
Sensors 2012, 12, 16988-17006; doi:10.3390/s121216988 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 
Article 

Grapevine Yield and Leaf Area Estimation Using Supervised 
Classification Methodology on RGB Images Taken under  
Field Conditions 

Maria-Paz Diago 1,*, Christian Correa 2, Borja Millán 1, Pilar Barreiro 2, Constantino Valero 2 
and Javier Tardaguila 1 

1 Instituto de Ciencias de la Vid y del Vino (CSIC, University of La Rioja, La Rioja Government) 
Madre de Dios, 51, 26006 Logroño, Spain; E-Mails: borja.millanp@unirioja.es (B.M.); 
javier.tardaguila@unirioja.es (J.T.) 

2 Department of Agricultural Engineering, ETSIA, Technical University of Madrid, Av. Complutense 
s/n Ciudad Universitaria, 28043 Madrid, Spain; E-Mails: ccorrea@udec.cl (C.C.); 
pilar.barreiro@upm.es (P.B.); constantino.valero@upm.es (C.V.)  

* Author to whom correspondence should be addressed; E-Mail: mpaz.diago.santamaria@gmail.com;  
Tel.: +34-941-299-760; Fax: +34-941-199-721.  

Received: 22 October 2012; in revised form: 5 December 2012 / Accepted: 6 December 2012 /  
Published: 12 December 2012 
 

Abstract: The aim of this research was to implement a methodology through the 
generation of a supervised classifier based on the Mahalanobis distance to characterize the 
grapevine canopy and assess leaf area and yield using RGB images. The method 
automatically processes sets of images, and calculates the areas (number of pixels) 
corresponding to seven different classes (Grapes, Wood, Background, and four classes of 
Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of 
representative pixels for every class in order to induce the clustering around them. The 
proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) 
images, acquired in a commercial vineyard located in La Rioja (Spain), after several 
defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no 
artificial illumination. The segmentation results showed a performance of 92% for leaves 
and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 
values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which 
operates with a simple image acquisition setup and guarantees the right number and kind of 
pixel classes, has shown to be suitable and robust enough to provide valuable information 
for vineyard management. 
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1. Introduction 

The great economic, social and environmental importance of the viticulture and wine industry 
worldwide encourages the development and application of innovative technologies aimed at objective 
monitoring vineyards to improve grape and wine quality.  

One of the historical main goals of the wine industry has been the accurate and objective estimation 
of the yield [1–3] and of the vineyard’s winegrape quality potential. More specifically, yield forecasting 
has been identified in recent years as one of the more profitable topics for scientific research in 
viticulture [4] as it could lead to more efficiently managed vineyards producing wines of better  
quality [5]. So far, most of the methods employed for yield estimation are destructive, labour and time 
demanding [6], or very expensive [7]. Similarly, the assessment of a vineyard’s winegrape quality 
potential has often been attempted by the use of vineyard score sheets [8–12] which required visual 
evaluation of several grapevine canopy variables, such as vigour, leaf status, exposed leaf area, canopy 
porosity and fruit exposure, all of them intrinsically related to final grape and wine composition and 
quality [13–19]. Consequently, there is a need for assessing the vineyard yield and winegrape quality 
potential by objective monitoring the grapevine canopy features, but customary methods for obtaining 
canopy measurements, such as the Point Quadrate [8] or LIDAR [20–22], though quantitative, are 
limited in their precision and practicality, either because they are time-consuming or expensive. Hence, 
new methods are required to assess grapevine canopy status, and image capturing and analysis may be 
an objective and potentially useful technique to replace time-consuming procedures and to provide 
useful information for more efficient grapevine canopy management.  

In recent years several studies, based on image processing, have been conducted in order to assess 
features of the vineyard canopies, like in [23–25] for general purposes and also for specific 
applications like disease detection [26], smart spraying [27,28] and yield estimation [29]. These studies 
were carried out in order to quantify features such as leaves, vine shoots, trunks and grapes. However 
these investigations required sophisticated equipment and specialized software for analysis and 
interpretation. A simpler layout for image capturing and processing for the assessment of grapevine 
canopy features was described in the works of Dunn and Martin [1], who estimated the yield, and  
of Tardaguila et al. [30,31]. In these works digital image analysis techniques applied to sample  
data from a defoliation study revealed quantitative descriptions of canopy biomass distribution,  
fruit exposure, cluster compactness, and treatment efficacy, although the image processing was not 
completely automated. 

Colour classification techniques in the Red Green and Blue (RGB) colour space can be divided into 
supervised and unsupervised [32]. In supervised methods, the number of classes is specified and the 
supervisor selects the prototype of these classes. Conversely, in unsupervised methods, the 
characteristics of the classes are unknown, and the classification algorithm ascribes membership in 
such a way that the elements in each class will exhibit similar characteristics and are more similar to 
each other, than with respect to elements of other classes. Supervised and unsupervised methods  
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have been used outdoors [33] and specifically for vineyard feature extraction aiming at vigour 
characterization [34]; grape clusters and foliage [27]; single grapes [35]; count ‘fruit pixels’ for yield 
estimation [1], or segregate grapes, leaves and shoots [36,37].  

In unstructured environments, such as an agricultural field, conditions are variable, so robustness of 
unsupervised algorithms may be at risk [32]. Therefore supervised classification techniques are of 
special interest in this field, since a training set can be prepared by a priori establishing what features 
will correspond to the elements of a class [38], which, in turn, reduces uncertainty and leads to the 
possible solutions. 

Our work aims to develop a fast, robust and inexpensive methodology for straightforward RGB 
image processing and interpretation, using images taken in the field, for grapevine canopy feature 
extraction that would enable accurate leaf area and yield estimation. 

2. Experimental Section  

To be able to correlate the estimated leaf area and yield data with real plant measurements, a 
detailed experimental setup for the acquisition of images was developed, based on successive 
defoliations and cluster thinning steps of individual vines.  

2.1. Experimental Site 

The experiments were conducted in 2010 in a commercial dry-farmed cv. Tempranillo (Vitis 
vinifera L.) vineyard, located in Casas Blancas, Cidamón (lat. 42°29'8.83'' N; long. 2°50'22.57'' W;  
181 m asl, La Rioja, Spain). Tempranillo vines were grafted onto 41B rootstock and planted in 2005 
following a between-row and within-row spacing of 2.70 m × 1.15 m respectively. The vines were 
spur-pruned (12 buds per vine) on a bilateral cordon and trained to a VSP trellis system. The trellis 
featured a supporting wire at 0.70 m, two wires at 1.00 m aboveground for protection against wind 
damage, and a pair of movable shoot-positioned wires at 1.45 m. 

2.2. Defoliation, Cluster Thinning and Assessment of Removed Leaf Area and Fruit 

In order to provide a good validation of the images’ classification method, at harvest (30 September 
2010), 10 vines were randomly chosen, and each of them was individually and successively defoliated 
and cluster thinned in several steps as shown in Table 1. After each step, the leaf area and/or fruit 
removed were also recorded. This way, a range of different conditions of leaf area and cluster exposure 
were created to provide a better validation of the image analysis methodology.  

The whole canopy of each vine was successively defoliated: first by removing the first six main 
basal leaves (step 1), then other six (in total 12 leaves) main basal leaves (step 3), and then the 
remaining main leaves and laterals (complete defoliation, or step 5). The number of leaves removed at 
each step was recorded and measured using a leaf area meter (LI-3100C; Li-Cor, Lincoln, NE, USA). 
Similarly, the whole canopy of each vine was successively de-fruited by thinning some clusters: first 
by removing every third cluster (step 2), then every second remaining cluster (step 4) and then the 
remaining clusters (step 6). The number of clusters removed and their combined weight was recorded 
after each cluster thinning event.  
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Table 1. Description of the defoliation and de-fruiting steps during the session of image 
acquisition of each individual vine.  

Image # Canopy manipulation event Image 

I0 Initial stage of the vine (step 0) 

I1 Removal of the first 6 basal leaves per shoot (step 1) 

I2 Removal of one third of clusters (step 2) 

I3 
Removal of additional 6 basal leaves per shoot 

(12 leaves removed in total) (step 3) 

I4 Removal of one third of clusters (step 4) 

I5 Removal of remaining main leaves and laterals (step 5) 

I6 Removal of all remaining clusters (step 6) 
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2.3. Image Acquisition 

Before any defoliation or cluster thinning, and after each canopy manipulation step, each vine  
(10 vines in total) was photographed with a conventional RGB camera (Pentax model K200D, Tokio, 
Japan) mounted on a tripod set normal to the canopy 2 m from row axis and 1.05 m aboveground. Note 
that, when the defoliation process was performed over highly dense canopies, the distance to the 
remnant foliage increased and consequently the objects size seemed to be reduced. In order to correct 
this problem, images were scaled to fit the images acquired at 2 m. In this way all images represented 
the same area. A white screen was placed behind the canopy to avoid confounding effects from 
background vegetation and no artificial illumination was employed. Images were captured at a 
resolution 3,504 × 2,336 and reduced to 800 × 600 in order to speed up processing time. For each 
individual vine a total number of seven images were taken (Table 1). 

2.4. Image Processing (Clustering Algorithm) 

Several measurements of similarity between groups in terms of multiple characteristics have been 
proposed in the literature [37], but the Mahalanobis distance has been found to be the most suitable in 
a majority of applications, and it is widely used for pattern recognition and data analysis [39]. It is now 
known that many standard distance measurements such as Kolmogorov’s variational distance, the 
Hellinger distance, Rao’s distance, etc. are increasing functions of Mahalanobis distance under 
assumptions of normality and homoscedasticity [40]. 

Mahalanobis measures the similarity between an unknown sample group and a known one; it takes 
into account the correlations of the data set, and it is scale-invariant. It also accounts for the fact that 
the variances in each direction are different as well as for the covariance between variables.  

The Mahalanobis distance between two random vectors ሺݔԦ, Ԧሻݕ  with the same distribution, and 
covariance matrix ܵ, can be defined as:  ݀ሺݔԦ, Ԧሻݕ ൌ ඥሺݔԦ െ ԦݔԦሻ்ܵିଵሺݕ െ  Ԧሻ (1)ݕ

The Mahalanobis colour distance standardizes the influence of the distribution of each feature 
considering the correlation between each pair of terms [41].  

In the case of RGB colour images ܵ is computed as:  ܵ ൌ ൥ߪோோ ோீߪ ோீߪோ஻ߪ ீீߪ ஻ோߪ஻ீߪ ஻ீߪ ஻஻൩ (2)ߪ

and the elements of S can be calculated as: 

where Ri,Gi,Bi are the values of the ith match (I = 1,2,3,...n), and ܴ, ܤ ,ܩ are the mean color values for 
R, G, and B in the given image, respectively. 

ோீߪ ൌ ோீߪ ൌ 1݊ െ 1 ෍ሺܴ݅ െ ܴሻሺ݅ܩ െ ሻ݊ܩ
݅ൌ0  (3) 
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Step 6 Assignation to class membership based on the rule that minimum distance from pixel to 
class reference pixels drives the allocation in a given class.  

Step 7 Performance of morphological operations over the Grape class. Removal of small  
pixels groups and filling “holes” inside the Grape cluster by using erode and dilate 
morphological operations, respectively. 

Step 8 Allocation of pixels to the Grape class only if they corresponded to the lower half of the 
image. e.g., If the image resolution was 800 × 600, the pixels to be considered as valid 
for the Grape class must be within the 400 to 800 position of the vertical axis. 

Step 9 Computation of the number of pixels for each class. 
Step 10 Saving the numerical results on a spreadsheet. 
Step 11 Saving the class images in a directory. 
Step 12 Displaying the class images on screen.  

2.6. Algorithm Validation  

A validation process for these specific grapevine canopy images was carried out. This validation 
was manually performed, selecting some ROIs on images that showed representative conditions of 
illumination and colours. Once the ROI was selected, the number of pixels for each class was manually 
counted by an expert, both on the original and the clustered image. 

2.7. Correlations. Leaf Area and Yield Estimation  

For leaf area and yield estimation, the set of images was divided into two groups: the training 
group, in which two thirds of data were used to generate the model, and the validation group, where 
the remaining one third of data was allocated for validation purposes. For the training group, linear 
correlations were run between the number of pixels of the Leaves and Grape classes in each image, 
and the actual leaf area and yield present in the vine at that time, respectively (SPSS v15.0, IBM, 
Armonk, NY, USA). Hence, these correlations were used to estimate leaf area and yield in the set of 
images of the validation group, and correlations between the estimated and observed (real) values for 
leaf area and yield were run, and the coefficients of determination (R2) and root mean squared error 
(RMSE) were computed. 

3. Results and Discussion 

3.1. Algorithm Validation 

Examples of the ROI (30 × 30 pixels) selected for the manual validation process of the algorithm 
are depicted on Figure 3. The manual validation showed a 98% of correct classification for the Grape 
class and a 92% for the Leaves (Young and Old leaves groups added). Most of the misclassifications in 
the Leaves’ groups were due to younger shoots and laterals, which exhibited almost the same green 
colour than leaves. 

As the Figure 4(a,b) and the manual validation process show, the classifiers performed very well 
without any image pre-treatment, such as improvement of contrast, brightness or colour adjustment. 
This is an important outcome, which makes the process simpler, compared to previous works where 
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3.2. Classifier Performance 

In order to illustrate the classifier’s performance, three images that were representative of the 
presence of misclassification errors were selected for detailing all generated classes. These images 
corresponded to three different defoliation stages and are presented in Figures 5–7. Likewise, in  
Figure 5, a non-defoliated, non-thinned grapevine image at step 0 illustrating Grape pixels misclassification 
errors was chosen.  

Figure 5. Classification example performed over a grapevine image of a non-defoliated, 
non-thinned vine (Image I0). (a) Original image. (b) Clustered image. (c) Vine wood.  
(d) Background. (e) Grape class, without morphological operations. (f) Grape class after 
morphological operations. (g) Zoomed area in part (e) showing small pixel groups 
misclassified. (h) Zoomed area in part (f) showing how the morphological operations 
removed the small pixel groups. (i) Old leaves grade 1. (j) Old leaves grade 2. (k) Young 
leaves grade 1. (l) Young leaves grade 2.  
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Specifically, erode and dilate consecutive operations over the Grape class were performed to eliminate 
these pixels as depicted on the Figure 5(f) (detailed in (h)). 

When the first defoliation step was performed (image I1), more clusters were exposed, the lighting 
conditions over the grapes improved, and consequently, their detection rate increased (Figure 6(a,b)). 
In Figure 6b, the Grape class appears in yellow, Wood class in dark blue, and the four classes of leaves 
(Young leaves grade 1, Young leaves grade 2, Old leaves grade 1, Old leaves grade 2), are presented in 
blue, light blue, cyan and red, respectively. When compared with the four Leaf classes shown in  
Figure 5, leaves in Figure 6 (classes (e) (f) (g) and (h)) were similar, showing that the classification 
algorithm was robust at segregating several foliar maturity stages when lighting conditions changed 
and defoliation was conducted.  

In this image (I1), the Grape class also showed a misclassification event, as in the left upper corner, 
enclosed in a red circle (Figure 6(b,c)) some leaves with a blue colouration induced by the spraying of 
a fungicide (copper sulphate) were confounded and considered as Grape pixels. In this case, the 
misclassification was not caused by a poor performance of the classification methodology, but by the 
hue similarity between the sprayed leaves and the Grape class. In this scenario, and to improve the 
global algorithm performance, pixels were classified as Grape pixels, only if they were located at the 
bottom half of the image. Also in the case of images with low variability of leaf types and adverse 
sunlight conditions, the algorithm showed adequate response and adaptability (Figure 7).  

Figure 7. Classification example performed over a grapevine image after the third 
defoliation stage (Image I5). (a) Original image. (b) Clustered image. (c) Grape class.  
(d) Bright background. (e) Dark background. (f) Vine wood. (g) Young leaves. (h) Old leaves.  
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After the final defoliation stage, only the vine shoots and remaining clusters were visible on the 
grapevine canopy (image I5, Figure 7(a)). Under these conditions, and as the background could not 
cover the entire area, the sky could be partially distinguishable, and the sunlight penetrated into the 
image scene creating shadows and bright areas over the background. To overcome this situation, two 
different classes of background were selected, and identified as Dark and Bright Background classes 
(Figure 7(d,e)) and the four classes of leaves described and identified in previous steps, were reduced 
to only two clusters: Old and Young leaves (Figure 7(g,h)). The complete classification performance is 
shown in Figure 7(b). 

Depicted on Figure 7(f), the Wood class included the vine trunk, shoots, and trellis wires. On the 
other hand, Figure 7(c) shows the Grape class, with preliminary misclassifications, enclosed in red in 
the upper part of the image, due to some pixels of blue colouration corresponding to the sky. This 
misclassification was also solved by considering as grape pixels only those located at the lower half of 
the image.  

3.3. Grape Yield and Leaf Area Estimation 

The correlation and validation curves for the estimation of leaf area and grape yield using the 
classification methodology and image analysis are shown in Figures 8 and 9, respectively. 

Figure 8. (a) Correlation between the actual leaf area (m2·vine−1) of the grapevine canopy 
in the images of the training set, and the number of pixels corresponding to the Leaf class 
computed by the classification methodology and image analysis. (b) Comparison between 
the actual values of leaf area (m2·vine−1) of the grapevine canopy in the images of the 
validation set, and the predicted leaf area values calculated with the correlation equation in 
(a). Dotted line is 1:1 line. 

(a) (b) 

The actual leaf area on the grapevines’ images and the number of pixels corresponding to the Leaf 
class were found to be strongly correlated, following a linear relationship (y = 0.1712x + 0.1863) with 
coefficient of determination R2 = 0.78 at p < 0.001 (Figure 8(a)). When this function was used to 
predict the leaf area of another set of grapevine images (validation set), the correlation between the 
observed and predicted leaf areas was very close to the 1:1 line (y = 1.0598x + 0.0117) and the values 
of R2 = 0.81 at p < 0.001 and RMSE = 0.745 m2 (Figure 8(b)). 
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Figure 9. (a) Correlation between the yield (kg) of the grapevines in the images of the 
training set, and the number of pixels corresponding to the Grape class, computed by the 
classification methodology and image analysis. (b) Comparison between the actual values 
of yield (g) of the grapevines in the images of the validation set, and the predicted yield 
values calculated with the correlation equation in (a). Dotted line represents the 1:1 line. 

(a) (b) 

The differences in foliar density of the imaged vines, as interpreted as more or less number of leaf 
layers, may have impacted the estimation of the grapevine’s leaf area by image analysis. In this way, in 
very dense canopies (with several superimposed layers of leaves) the initial defoliation steps (Images 
I1 and I3) might not have caused a significant “disappearance” of leaves from the image, as expected, 
so that the vine remained fully covered with leaves, and only until the defoliation stage 3 was reached, 
the observed grapevine canopy area was drastically reduced. In other words, for very dense canopies, 
the removal of leaves in the very early steps did not always mean lower estimated leaf area by  
image analysis. 

The images used in the present work corresponded to grapevines of medium to very dense canopies, 
in general, which seems to be the least favourable scenario for the estimation of leaf area by image 
analysis. However, the prediction of the leaf area from the model established by image analysis was 
very satisfactory, and it should be expected to perform better for grapevines with less dense canopies, 
as it is the case of low to moderate vigour vineyards. 

Furthermore, a reliable and accurate estimation of the grapevine leaf area at several timings during 
the growing season may be of great usefulness to the grapegrower to monitor the vegetative growth of 
the plant, and identify symptoms of several abiotic and biotic stresses, such as water stress and 
diseases pressure, respectively, in a dynamic way. Likewise, this information may also help the 
grapegrower in taking canopy management decisions to improve the balance between vegetative and 
reproductive growth. 

Regarding grape yield estimation, the correlation between the actual yield on the grapevines’ 
images and the number of pixels corresponding to the Grape class followed a linear relationship  
(y = 0.1787x + 0.611) with coefficient of determination R2 = 0.78 at p < 0.001 (Figure 9(a)).  

When this curve was employed to predict the yield of the images of the validation set,  
the correlation between the observed and predicted yield values was also close to the 1:1 line  
(y = 0.8907x + 0.253), with a R2 = 0.73 at p = 0.002, and RMSE = 0.749 kg (Figure 9(b)). 
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In dense and very dense canopies, grape clusters are typically covered with leaves, preventing them 
from being exposed to the sun and also visible to the human or machine vision. This fact, which 
occurred in the images of the initial non-defoliated, non-thinned grapevines (I0) and also in images 
corresponding to the first defoliation step (I1 and I2), seems to have impacted the performance of the 
yield prediction by the image analysis methodology, as the coefficient of determination values for 
yield estimation were smaller than those for leaf area prediction. 

Similarly to leaf area, the prediction of the grape yield from the model established by image 
analysis was satisfactory, and covered a broad range of grape exposure and visibility conditions, 
generated by the successive defoliation and grape thinning steps. When grapes in the canopy are 
partially covered by the leaves during maturation, and at harvest (especially in moderate to high vigour 
vineyards and in vineyards where defoliation was not performed or was only mildly performed) this 
method seems to be more applicative for leaf area estimation than yield. However, basal defoliation is 
a canopy management practice, widely conducted worldwide, between fruit-set and veraison, on one or 
two sides of the canopy, which is aimed at improving the fruit exposure for grape quality [15,17,44–47] 
and health purposes [48]. Since the visibility of the clusters is certainly increased after basal defoliation, 
the accuracy of the yield estimation by the classification methodology and image analysis presented in 
this work would significantly increase, hence allowing a very accurate yield prediction.  

A truthful estimation of the potential grape yield soon after veraison is very valuable information 
not only for logistical purposes at harvest (i.e., labour needs, winemaking capacity at the winery…) but 
also for economic reasons, especially when a wine producer has to buy grapes from other 
grapegrowers and suppliers, as the total grape yield of a given region or appellation area is an 
important driving force of the final grape price in a given vintage. 

4. Conclusions 

The methodology for canopy feature extraction and image analysis described in the present work 
has proved to be a useful and reliable tool for leaf area and yield assessment in the vineyard. It seems, 
though, more applicative to leaf estimation as grape visibility may be limited across the ripening 
period and harvest in non-defoliated, moderate to high vigour canopies. The setup proposed is simple, 
inexpensive and non-destructive for image-acquisition as only a commercial RGB camera is needed. 
The processing methodology has shown to be highly adaptable and robust to changes in illumination 
and in the distance to the targeted grapevine, which are two critical factors in machine vision 
applications under field conditions. 

The classification methodology allowed discriminating seven different classes, corresponding to 
seven types of canopy features in the grapevines’ images, although only the Leaf and Grape classes 
were successfully calibrated and validated against real plant measurements. The classifier’s 
performance for the identification of leaves and grapes was very high and their effectiveness exceeded 
the 90% in both cases.  

An accurate estimation of the grapevine leaf area and yield during the growing season by a fast and 
non-destructive method, such as the one described in this work, may provide very valuable information 
for the grape and wine industry for canopy management decisions, as well as for logistical and 
economical purposes, and can be further implemented for on-board analysis.  
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