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Abstract: In this report, we propose a novel framework to explore the activity interactions
and temporal dependencies between activities in complex video surveillance scenes. Under
our framework, a low-level codebook is generated by an adaptive quantization with respect
to the activeness criterion. The Hierarchical Dirichlet Processes (HDP) model is then applied
to automatically cluster low-level features into atomic activities. Afterwards, the dynamic
behaviors of the activities are represented as a multivariate point-process. The pair-wise
relationships between activities are explicitly captured by the non-parametric Granger
causality analysis, from which the activity interactions and temporal dependencies are
discovered. Then, each video clip is labeled by one of the activity interactions. The results
of the real-world traffic datasets show that the proposed method can achieve a high quality
classification performance. Compared with traditional K-means clustering, a maximum
improvement of 19.19% is achieved by using the proposed causal grouping method.

Keywords: video surveillance; scene analysis; topic model; point process; Granger causality

1. Introduction

Along with the developments of video surveillance systems, intelligent video analysis is a hot
topic that has attracted significant attention, such as [1–4]. Scene analysis is one of the most
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important aspects of an intelligent video surveillance system. Automatically scene analysis, especially
discovering activity interactions and temporal dependencies between them, is an active research area,
but it remains a challenging problem due to complex video surveillance scenes with multiple activities
occurring simultaneously. Currently, there are two main categories of approaches for discovering
activity interactions and their temporal dependencies. The first category of approaches is based on
probability inference. These methods typically use a Dynamic Bayesian Network (DBN), such as a
Hidden Markov Model (HMM), or a probabilistic topic model (PTM) [5–8], such as Latent Dirichlet
Allocation (LDA) [9], Hierarchical Dirichlet Processes (HDP) [10] and their extensions. The second
category is data driven and based on the Granger causality [11] approach. Zhou et al. [12] perform the
continuous-time Granger causality on pairs of trajectories to extract features for activity classification.
Prabhakar et al. [13] perform the non-parameter Granger causality analysis on pairs of visual events,
and demonstrate its effectiveness in exploring causal event sets without tracking. Based on the
above-mentioned studies, Yi et al. [14] present a framework that models human actions using temporal
causal relations of joint movements for human action classification. Nevertheless, both of their studies
are applied to human action analysis.

Most of the aforementioned studies are based on tracking, which is limited to situations in which
object tracking can be performed reliably. However, the successes of the topic model applied in
complicated scenes analysis offers an advantage in that they can work directly on low-level motion
features [5,6,8], e.g., optical flow, which avoids the unreliable detection and tracking. However, with
respect to codebook generation, a fixed quantization is often used in these studies, which lose necessary
resolution. Increasing the discretization resolution can reduce this loss but with a cost of increased
training data and computation time.

Our study builds on the success of the Granger causality applied to the analysis of visual events and
takes advantage of the topic model. A flow chart of the proposed framework is shown in Figure 1. To
create a temporal document from a video, low-level visual features are first detected and denoised. Then,
a new method is proposed for codebook generation using adaptive quantization. Rather than using these
words directly, low-level words are automatically clustered into topics (atomic activities) using the HDP
model. Then, the dynamics of the visual activities are represented as a multivariate point-process [15].
Specifically, the temporal documents are created by counting the number of occurrences of the activities
in each clip of the video. The pair-wise causal relationships between the atomic activities are then
explicitly captured using the non-parametric Granger causality [16]. Based on the causal analysis results,
the activity interactions and temporal dependencies are discovered, and a high quality classification
performance is achieved.

The contributions of this study are two-fold: First, an activeness criterion-based method is proposed to
determine the level of resolution of the optical flow quantization, and the low-level codebook is generated
by using adaptive multi-scale quantization. Specifically, the window size of the location quantization is
adaptive to the spatiotemporal characteristics. The second contribution is that the causality analysis is
incorporated with the topic model to automatically explore the activity interactions and temporal links
between them. Causal relationships between any pair of agents are established via the Granger causality
statistic, from which we can obtain an improved classification performance.
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Figure 1. Flowchart of the proposed framework.
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The remainder of this paper is organized as follows. In Section 2, a statistical denoise method
is proposed to obtain informative features. Then, a codebook with minimal size and adequate
discriminative power is constructed based on the adaptive quantization. In Section 3.1, the video is
interpreted as a point process based on the HDP model. The approach for the non-parametric Granger
causality is explained in Section 3.2. In Section 4, we present the experimental results along with
the analysis of the proposed approach for two real-world traffic sequences. Section 5 presents the
conclusions and discusses future studies.

2. Feature Extraction and Adaptive Quantization

2.1. Feature Extraction and Denoising

In this section, optical flow is detected for video representation because it is typically more reliable in
crowded scenes compared to the long-term trajectory in estimating various current activities. When
the magnitude of the flow is smaller than a threshold, the flow is deemed unreliable and removed.
Furthermore, the optical flow is denoised by determining whether it is informative for further analysis.

For each pixel position, the total of optical flow vectors in the video sequence are counted. The result
is a 2D matrix, and the matrix is divided by the total number of frames to obtain the probabilities. The
probability for each position is a measure to determine whether this position is active (useful dynamic
region). The pixel positions with extremely probabilities are deemed as a static region, while the pixel
positions with very large probabilities are regarded as a noise dynamic region. Therefore, the optical flow
vectors at these positions are discarded, which were not discarded by the magnitude threshold, because
they are uninformative for further analysis. Figure 2 shows the comparison of the optical flow spatial
distribution with and without statistical denoising for the intersection video sequence. It is evident that
the statistical denoising allows the optical flow spatial distribution to be similar to the actual situation.
For example, as shown in the Figure 2a, the probabilities become large in the areas labeled by red and
green circles; in actuality, they are stationary regions corresponding to buildings (see Figure 2c).
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Figure 2. Optical flow spatial distribution. (a) 3D map without and (b) with statistical
denoising; (c) scene image; (d) 2D map with statistical denoising.

(a) (b)

(c) (d)

2.2. Adaptive Quantization

In this section, a codebook is generated based on the denoised motion feature. To obtain a codebook,
the previous methods often spatially divide the scene into non-overlapping grids (e.g., 5 × 5 and
10 × 10), and the direction is quantized into four or eight directions. This discretization necessarily
causes spatial and directional resolution loss. The increasing discretization resolution can deduce this
loss, but it also results in an increase in training data requirements and computation time. Furthermore,
the fixed quantization does not consider the complexity of the motion in the actual scene.

To overcome the above limitations, we present a new method for codebook generation using adaptive
quantization. The advantages of the proposed approach include maintaining a minimal size codebook
with adequate discriminative power. Based on the observation, the optical flow spatial and directional
distribution s may not be uniform, especially when observed over a significant length of time. Thus, a
rough quantization will be used for the low activeness region. Furthermore, a fine quantization will be
used for areas of the region in which motions are complex. First, an activeness criterion for a block is
defined based on the flow density and diversity. The flow density of a block is defined as follows:

Fdensity =
N

S
(1)
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where S is the area of the grid and N is the total number of optical flow vectors in this region. The density
is then normalized by the maximum density value as follows: Dmax:

Sdensity =
Fdensity
Dmax

(2)

To compute the flow diversity for each grid, the optical flow directional histogram is first computed, and
the histogram is normalized as a vector H(d1, d2, ..., ...dM) . The number of bins in the histogram is M.
The diversity of flows in the block is measured by the KL divergence (relative entropy) [17] between H
and the union distribution as follows: U = 1/M (maximum entropy):

DKL(H ‖U ) =
M∑
i

di log( di
Ui

) =
M∑
i

di log(M · di) (3)

Lastly, the diversity score of this block is calculated as follows:

Sdiversity = 1− DKL(H ‖U )

logM
(4)

The diversity score lies within [0,1], and a high score indicates that the direction distribution has more
scatter. The activeness of the gird is measured by the combination of these two terms as follows:

A = µSdensity + (1− µ)Sdiversity (5)

where parameter µ is the the prior mixture parameter for the two terms, and A ranges from 0 to 1. The
first term on the right side in the above equation affects the flow density, and the second term affects the
flow diversity. In practical, the value of the parameter µ is determined by experience.

Our approach of location quantization is similar to the quad-tree segmentation. A flow chart of the
adaptive multi-scale location quantization is shown in Figure 3. The activeness of each initial block of
size (N × N ) is determined by comparing it to a threshold. If a block is sufficiently non-active, it is
not divided further. However, if a block is active enough, the block is divided into four sub-blocks of
identical size, the process is iterated on these four blocks individually. The process stops when each
block is regarded as non-active or the minimum block size is reached. Figure 4 shows the illustration of
the adaptive location quantization results for the intersection video sequence.

After location quantization, the direction is quantized based on the flow diversity. There are typically
two degrees of directional quantization: four directions or eight directions. For one block, if its diversity
score is larger than the predefined threshold, the direction in this block is clipped into eight. On the other
side, the direction is clipped into four bins. After performing the spatial and directional quantization, a
codebook is obtained with the size defined as follows,

Csize =
L∑
i

di (6)

where L is the total number of blocks, and di is the size of the directional quantization in block i. The
flow vectors from the sequence are mapped into one of the visual words. To establish a bag-of-words
representation, a video is temporally clipped into non-overlapping clips, and its corresponding visual
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documents are composed with the words accumulated over its frames. The activities will be represented
by co-occurring visual words.

Figure 3. Algorithm of the adaptive multi-scale quantization.
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Figure 4. Illustration of the adaptive location quantization results for the intersection dataset.

3. Causal Analysis

3.1. From Video to Multivariate Point-Process

3.1.1. Mid-Level Visual Words

Although the size of the codebook is decreased by the adaptive quantization, its dimension is still
high. In this section, the HDP [10] model shown in Figure 5 is used for clustering these low-level words
into topics (atomic activities). The HDP is a nonparametric hierarchical Bayesian model. The advantage
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of using the HDP model is that it can automatically provide the number of discovered topics (atomic
activities) that are deemed as mid-level visual words. Thus, the video can be represented in a more
compact way.

Figure 5. Hierarchical Dirichlet Process Model.
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There are two levels of the Dirichlet process (DP) in the HDP model, and the generative process is
given as follows:

• In the first level, the DP generates a global random measure G0 with concentration parameter γ
and base probability measure H as follows:

G0 | γ,H ∼ DP (γ,H) (7)

G0 can be formulated using the stick-breaking construction as follows:

π‘
k | γ,H ∼ beta (1, γ) θk |γ,H ∼ H

πk = π‘
k

∏k−1
l=1 1−π‘

l G0 =
∑∞

k=1 πkδθk
(8)

• In the second level, the DP generates random measures Gt for each clip dt with base probability
measure G0 as follows:

Gt | α,G0 ∼ DP (α,G0) (9)

Gt is a prior distribution of all the words in document dt, with only a subset of the topics in G0

active. It is formulated using the stick-breaking construction again as follows:

π̂‘
k |α,G0 ∼ Beta(1, α)

τk ∼Mult(π1, π2, ...) θ̂k |α,G0 = θτk
π̂k = π̂‘

k

∏k−1
l=1 1−π̂‘

l Gt =
∑∞

k=1 π̂kδθ̂k

(10)
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• For the observed words i ∈ {1, ...Nj} in document dt:
Draw a topic θt,i ∼Multi(Gt);
Sample a word xt,i ∼Multi(θt,i)

In the learning process, every low level word is assigned a topic identification. Furthermore a
document (video clip) dt is represented by the mixture Gt of topics. The discovered topics (atomic
activities) will be directly used in creating a multivariate point-process in the following section.

3.1.2. Multivariate Point-Process

For each video sequence, topics are detected and a multivariate point-process is generated by
considering each topic zi as a point event. By applying the HDP inference on low-level word documents,
the probability of topic zi in document dt can be estimated. The amount of occurrence of topic zi in the
time interval (t, t+ dt] is then defined as follows:

dMi(t) = Mi(t+ dt)−Mi(t) = nt · p(zi |dt ) (11)

where dt represents the time resolution; Mi(t) denotes the number of topics in the interval (0, t]; p(zi|d t)
is the probability of topic zi in document dt; and nt represents the total number of visual words in the clip.
The mean intensity of the process Mi(t) is defined as E{dMi(t)} = λidt , and the zero-mean process
Ni(t) = Mi(t) − λidt is considered as a point process. Therefore, these topics create a k-dimensional
multivariate point-process N(t) = (N1(t), N2(t), ..., Nm(t))T for a video sequence.

3.2. Causal Analysis

3.2.1. Nonparametric Granger Causality

In this section, a nonparametric estimation of Granger causality [16] for multivariate point processes
is used. This method bypasses the autoregression (AR) model fitting. The calculation process is given
as follows:

Given the multivariate point process, its spectral matrix is defined as follows:

S(f) =

 S1,1(f) ... S1,m(f)

... ... ...

Sm,1(f) ... Sm,m(f)

 (12)

where off-diagonal elements represent the cross-spectrum, and diagonal elements represent the auto
spectrum. The spectral matrix is estimated using the multitaper method [18], in which K Data tapers
{hk}Kk=1 are applied successively to the ith topic, and the Fourier transform is taken as follows:

Ñi(f, k) =
∫ T
0
hk exp(−2πift)dNi(t)

=
∑
j

hk(tj) exp(−i2πftj) (13)

Lastly, the spectral matrix elements Sij(f) are estimated in the following function [19],

Ŝij =
1

2πKT

K∑
k=1

Ñi(f, k)Ñj(f, k)∗ (14)
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The spectral matrix is factorized as follows: [20] :

S(f) = T (f)ΣT (f)∗ (15)

where T (f) is the transfer function between processes and is the noise process covariance. After spectral
factorizing, the Granger causality from Nj(t) to Ni(t) at frequency f is given by [21] as follows:

GNj→Ni
(f) = ln

(
Sii(f)

Sii(f)− (Σjj − Σ2
ij/Σii)|Tij(f)|2

)
(16)

Note that the measure is asymmetric, that is GNj→Ni
6= GNi→Nj

. A scalar measure of causality
between processes Nj(t) and Ni(t) can be obtained by integrating Equation (16) with respect to the
frequency, and the causal score can be obtained as follows:

C(j, i) =
∑
f

GNj→Ni
(f),∀i 6= j (17)

where C(i, i) = 0,∀i.

3.2.2. Causal Graph

To discover the interaction event sets, the pair-wise causal scores are first thresholded. The threshold
is computed using an empirical null-hypothesis testing framework [22]. Finally, the Granger causality is
represented by a directed graph, where nodes denote topics and edges denote the causal relations between
them. Generally, the relations between two topics (e.g., topic 1 and topic 2) may have four cases:

• Topic 1 → Topic 2 : Topic 1 drives topic 2.
• Topic 1 ← Topic 2 : Topic 2 drives topic 1.

In both of the above cases, we define these two topics as temporal causal topics.
• Topic 1 →← Topic 2 : There is a bidirection causal relation between these two topics

yielding the conclusion that the two topics are reciprocally coupled. We define them as temporal
concurring topics.
• Topic 1 × Topic 2 : There is no direct causal relation between these two topics.

4. Experiments and Discussions

In this section, the proposed algorithm was tested on three public video sequences: a street intersection
dataset (360 × 288, 25 fps, 1 h), a roundabout dataset (360 × 288, 25 fps, 1 h), and a subway platform
dataset (360 × 288, 25 fps, 40 min). Both the street intersection dataset and the roundabout dataset are
traffic videos governed by traffic lights in a certain temporal order selected from the QMUL dataset.
Thus, the sequence of activities exhibits spatial-temporal periodicity. Typically, there are several flows
at a time, and each flow may last for a period. The subway platform dataset is from the UK Home Office
i-LIDS dataset and has been reedited. This dataset is significantly different from the other two datasets. It
is captured indoors and mainly features humans and trains. The camera was mounted significantly lower
and closer to the objects. The typical behaviors in this scene include people leaving or approaching the
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platform, and people getting on or off the train. We assess the proposed method with both qualitative and
quantitative evaluations. First, we demonstrate that our analysis can explore the activity interactions and
temporal causal relationships. Then, we quantitatively evaluate the results of casual analysis through the
task of scene classification.

4.1. Activities Analysis

In this section, we apply our approach to extract the activities and then the activities are represented
by multi-point processes. Each video was temporally segmented into 3-s long clips. The optical
flows were computed and denoised. Furthermore, the optical flows were mapped into words based
on the adaptive quantization. Finally, the HDP was applied to learn a generative model of video
clips. During the learning process, this model effectively clusters concurring visual words into topics
(activities). Twenty-one topics were automatically discovered by the HDP model for the intersection
dataset, 26 topics were discovered for the roundabout dataset and 29 topics were discovered for the
subway platform dataset. The topics are represented by different colors and will be further analyzed to
search for temporal causality.

Figure 6a shows the motion distributions of the top eight topics (sorted by size) that explain at least
5% of all observations for the intersection dataset. Topics 1 and 5 describe vehicles moving upward
along different lanes. Topic 8 describes vehicles turning right. Topics 2 and 7 describe vehicles moving
downward but at different zones. Topic 3 describes the horizontal traffic flow from left to right. Topics
4 and 6 describe the horizontal traffic flow from right to left. Topic 6 may be shared by several activity
interactions. Based on these topics, the eight point-processes are constructed and shown in Figure 6b.

Figure 6. The experimental results on the intersection dataset. (a) Top: illustration of the
top 8 topics; (b) Bottom: the timelines of the top 8 topics.
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Figure 6. Cont.
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For the roundabout dataset, the motion distributions of the top 12 topics (sorted by size) that explain
at least 3% of all observations are shown in Figure 7a. Topics 1, 7 and 9 describe the upward traffic flows
along different lanes. Topics 3, 4 and 6 describe the horizontal traffic flows from left to right at different
zones. Topics 2 and 5 represent the horizontal traffic flows from right to left in near field. Topics 8, 10
and 11 represent the downward and leftward traffic flows in the far field. Topic 12 describes rightward
turning. Figure 7b shows the corresponding twelve point-processes.

Figure 7. The experimental results on the roundabout dataset. (a) Top: illustration of the top
12 topics; (b) Bottom: the timelines of the 12 topics.
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Figure 7. Cont.
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For the subway platform dataset, we select the top eleven topics (sorted by size) that explain at least
4% of all observations. As shown in Figure 8a, topics 1, 2, 5, 6 and 11 describe the people leaving the
platform. Topic 4 describes the motion of the train. Topics 8 and 9 represent the people getting on and
off the train respectively. Topics 3, 7 and 10 represent the people approaching the platform. Figure 8b
shows the corresponding eleven point-processes.

Figure 8. The experimental results on the subway dataset. (a) Top: illustration of the top 11
topics; (b) Bottom: the timelines of the 11 topics.
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Figure 8. Cont.
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4.2. Granger Causality Analysis

To automatically discover the activity interactions and temporal causal relationships between the
topics, the analysis of Granger causality analysis was applied to the processes of Figures 6–8. The
results are shown in Tables 1–3. Causal scores less than the threshold (0.6 for the intersection dataset,
0.7 for the roundabout dataset, and 0.5 for the subway platform dataset) are deemed as a no causal
relationship. Then, the causal matrixes are then interpreted as directed causal graphs. As shown in
Figure 9a, Figure 10a, and Figure 11a, nodes represent topics and edges denote detected pair-wise
relationships. It can be observed in Table 2 that topics 2, 5 and 11 have no causal relationships with
the other topics. This trend indicates that these three topics occur independently of the other topics.

Table 1. Causal matrix for the intersection dataset.

Topic 1 2 3 4 5 6 7 8

1 0.00 0.93 0.39 0.80 0.43 0.55 0.62 0.63
2 0.33 0.00 0.42 0.53 0.33 0.36 0.32 0.44
3 0.61 0.54 0.00 0.41 0.58 0.24 0.68 0.45
4 0.50 0.48 1.87 0.00 0.56 1.04 0.59 0.43
5 0.26 0.42 0.46 0.53 0.00 0.35 0.38 0.40
6 0.57 0.56 1.33 0.72 0.53 0.00 0.63 0.43
7 0.63 1.64 0.43 0.71 0.60 0.47 0.00 0.65
8 0.43 0.43 0.46 0.67 0.37 0.44 0.40 0.00



Sensors 2013, 13 13698

Table 2. Causal matrix for the roundabout dataset.

Topic 1 2 3 4 5 6 7 8 9 10 11 12

1 0.00 0.42 0.74 0.50 0.52 0.55 0.79 0.46 2.20 0.54 0.45 1.17
2 0.43 0.00 0.44 0.48 0.29 0.45 0.42 0.51 0.41 0.42 0.34 0.41
3 0.74 0.60 0.00 0.50 0.52 0.49 0.59 0.56 0.54 0.53 0.39 0.71
4 0.84 0.58 2.21 0.00 0.50 4.42 0.59 0.69 0.54 0.69 0.37 0.83
5 0.32 0.51 0.37 0.38 0.00 0.35 0.34 0.44 0.35 0.40 0.28 0.40
6 0.87 0.62 2.60 0.54 0.52 0.00 0.68 0.76 0.62 0.68 0.33 0.99
7 0.26 0.37 0.35 0.34 0.45 0.30 0.00 0.35 0.90 0.33 0.41 0.28
8 0.65 0.66 0.67 0.72 0.53 0.69 0.61 0.00 0.52 1.75 0.35 0.63
9 0.24 0.34 0.38 0.41 0.42 0.50 0.32 0.35 0.00 0.37 0.30 0.38

10 0 .52 0.55 0.69 0.72 0.52 0.75 0.53 0.34 0.49 0.00 0.28 0.53
11 0.27 0.24 0.32 0.30 0.34 0.28 0.30 0.50 0.30 0.37 0.00 0.29
12 0.39 0.50 1.23 0.61 0.44 0.54 0.46 0.53 0.55 0.47 0.31 0.00

Table 3. Causal matrix for the subway dataset.

Topic 1 2 3 4 5 6 7 8 9 10 11

1 0.00 1.47 0.33 0.31 0.28 0.20 0.29 0 .32 0.25 0.32 0.89
2 0.33 0.00 0.36 0.31 0.28 0.27 0.31 0.27 0.24 0.32 1.45
3 0.28 0.30 0.00 0.29 0.26 0.23 0.19 0.31 0.26 0.24 0.26
4 0.39 0.47 0.34 0.00 0.28 0.30 0.30 0.40 0.55 0.31 0.41
5 0.34 0.61 0.31 0.34 0.00 0.35 0.30 0.32 0 .35 0.39 0.52
6 0.81 1.02 0.27 0.30 0.28 0.00 0.30 0.31 0.60 0.23 0.86
7 0.32 0.28 0.69 0.36 0.28 0.25 0.00 0.79 0.29 0.30 0.24
8 0.32 0.35 0.66 0.33 0.41 0.29 0.27 0.00 0.34 0.22 0.34
9 0.38 0.75 0.32 0.26 0.30 0.31 0.33 0.31 0.00 0.30 0.73

10 0.31 0.38 0.27 0.32 0.24 0.27 0.59 0.53 0.36 0.00 0.43
11 0.34 0.43 0.30 0.34 0.29 0.28 0.23 0.35 0.30 0.29 0.00

In Figure 9a, a connection from topic 6 to topic 7 is observed, while another indirect connection from
topic 6 to topic 7 through topic 3 is observed. To distinguish the direct causal influence from the indirect
causal influence, the conditional Granger causality is computed. When topic 3 is in the on condition, the
causal score from topic 6 to topic 7 (0.56) falls below the threshold value (0.6). Therefore the connection
between topic 6 and topic 7 is spurious because of the mediated influence from topic 3. This connection
is removed in the Figure 9a. Similarly, the connections between topic1, 7 and 4 are also removed.

Based on the definitions of the relations between two topics (see Section 3.2.2.), we initially find two
temporal concurring topic sets: topics {1 7} and topics {4 6}. Then a main global temporal topic cycle
is discovered, i.e., topics {1 7} → {8} → {4} → {3} → {1 7}. Meanwhile, topics 1 and 7 co-cause
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topic 2, and topic 7 also causes topic 5. However, topics 2 and 5 have no causal influences on the other
topics. In conclusion, four activity interactions (states) are found:

• State A: topics {1 7 2 5};
• State B: topics {8};
• State C: topics {4 6};
• State D: topics {3};

Figure 9. Granger causality approach applied to the intersection dataset. (a) Top:
visualization of the temporal causal analysis. The connection between topic 6 and topic
7 is spurious because of the mediated influence from topic 3. Similarly, the connections
between topic1, 7 and 4 are also removed; (b) Bottom: a scene with traffic lights. Four states
are automatically found.
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Furthermore, then the temporal causal relationship between them is explored, as follows:
{1 7 2 5} → {8} → {4 6} → {3} → {1 7 2 5}.
The visualizations of the temporal groupings are shown in Figure 9b. It is evident that the

Granger causality results can identify the traffic light cycle governing the scene. Thus, four states are
automatically founded.

Compared to the intersection dataset, the scene from the roundabout dataset is more complex and
the video sensor is mounted significantly further from the objects. In Figure 10a, there are three sets
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of concurring topics: topics {8 10}, topics {4 6} and topics {1 3 12}. In conclusions, these topics are
grouped into three activity interactions (states):

• State A: topics{8 10};
• State B: topics{4 6};
• State C: topics{1 3 7 9 12};

Figure 10. Granger causality approach applied to the roundabout dataset. (a) Top:
visualization of the temporal causal analysis; (b) Bottom: a scene with traffic lights. Three
states are automatically found.
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The temporal relationship between them is given as follows:
{8 10} → {4 6} → {1 3 7 9 12}.
We determined that the proposed approach failed to detect the relationship between the State C

and State A because State A and State C would occasionally occur simultaneously. Therefore, the
complete traffic light cycle is not discovered. The visualizations of the temporal groupings are shown in
Figure 10b. Thus, three states are automatically founded.

Compared with the above two scenes regulated by traffic lights, the global temporal order in the
subway platform scene is not obvious. However, the local temporal orders of the activities are well
identified. To clarify, we construct three causal graphs, as shown in Figure 11a. Furthermore, the
corresponding six motion patterns are illustrated in Figure 11b.
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• State A: topics {4→ 9→ 2→ 11};
• State B: topics {6→ 9→ 2→ 11};
• State C: topics {6→ 1→ 2→ 11};
• State D: topics {5→ 2→ 11};
• State E: topics {1→ 7→ 8};
• State F: topics {1→ 7→ 8→ 3};

Figure 11. Granger causality approach applied to the subway dataset. (a) Left: visualization
of the temporal causal analysis; (b) Right: six motion patterns are automatically found.
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State A represents the behavior where people get off the train and leave the platform after the train
arrives. States B, C and D represent the motion of people leaving the platform along different lines. State
E represents the behavior of people approaching the platform and getting on the train. State F represents
the behavior of people traveling through the platform.

4.3. Scene Classification

To objectively measure the performance of the proposed approach, we use a scene classification task.
We select the intersection and roundabout datasets for this experiment. Based on the causal analysis
results, a causal grouping method is proposed for the scene classification. After the use of the HDP
model as a feature dimension reduction step, a distribution over topics is associated with each clip.
For causal grouping, we choose the same dominating topics (see Section 4.1) distribution to represent
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the clips. Then, the largest topic is selected for each clip, and we automatically predict the state in
which it belongs. Finally, the short video clips are grouped into different classes. The classification
performance of the proposed casual grouping method is compared with the K-means clustering method.
The K-means method (Bhattacharyya distance is adopted) directly clusters video clips based on the
topic distributions as feature vectors . The number of cluster centers of K-means is set to the same as
the causal grouping. After clustering, each cluster is manually identified to determine in which class
it belongs. In each case, the results are quantified in terms of the overall classification accuracy. To
evaluate the classification performance, a ground truth is created by manually labeling the whole video
clips into different typical interactions.

Table 4 shows the comparisons of the classification accuracy for the intersection dataset with different
quantization resolutions. For constant quantization, the optical flow directions are quantized into four
bins. For location quantization, there are five different resolutions(4 × 4, 8 × 8, 16 × 16, 32 × 32

and 64 × 64). In this experiment, the K-means technique is used as the classification method. It is
evident that with the adaptive quantization, the size of the codebook decreases while the classification
accuracy improves.

Table 4. The classification accuracy for the different quantization resolution.

Quantization Resolution 4*4 8*8 16*16 32*32 64*64 Adaptive

Codebook size 25,920 6480 1656 432 40 684
Overall accuracy 83.94% 83.04% 79.77% 76.40% 72.00% 87.07%

Tables 5 and 6 show the comparisons of the classification accuracy between the k-means clustering
method and our causal grouping method for the intersection and roundabout datasets respectively. For
the intersection dataset, the performance of the proposed approach is superior to the K-means clustering
in the case of classes A, C and D. However, in the case of class B, the causal grouping is inferior
to the K-means clustering. Similarly, for the roundabout dataset, the causal grouping method shows
a significantly better performance than the K-means clustering method, except for class A. However,
for the overall classification accuracy, the proposed approach always produces superior performance
compared to the k-means clustering. Particularly, as seen from Table 6, the K-means clustering only
obtains a 70.20% overall classification accuracy, while the causal grouping method is 89.39%.

As shown in Figures 12 and 13, the full classification performance is also evaluated using a normalized
confusion matrix. Our method results in a high true positive for most classes. However, it is also evident
that the true positives of class B (Figure 12a) and class A (Figure 13a) are not improved.

To provide further insights on the performance difference, the distribution over the atomic topics
for each class are analyzed. For the manual label and causal grouping, the average topic mixture of
each class is computed (without sorting). However, for the K-means method, the clustering centers are
chosen by itself. As shown in the first rows of Figures 14 and 15, the dominant topics for each class
are illustrated by the most likely visual words. In the other three rows, the topic mixture proportions
corresponding to each class are represented by bars. The x-axis is the index of atomic activities. The
y-axis is the mixture over atomic activities. Different colors indicate the different topics respectively.
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Table 5. The classification accuracy for the intersection dataset.

K-Means Clustering Causal Grouping

A 91.17% 98.59%
B 95.73% 64.02%
C 88.43% 96.30%
D 84.58% 87.75%

Overall 89.91% 91.16%

Table 6. The classification accuracy for the roundabout dataset.

K-Means Clustering Causal Grouping

A 96.49% 87.72%
B 80.00% 89.23%
C 52.85% 90.24%

Overall 70.20% 89.39%

Figure 12. The confusion matrix for the intersection dataset. (a) Causal grouping;
(b) K-means clustering.
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Figure 13. The confusion matrix for the roundabout dataset. (a) Causal grouping;
(b) K-means clustering.
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Figure 14. The topic distributions for the intersection dataset. The short video clips are
grouped into four clusters. Different colors indicate the different topics respectively.
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In Figure 14, (a) explains the traffic moving in a vertical direction; (b) represents turning traffic with
various vertical traffic; (c) and (d) represent the rightward and leftward traffic flows, respectively. Clearly,
topic 4 (topic 6 in Section 4.1) is shared among class B and C, but class B is only represented by topic 9
(topic 8 in Section 4.1); thus, it is easily misclassified as class C (see Figure 12a).

In Figure 15, (a) explains the leftward traffic flows; (d) represents the rightward traffic flows;
(c) represents the vertical with right turning traffic flow. As the shown by the first row in Figure 15,
topics 2, 4 and 10 (topics 2, 5 and 11 in Section 4.1) are independent of the other topics; they are always
present. Furthermore, topic 3 (also topic 3 in Section 4.1) is shared by both class B and class C, but
in Figure 10 class B does not include this topic. This trend results in a few real class B clips being
misclassified as class C (see Figure 13a). Overall, the topic distribution for each class of the causal
grouping method is more consistent with the manual label results, especially for class C.
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Figure 15. The topic distributions for the roundabout dataset. The short video clips are
grouped into three clusters. Different colors indicate the different topics respectively.
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5. Conclusions and Discussion

Scene analysis is a challenging problem in crowded outdoor environments, especially in situations
where multiple activities are occurring simultaneously. In this paper, we present a novel framework
to understand the complex scenes by exploring activity interactions and their temporal dependencies.
First, a statistical denoising method is proposed to select useful dynamic regions in the scene for further
analysis, and a codebook is generated using adaptive quantization. Next, we proposed an approach to
interpret the atomic activities explored by the HDP model as multivariate point process. By performing
the non-parameter Granger causal analysis on pairs of atomic activities, we can identify patterns of
activity interactions and temporal rules. Additionally, the result of the causal analysis is used as a feature
for scene classification which achieves high quality performance compared with the K-means clustering.
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In future studies, additional experiments on different datasets will be conducted to evaluate the
generalization of the proposed approach. Furthermore, the sensitivity to parameter settings is also a
question that will be considered and investigated. Moreover, during the causality analysis, in addition to
causal scores, the causal period should be considered to explore more exact topic interactions. We will
study more precise causal grouping algorithms and better usage of the causal analysis results.
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