a sensor fusion

system is constructed to obtain the vehicle dynamics on a sloped road. The proposed sensor fusion

system consists of a group of sensors, a kinematic model related to those sensor outputs, and a state

estimation algorithm. They are discussed in the following.

3.1. Sensor Selections

3.1.1. Three-Antenna GPS System

Different from a conventional GPS system, a three-antenna GPS is used here because it not

only provides absolute position measurements (xgpsg , ygpsg , zgpsg ) but also absolute angle measurements

(φgps
g , θgpsg , ψgps

g ). Both information are relative to the global frame, and thereported angle measuring

error is approximately 0.1◦ from a test vehicle [21,22].

3.1.2. Suspension Displacement Sensors

Four suspension displacement sensors are installed at fourcorners of a vehicle. The suspension

deflection can be related to the vehicle attitude and vertical displacement of the vehicle CG, both relative

to the road frame:

zsusr =
−lr(H

sus
1 +Hsus

2 )− lf(H
sus
3 +Hsus

4 )

2lf + 2lr
(5)

θsusv = sin−1

{

Hsus
1 +Hsus

2 −Hsus
3 −Hsus

4

2lf + 2lr

}

φsus
v = sin−1

{

−Hsus
1 +Hsus

2 +Hsus
3 −Hsus

4

(2tf + 2tr) cos θv

}

where the superscript (sus) denotes the physical quantities measured by the suspension displacement

sensors;zr is the vertical displacement of the vehicle CG observed in the road frame{r}; Hi represents
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the displacement of suspension at the corneri; the subscript (i) refers to four suspension corners in a

way: 1→ front-left, 2 to 4 in a clockwise direction;lf andlr are the distances from CG to the front and

rear axis, respectively;tf andtr are one half of the distances of the front and rear track, respectively.

3.1.3. Inertial Measurement Unit

An IMU sensor is installed at the center of gravity of the vehicle to measure the 6 DOF movements.

They are used here to improve the estimation accuracy of the vehicle dynamics.

3.2. A Kinematic Model

As discussed in this paper, three sets of Euler angles (nine angles in total) parameterize this vehicle

attitude determination system. The relationships stated in Equation (4) provide three constrained

equations; the 3-antenna GPS system provides the measurements of three absolute vehicle angles

(φg, θg, ψg); the measurements from suspension displacement sensors provide the values of two vehicle

attitude (φsus
v , θsusv ); the road curve angle is assumed to be zero (ψr = 0). Therefore, even without a

kinematic model, those nine angles can be solved.

In addition to the angle measurements above, the vehicle rotational dynamics are also present in the

IMU measurements, GPS position measurements, and suspension displacement measurements. In order

to improve the robustness and accuracy of the angle determination, all the sensor measurements should

be used. Thus, the estimation of vehicle dynamics is done forthe rotational dynamics and translational

dynamics simultaneously. In that case, since Equation (4) provide three constrained equations, six angles

must be employed as system states to describe the vehicle attitude, and those six angle states are chosen

as (φg, θg, ψg, φr, θr, ψv) for the ease of subsequent fusion algorithm derivation. Furthermore, in

order to apply existing state estimation techniques to thisproblem, the “governing equations” of these

unknown angles must be obtained beforehand and added to the conventional kinematic model. Since it

is impractical to either use additional sensors to measure the change rate of the last three angles or obtain

this information for a specific case, the change rates of the last three angles are assumed to be zero.

φ̇r = 0 (6)

θ̇r = 0

ψ̇v = 0

Thus, a kinematic model that can coordinate the outputs of IMU, GPS and suspension displacement

sensors is:
ẋ = f (x,u) (7)

= Fx +Gacc







Aacc
x

Aacc
y

Aacc
z






+Ggyro







ωgyro
x

ωgyro
y

ωgyro
z







x =

[

xg, yg, zg, ẋg, ẏg, żg, φg, θg, ψg, . . .

φr, θr, ψv

]T
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u=
[

Aacc
x , Aacc

y , Aacc
z , ωgyro

x , ωgyro
y , ωgyro

z

]T

F=

[

03×3 I3×3 03×6

09×12

]

Gacc =
[

03×3 Cv
g
−1 06×3

]T

Ggyro =
[

03×6 Cω
−1 03×3

]T

Cω =







1 0 − sin θg

0 cosφg cos θg sin φg

0 − sin φg cos θg cosφg







where (Aacc
x , Aacc

y , Aacc
z ) represents the measurements from a three-axis accelerometer;

(ωgyro
x , ωgyro

y , ωgyro
z ) represents the measurements from a three-axis gyroscope;(xg, yg, zg) and

(ẋg, ẏg, żg) represent position and velocity observed in the global frame; Cω describes the relation

between angular rate and rate of change of Euler angles, which can be found in [23].

3.3. State Estimation Algorithm

For a dynamics model shown in Equation (7), a state observer that can estimate each state value is

constructed as follows:
˙̂x = f (x̂,u) + L (h(x)− h(x̂)) (8)

where the(ˆ) denotes the estimated state value;h(x) is the system output equation;L is the matrix of

observer gains. In this paper, the extended Kalman filter is chosen as the state estimation algorithm to

calculate the observer gain. The standard procedures of theextended Kalman filter can be found in [11].

The system output equationh(x) in Equation (8) is carefully chosen as follows to ensure the system

observability.

h(x) =
[

y
gps
1 , ygps

2 , ysus
1 , ysus2

]T

(9)

y
gps
1 =

[

xgpsg , ygpsg , zgpsg , φgps
g , θgpsg , ψgps

g

]

y
gps
2 =

[

Cv
g(1, 1), C

v
g(1, 2)

]

=
[

Cv
rC

r
g(1, 1), C

v
rC

r
g(1, 2)

]

ysus
1 =

[

Cv
r (1, 3), C

v
r (2, 3), C

v
r (3, 3)

]

=
[

Cv
gC

r
g
−1(1, 3), Cv

gC
r
g
−1(2, 3), Cv

gC
r
g
−1(3, 3)

]

ysus2 = zsusr

= Cr
g(3, 1) xg +Cr

g(3, 2) yg +Cr
g(3, 3) zg

whereC(m,n) denotes the element in themth row and thenth column of the matrixC. The output

equationygps
1 provides the locations and attitude of the vehicle in the global frame and its values is

obtained from the measurements of a three-antenna GPS. The output equationygps
2 is a function of

(φr, θr, ψv) and its values are calculated from the measurements of a three-antenna GPS. The output
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equationysus
1 is a function of (φr, θr) and its values are calculated from the measurements of the

suspension displacement sensors. The output equationysus2 is related to a function of (φr, θr) and

(xg, yg, zg) and its values are then calculated from the measurements ofthe suspension displacement

sensors in Equation (5) and three-antenna GPS.

It should be emphasized that the (y
gps
2 , ysus

1 ) are two sets of output equations, and each consists

of 2 to 3 nonlinear algebraic equations. Each equation consists of multiplication terms of two or more

trigonometric functions from the corresponding directioncosine matrix. In most cases, only one equation

in each set of output equations is enough to ensure the observability of state estimations. However,

since it involves multiplications of trigonometric functions, the estimation would fail at certain angles.

Therefore, redundant equations are used to ensure the success at all angles.

3.4. Multi-Rate Kalman Filter

Since the outputs of the GPS, IMU and suspension displacement sensors are unsynchronized and

contaminated by different noise characteristics (see Table 1), instead of using a conventional extended

Kalman filter, a multi-rate extended Kalman filter [24] is chosen to coordinate these sensor outputs. The

algorithm of a multi-rate Kalman filter is similar to that of aconventional extended Kalman filter with

the only difference in correcting the estimated state values. When the GPS measurement is available,

the estimated state value is updated by the measurements of the GPS and the suspension displacement

sensors. When the GPS measurement is unavailable, the estimated state value is updated only by the

measurements of the suspension displacement sensors. It isdone by the following:

when GPS measurements are available,

h(x) =
[

y
gps
1 , ygps

2 , ysus
1 , ysus2

]T

(10)

h(x̂) =
[

ŷ
gps
1 , ŷgps

2 , ŷsus
1 , ŷsus2

]T

when GPS measurements are unavailable,

h(x) =
[

01×6, 01×2, y
sus
1 , ysus2

]T

(11)

h(x̂) =
[

01×6, 01×2, ŷ
sus
1 , ŷsus2

]T

3.5. Alpha-Beta Filter

The above state estimation process can provide noiseless information for the displacement, velocity,

and attitude of the vehicle, but not for the angular velocityand accelerations. Without this information,

the subsequent vehicle parameter identification can be muchcomplicated. Potentially, the angular

velocity and accelerations can also be obtained from Kalmanfiltering by including those two states

as system states in Equation (7). However, this approach may need a fictitious noise and increase the

computation complexity. Hence, the alpha-beta filter is used to obtain the values for the angular velocity

and acceleration.



Sensors2012, 12 15786

Table 1. Sensor output rates and noise characteristics.

Output Noise

frequency Standard deviation

GPS 5 Hz 0.4◦

(attitude measurement)

GPS 5 Hz horizontal: 1m

(position measurement) vertical: 3m

Suspension 1 Hz 0.001m

displacement sensor

Accelerometer 1 kHz 0.02m/s2

Gyroscope 1 kHz 0.08◦/s

Tachometer 1 kHz 2◦/s

The measurement bias is not considered.

The alpha-beta filter is a steady-state filter for noisy signals. Its algorithm is shown as follows:

x̂α(k + 1) = Aαx̂α(k) +Kα(k + 1) [z(k + 1)− ẑ(k + 1)]

Aα =

[

1 Ts

0 1

]

(12)

Kα(k + 1) =
[

α, β/Ts

]T

where x̂α is a set of state vector for a two-dimensional model;z is the measured first dimensional

state; ẑ is the estimated value ofz; Aα is the system matrix of the two-dimensional model;Ts is

the sampling period; the feedback gainsα andβ are chosen empirically. The detailed information of

alpha-beta filters can be found in [11]. For example,̂xα can be chosen as[ωx, ω̇x]
T; the corresponding

z is the measured rotational velocity from the gyroscope (ωgyro
x ). Thus, through the alpha-beta filter,

the rotational acceleration can be obtained without the direct differentiation.

4. A Vehicle Model for the Dynamics Predictions

As mentioned earlier, a dynamics prediction system needs a precise vehicle model. Furthermore,

some of the parameters in that vehicle model should be identified in real time. To meet both requirements,

we propose the following vehicle model for the dynamics prediction, which consists of 6 DOF vehicle

dynamics, road angles, tire-road friction, nonlinear suspension,etc.

mtot(ẍa − ẏaψ̇v) = Fx,tire +mtotGx (13)

mtot(ÿa + ẋaψ̇v) = Fy,tire +mtotGy

mtotz̈a = Fz,spring +mtotGz
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Ixω̇x = (Iy − Iz)ωyωz +Mx

Iyω̇y = (Iz − Ix)ωzωx +My

Izω̇z = (Ix − Iy)ωxωy +Mz

Iωω̇i = −riFa,tire,i + Ti (i = 1 ∼ 4)






Gx

Gy

Gz






= R(z, ψv)R(x, φr)R(y, θr)







0

0

−g







whereg is the Earth gravity;(xa, ya, za) represents the three-axis displacement of the vehicle CG

observed in the aux-frame; (Fx,tire, Fy,tire, Fz,spring) are the translational forces generated by tires and

suspension systems; (Mx, My, Mz) are the external torques acting on the vehicle CG along three

axes of the vehicle frame, which are the functions of forces (Fx,tire, Fy,tire, Fz,spring), vehicle attitude

(ψv, θv, φv), and vehicle geometry [25]; (Ix, Iy, Iz) are the moment of inertia of the vehicle body along

three axes of the vehicle frame; (ωx, ωy, ωz) are the rotational velocities of the vehicle body along three

axes of the vehicle frame;ωi represents the angular rate of each tirei; Fa,tire,i is the longitudinal adhesive

force generated by tirei; Ti are the wheel torque transmitted to the tirei; ri is the effective rolling radius

of a tirei; Iω is the moment of inertia of a tire.

The suspension system is modeled as a nonlinear spring-mass-damper system. Thus, the translational

force generated by the suspension can be described as follows [7]:

Fz,spring,i = Ks,iHi +Ds,iḢi +mu,ig (14)

Ks,i = C1e
C2(Hi−C3) (i = 1 ∼ 4)

Hi =

{

Hi, for Hi > −mu,ig/Ks,i

−mu,ig/Ks,i, for Hi ≤ −mu,ig/Ks,i

whereKs,i is the spring stiffness of the suspensioni andC1, C2, C3 parameterize the stiffness;Ds,i is

the damper coefficient of the suspensioni; mu,i is the unsprung mass of the suspension corneri.

The adhesive force generated by tire is a highly nonlinear function of variables including slip ratios,

slip angles, vertical loads,etc.[26,27]. However, under normal vehicle maneuvering, the adhesiveforce

is almost linearly proportional to those variables. Thus, alinear tire model [13,14] is used to describe

the longitudinal and lateral tire forces (Fa,tire, Fb,tire) for simplicity.

Fa,tire,i = Cλ,iλi (15)

Fb,tire,i = Cα,iαi

whereCλ,i andCα,i are the tracking stiffness and the cornering stiffness of the tirei, respectively;λi and

αi are the slip ratio and slip angle, respectively. The translational forces represented in the x-axis and the

y-axis of the aux-frame (Fx,tire, Fy,tire) can be obtained as follows:

Fx,tire =
∑

(Fa,tire,i cos δi − Fb,tire,i sin δi) (16)

Fy,tire =
∑

(Fa,tire,i sin δi + Fb,tire,i cos δi).

Noted that two rear wheel angles (δ3, δ4) are zeros for a front-steer vehicle, and two front wheel

angles (δ1, δ2) are known values because they can be obtained by the steering wheel angle and the
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Ackerman principle [28]. The vehicle model for the dynamics prediction is thus constructed and shown

in Equations (13)–(16).

5. Vehicle Parameter Identification Systems

In this approach, the parameters shown in the vehicle model in Equations (13)–(16) needs to be

identified using the vehicle dynamics obtained from the sensor fusion system in Equation (7). Note that

the vehicle dynamics from the sensor fusion system is presented in the global frame, while the above

vehicle model is presented in the aux-frame. Thus, the estimated vehicle dynamics are transformed

into the aux-frame using the matrices shown in Equations (1)–(3), prior to the vehicle parameter

identification.

After feeding the vehicle dynamics, Equation (13) becomes a set of 10 linear equations with

12 unknown vehicle parameters. Hence, the number of the cornering stiffness is reduced from four

to two because the cornering stiffness is similar at two sides of the vehicle [13,14]. In that case, the

model of the lateral tire force is simplified as follows:

Fb,tire,f = Fb,tire,1 + Fb,tire,2 (17)

≃ Cα,f(α1 + α2)/2

Fb,tire,r = Fb,tire,1 + Fb,tire,2

≃ Cα,r(α3 + α4)/2

where

Cα,f = Cα,1 + Cα,2

Cα,r = Cα,3 + Cα,4.

5.1. Recursive Least-Square Algorithms

In order to apply the recursive-least-square (RLS) algorithm to identify vehicle parameters, the vehicle

parameters and the corresponding measured dynamics are rearranged into the following format:

QArlsWW−1x = Qb (18)

where,x represent the vehicle parameters;Arls andb are the vehicle dynamics both from direct sensor

measurements and the output of the sensor fusion system;Q is the weighting matrix;W is the scaling

matrix. By choosing matricesQ, W, and an initial guess of the vectorx, the vectorx is solved

recursively by the following steps [29]:

P(k + 1) = P(k)−P(k)AQ(k + 1)T [I+AQ(k + 1)·

P(k)AQ(k + 1)T
]

−1
AQ(k + 1)P(k)

xQ(k + 1) = xQ(k)−P(k + 1)AQ(k + 1)T ·

[Q(k + 1)b(k + 1)−AQ(k + 1)xQ(k)]

AQ(k + 1) = Q(k + 1)Arls(k + 1)W(k + 1)

xQ(k + 1) = W(k + 1)−1x(k + 1) (19)

whereP is the covariance matrix.
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5.2. Vehicle Parameter Identifications

The following vehicle parameters are identified using the above RLS algorithms: vehicle mass (mtot),

moment of inertia of the vehicle body (Ix, Iy, Iz), tracking stiffness (Cλ,1∼4), and the cornering stiffness

(Cα,f , Cα,r). These parameters are identified in real time because theirvalues can be changing in each

driving condition. The other vehicle parameters such as thespring stiffnessKs, the damper coefficient

Ds, the unsprung massmu, the rolling radius of tirer, and the moment of inertia of the tireIω are

assumed to be known values.

In this case, it is possible to manipulate the signal processing steps and formulate four independent

RLS problems for identifying the above ten parameters, which can greatly reduce the computation loads

and efforts of searching the optimalQ andW matrices. Those four independent RLS problems are “mass

identification”, “tracking stiffness identification”, “cornering stiffness identification”, and “moment of

inertia identification”.

5.2.1. Mass Identification

The translational dynamics in z direction in the vehicle model in Equations (13) and (14) can be

rearranged as:

q11Arls,1w11w
−1
11 x1 = q11b1 (20)

where

x1 , mtot

Arls,1 , ¨̂za − Ĝz

b1 ,

4
∑

i=1

KsH
sus
i +DsḢ

sus
i +mu,ig.

whereq11 andw11 are the elements in weighting and scaling matrices, respectively. Ḣsus
i is the derivative

of the suspension displacement and is obtained by the alpha-beta filter via the input from the suspension

displacement measurements.

5.2.2. Tracking Stiffness Identification

The wheel dynamics in the vehicle model in Equations (13) and (15)–(16) can be rearranged as:

Q2Arls,2W2W
−1
2 x2 = Q2b2 (21)

where

x2 ,
[

Cλ,1, Cλ,2, Cλ,3, Cλ,4

]T

Arls,2 , diag{−r1λ̂1, −r2λ̂2, −r3λ̂3, −r4λ̂4}

b2 ,

[

Iω ˙̂ω1 − T1, Iω ˙̂ω2 − T2, Iω ˙̂ω3 − T3, Iω ˙̂ω4 − T4

]T

Q2 , diag{q21, q22, q23, q24}

W2 , diag{w21, w22, w23, w24}.
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Noted that the matrixArls,2 is singular when one of the slip ratios is zero. It can be understood that

the tracking stiffness cannot be identified when there is no traction force. Moreover, the angular rates

of four tires are directly measured by tachometers (see Table 1) and conditioned by the alpha-beta filter.

The slip ratios are calculated using the measurements from the sensor fusion system and the tachometers.

The applying wheel torque is assumed to be obtained from torque sensors.

5.2.3. Cornering Stiffness Identification

The longitudinal and lateral dynamics in the vehicle model Equations (13) and (15)–(17) can be

rearranged as:

Q3Arls,3W3W
−1
3 x3 = Q3b3 (22)

where

x3 ,
[

Cα,f , Cα,r

]T

Arls,3 ,

[

− α̂1+α̂2

2
sin δ1+δ2

2
0

α̂1+α̂2

2
cos δ1+δ2

2
α̂3+α̂4

2

]

b3 ,

[

mtot(¨̂xa − ˙̂ya
˙̂
ψv − Ĝx)−

∑

Cλ,iλ̂i cos δi

mtot(¨̂ya + ˙̂xa
˙̂
ψv − Ĝy)−

∑

Cλ,iλ̂i sin δi

]

Q3 , diag{q31, q32}

W3 , diag{w31, w32}.

Noted that the matrixArls,3 is singular when the summation of the front (or rear) two slipangles

is zero or the summation of the front steering wheel angles iszero. Again, it can be understood that

the cornering stiffness cannot be identified when there is nolateral force. Moreover, the slip angles are

calculated using the measurements from the sensor fusion system and the steering wheel angle.

5.2.4. Moment of Inertia Identification

The rotational dynamics in the vehicle model in Equation (13) can be rearranged as:

Q4Arls,4W4W
−1
4 x4 = Q4b4 (23)

where

x4 ,
[

Ix, Iy, Iz
]T

Arls,4 ,







˙̂ωx −ω̂yω̂z ω̂yω̂z

ω̂zω̂x
˙̂ωy −ω̂zω̂x

−ω̂xω̂y ω̂xω̂y
˙̂ωz







b4 , [Mx, My, Mz]
T

Q4 , diag{q41, q42, q43}

W4 , diag{w41, w42, w43}

In Equation (23), the angular velocities and accelerations are provided bythe alpha-beta filter via the

input from the gyroscope measurements.
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6. Vehicle Dynamics Prediction

From a system observability viewpoint [30], if both the governing equations of a dynamic system and

state values at a time instant are given, the state values at any time instant can be calculated accordingly.

Stemming from this concept, one can predict the vehicle dynamics using a vehicle model and current

state values. In this case, the current vehicle dynamics is obtained from the sensor fusion system

shown in Equations (7)–(9); the vehicle model for propagating the current vehicle states is shown in

Equations (13)–(16); the parameters in that vehicle model is estimated using four RLS algorithms in

Equations (20)–(23). The block diagram of this signal processing is shown in Figure2.

Figure 2. Block diagram of the vehicle dynamics prediction system.
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7. Simulation Results

Numerical simulations are used to demonstrate the feasibility of the proposed dynamics prediction

method. In these simulations, a vehicle moves at a longitudinal speed of 90 km/h. The steering wheel

angles and the generated tire torques are both varying with time at the frequency of 1 Hz (see, Figure3).

The road bank angle is 2◦ and the road grade angle is−2◦. A full-state vehicle model, which is a

nonlinear 6 DOF vehicle model and consists of 20 states and road angles [7], is used to mimic the real

vehicle dynamics on this slope road. This full-state vehicle model differs from the vehicle model shown

in Equation (13) only in the tire model, wherein the nonlinear tire model “magic formula” [26] is used.

The selected sensors and their output characteristics are listed in Table1. The sampling frequency of the

simulations is 100 Hz. No other disturbance is applied to thevehicle system unless otherwise specified.

7.1. Vehicle Dynamics Estimations

The simulation results of the proposed sensor fusion systemare shown in Figure4, where the state

values from the full-state vehicle model are drawn in dashed-blue line, the sensor outputs are drawn in

dashed-dotted-green line, and the state values from the output of the sensor fusion system are drawn in

solid-red line. Simulation results indicate that the proposed sensor fusion system can accurately obtain

the 6 DOF vehicle dynamics and two road angles. The estimation error of each vehicle state, which
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is defined as the standard deviation of the difference between the simulated vehicle dynamics and the

sensor fusion outputs, is also shown in Figure4.

Figure 3. The driving maneuvers for the illustrative simulation. Theupper plot is the steering

wheel angle and the lower plot is the wheel torques applying on four tires. The frequency

is 1 Hz.
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Figure 4. Comparisons of the vehicle dynamics from the simulated vehicle dynamics, the

sensor outputs, and the sensor fusion system outputs. The vehicle dynamics are presented

in the global frame. The error standard deviations are calculated from the 5th second to the

10th second.
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7.2. Vehicle Parameter Identifications

The vehicle dynamics and sensor fusion outputs presented inthe global frame (show in Figure4)

are converted into the aux-frame and shown in Figure5. These state values, along with direct

sensor measurements conditioned by the alpha-beta filter, are used for the vehicle parameter

identification. The identification results are shown in Figures 6 and 7, where the identified vehicle

parameters are drawn in the solid-red line, and the real vehicle parameters are drawn in the

dashed-blue line. The “relative inaccuracy” of estimation, which is defined as (real value− identified

value)/(real value) [31], of the mass and moment of inertial are calculated to be(mtot, Ix, Iy, Iz)

= (5.17 × 10−3%, 0.12%, 5.05%, 4.37%). The estimation accuracy is good mainly because the

incorporated suspension displacement sensors are relatively accurate. On the other hand, as shown in

Figure7, the estimation of tracking stiffness and cornering stiffness do not converge well and because

there is no corresponding tracking stiffness and corneringstiffness in the full-state vehicle model. The

feasibility of the tire stiffness estimation is discussed in the next section.

Figure 5. Comparisons of the vehicle dynamics from the simulated vehicle dynamics and

the sensor fusion system outputs. The vehicle dynamics are presented in the aux-frame.
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7.3. Vehicle Dynamic Predictions

Continuing from previous simulations, the driver is assumed to hold still the steering wheel and the

gas/brake pedal at the time instant 10.25 s to do a left-hand turn on the road. The prediction system is

turned on at the 10.25 s to predict the vehicle dynamics for the next 4.75 s, using the vehicle dynamics

from the sensor fusion system at the 10.25 s and the vehicle model with the parameters identified from

Figures6 and7. Since the steering wheel and the gas/brake pedal are the same during 10.25 to 15 s,

both the vehicle dynamics and the prediction results duringthis period can be shown in the same plot for

comparison. In Figure8, the real vehicle dynamics are drawn in the dashed-blue line, and the predicted

vehicle dynamics are drawn in the solid-green line. According to the simulation results, the proposed

method can predict the vehicle dynamics accurately. The prediction error of each state can be found

in the plot. The relative-inaccuracy of this prediction, averaged from vehicle displacements (xa, ya, za)

and vehicle attitude (ψv, θv, φv), is 0.51%.
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Figure 6. The identification of the vehicle mass and moment of inertia.The mean values are

calculated from the 15th second to the 10th second.
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Figure 7. The identification of the tire tracking stiffness and cornering stiffness. The mean

values are calculated from the 15th second to the 10th second.
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In another example, the driver holds the steering wheel still but generate 1,000N ·m torques on two

tires on the right hand side (T2 = T3 = 1, 000 N · m). In that case, the vehicle is likely to rollover

due to the excess yaw moment applying to the vehicle. The simulation results (see Figure9) show

that the vehicle roll angle is larger than 90◦ at the 11.5 s, which indicates a rollover incident. The

dynamic prediction system can predict the rollover event. The relative-inaccuracy of this prediction is

27.3%, which is calculated from 10.25 s to 11.5 s and averagedfrom vehicle states including vehicle

displacements (xa, ya, za) and vehicle attitude (ψv, θv, φv). The prediction accuracy is worse than that

of the previous case. The reason is discussed in the following section.
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Figure 8. Predictions of the vehicle dynamics in a left-hand turn event. The prediction

inaccuracy is 0.51% on average, calculated from the 10.25thsecond to the 15th second.
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Figure 9. Predictions of the vehicle dynamics in a rollover event. Theprediction system

successfully predicts the rollover incident. The prediction inaccuracy is 27.3% on average,

calculated from the 10.25th second to the 11.5th second.
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8. Discussion

Although the vehicle rollover accident can be foreseen in this case, the prediction is a bit inaccurate.

According to the parameter identification results shown in Figures6 and7, this error is likely due to the

model difference used in the prediction process and in the simulated vehicle dynamics. In turns, it leads

to two possibilities: (1) the vehicle dynamics estimated from the sensor fusion system are not accurate

enough for the traction/cornering stiffness identification; (2) the adhesive tire forces in the rollover event
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are located in the nonlinear regime and the linear tire modelis inadequate to describe them. To clarify

this, Figure10presents the relation between longitudinal tire force and slip ratio, and Figure11presents

the relation between lateral tire force and slip angle. As shown in Figure10, the longitudinal tire force

estimated from the sensor fusion system (drawn in blue dots)and from the simulated vehicle dynamics

(drawn in green stars) are not the same. Thus, the sensor noise associated with the selected sensors does

affect the estimation of longitudinal dynamics to certain extent. In turns, the identified traction stiffness

(drawn in solid-black line) cannot be accurate. On the otherhand, as shown in Figure11, the lateral tire

force estimated from the sensor fusion system are close to the simulated vehicle dynamics. Thus, the

identified cornering stiffness is more accurate than the identified traction stiffness.

Figure 10. The relations between the slip ratio and the longitudinal tire adhesive force.
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Figure 11. The relations between the slip angle and the lateral tire adhesive force.
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The tire forces of two prediction cases are also shown in Figures10and11. The tire forces are drawn

in red circles for the left-turn event and in cyan squares forthe rollover event. The tire forces of the

left-hand turn event are very close to the forces calculatedfrom the identified traction/cornering stiffness,

except for the force at the rear-left tire. Thus, the prediction of the left-hand turn dynamics is quite

accurate. On the other hand, the tire forces of the rollover event are far from the forces calculated from the

identified traction/cornering stiffness. Thus, the prediction of the rollover dynamics is a bit inaccurate.

From above discussion, one may propose using nonlinear tiremodels, such as Pacejka’s magic

formula [26] or Dugoff tire model [27], for the friction coefficient identifications and dynamics

predictions. Our experiences show that it is possible to identify more parameters of a nonlinear tire model

as long as the nonlinear tire adhesive forces are present in the measured vehicle dynamics (persistent

excitation condition). However, the tire adhesive forces are within in the linear regime in most driving

conditions. In that case, including a nonlinear tire model in the identification process would not gain any

advantage but cause convergence problems.

This vehicle parameter identification is challenging mainly because the system has a low

degree-of-observability [32,33], and it gets worse when large amount of noise is present in the sensor

measurements. This effect can be investigated by the signal-to-noise ratio (SNR), where the signal is

referred to as the estimated vehicle dynamics from the sensor fusion system, while the noise is referred

to as the estimation error. To show how the SNR affects this parameter identification, we use the

identification of the moment of inertia as an example. As shown in Table2, the estimation error can

be minimized when the SNR is large, and the relative error approaches (1.94%, 2.68%, 0.33%) for (Ix,

Iy, Iz). The best estimation accuracy is limited by the numerical errors and the model errors from the

linear tire model assumption. To enlarge the SNR, either therange of vehicle dynamics needs to be

enlarged or the noise from the sensor measurement needs to beminimized. The vehicle dynamics cannot

have a large span due to its strong stability. On the other hand, using high-end sensors would reduce the

noise but incur higher cost.

Table 2. The relations between the estimation error of sensor fusionsystem and the relative

inaccuracy of the parameter identification.

relative inaccuracy Ix Iy Iz

infinite 1.94% 2.68% 0.33%

SNR 30 dB 2.50% 14.62% 1.52%

20 dB 14.91% 60.28% 10.41%

10 dB 69.05% 93.63% 54.11%

One alternative to improve this parameter identification isto increase the degree-of-observability by

choosing proper weighting and scaling matrices shown in Equation (19). To show the effectiveness of

this approach, we use the identification of the moment of inertia as an example and assume no noise in

the sensor measurement. The choice of weighting matrix (Q4) changes the minimum eigenvalue of the

estimation matrix (AT
rls,4Q

T
4Q4Arls,4) and results in different degree-of-observability [32,33]. Table3

shows the larger minimum eigenvalues of the resulting matrix, the better parameter observability and the

faster convergence rate of the parameter identification.



Sensors2012, 12 15798

Table 3. Different weighting matrices result in different convergence rate.

convergence ratea Ix Iy Iz

diag{0.625, 0.625, 0.625} 0.08 s 1.63 s 0.24 s

Q4
b diag{0.125, 0.125, 0.125} 6.19 s 18.2 s 3.32 s

diag{0.025, 0.025, 0.025} 36 s Nanc 25 s

diag{0.005, 0.005, 0.005} Nanc Nanc Nanc

a The convergent rate is defined at the time when estimated value reaches 90% of the real value.
b Q4 andW4 are both designed as a diagonal matrix.Q4 varies in each case,

whileW4 is kept the same as diag{1,1, 1}.
c The value “Nan” means that the convergence time is too long tocalculate.

9. Conclusions

A vehicle dynamics prediction system, consisting of a kinematics-based sensor fusion system and a

vehicle parameter identification system, is proposed and verified by simulation results. The sensor fusion

system can obtain the 6 DOF vehicle dynamics and the two road angles accurately. The estimation error

for each vehicle dynamics is shown in Figure4. The vehicle parameter identification system uses the

dynamics information from the sensor fusion system to identify ten vehicle parameters in real time.

The identification inaccuracy of the vehicle mass and momentof inertia is less than 5.05%. Using the

vehicle dynamics from the sensor fusion system and the vehicle model from the parameter identification

system, the prediction system successful predicts the vehicle dynamics in a left-hand turn event and

a rollover event. The prediction inaccuracy is 0.51% in the left-hand turn event and 27.3% in the

rollover event.

The prediction accuracy of the rollover event is worse than that of the left-hand turn event. It is mainly

because the identified linear tire model cannot accurately describe the nonlinear tire adhesive force in

the rollover event. Using a nonlinear tire model for the dynamics prediction is possible but not practical

in this case, because the nonlinear tire behaviors are not excited in normal vehicle maneuvers.

The prediction accuracy of two scenarios suggests that modeling error of the unsprung mass system

may greatly affect the accuracy of the parameter identification and thus the dynamics predictions.

Therefore, a detail modeling and/or real-time system identification of the unsprung mass system may

be needed to improve the feasibility of this approach. Besides, this research also shows that the vehicle

parameter identification is challenging because the systemhas a low degree-of-observability. Therefore,

increasing the SNR of the sensor systems and careful designsof the weighting matrix of the identification

algorithm are recommended.
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