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Abstract: Spraying techniques have been undergoing continuous evolution in recent 

decades. This paper presents part of the research work carried out in Spain in the field of 

sensors for characterizing vineyard canopies and monitoring spray drift in order to improve 

vineyard spraying and make it more sustainable. Some methods and geostatistical 

procedures for mapping vineyard parameters are proposed, and the development of a 

variable rate sprayer is described. All these technologies are interesting in terms of 

adjusting the amount of pesticides applied to the target canopy. 

Keywords: vineyard; spraying techniques; precision viticulture; LIDAR; ultrasound  

 

1. Introduction 

Crop protection is a key issue in farm management. It involves dealing with important risks and 

expensive pesticide products. Most of these products are to be applied by means of sprayers. Spraying 
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techniques have been continuously evolving in recent decades. However, it is not only the sprayer 

itself, but everything related to the application of plant protection products (PPP) that needs to be taken 

into account in order to improve the results obtained. What is the canopy like? What is the canopy 

volume? What is the leaf area to be sprayed? What technologies are available to help growers improve 

their spray applications in a more effective, efficient and sustainable way? 

In the 1980s, the term ―precision agriculture‖ was used for the first time. Sensors, agricultural and 

statistical techniques and technology were combined to improve farm management techniques. One  

of the contexts where precision agriculture has been widely implemented is vineyards, in what is 

known as ―precision viticulture‖. After some decades of rapid development, in this day and age when 

people are carrying around extremely powerful microprocessors and GPS receivers in their pockets, it 

seems reasonable to consider using these technologies to turn spray applications into a more 

sustainable operation.  

In the late 1990s, researchers from the Universitat Politècnica de Catalunya and the Universitat de 

Lleida focused their work on improving the spray application of PPP in vineyards and orchards. Some 

interesting results have been obtained with public funding coming from the Spanish Government and 

the coordination with other researchers from the Department of Agriculture of the Catalan 

Government, the Universitat Politècnica de València and the Institut Valencià d’Investigacions 

Agràries. In this paper, part of that work regarding the use of sensors to retrieve data from the vineyard 

canopies and to monitor the drift produced during the spray applications is reviewed. Some methods 

and geostatistical procedures for mapping vineyard parameters are proposed, and the development of a 

variable rate sprayer is described. After about two decades of development efforts, it is time now to put 

everything together and at the disposal of growers with the objective of improving the spray 

applications in Spanish viticulture. 

2. Sensors for Canopy Characterization 

The first step towards a crop-adapted application of PPP is the characterization of the vegetation to 

be treated. The information on geometrical and structural characteristics (height, width, volume, leaf 

density, leaf area, etc.) of plantations can help to optimize many agricultural tasks, such as irrigation 

and fertilization, as well as pruning and crop training techniques, among others. As far as pesticide 

applications is concerned, knowledge of the geometrical characteristics of the crop allows optimizing 

the dose of the applied product, and adjusting it to the characteristics of the plants, thereby obtaining a 

reduction of its environmental and economic impact [1]. 

Structural and geometric parameters of trees have been traditionally obtained using time-consuming 

and costly manual measurements, which are also destructive in the case leaves are removed to measure 

foliar surfaces. In recent years, different instruments and measurement systems for characterizing the 

canopy in a non-destructive, contactless, fast, accurate and repeatable way have appeared as 

alternatives to manual methods. The main systems used for the characterization of plants involve the 

use of electronic data acquisition systems associated with sensors based on different physical 

measuring principles. Other than ultrasound-based systems, most sensors are based on the use of 

electromagnetic radiation in certain spectral ranges or bands (visible, infrared, etc.). Ultrasonic sensors 

themselves, digital photography techniques, as well as stereoscopic vision and laser scanning sensors 
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(Light Detection and Ranging—LIDAR scanners), are probably the most widely used and promising 

techniques for characterizing tree crops [1]. Among the above, both stereoscopic vision systems and 

LIDAR sensors stand out for the possibility of providing three-dimensional models of plantations [1–3]. 

Digital cameras are low-cost, easy-to-use and popular instruments suitable for estimating some plant 

characteristics such as height, volume and leaf area index (LAI) with reasonable accuracy. However, at 

present, they do not allow accurate 3D characterization of plantations in real time because of the 

complex and time-consuming post-processing algorithms required. Stereoscopic systems provide 3D 

models by combining two monocular images taken simultaneously with a binocular digital camera by 

means of computational algorithms. These systems lose effectiveness under certain environmental 

conditions, especially in variable lighting situations. Meanwhile, both ultrasonic sensors and LIDAR 

systems base their operation on the measurement of the distance between an emitter and a target object 

using pulsed sound waves or laser light, respectively. The distance is determined by measuring the 

time taken for the pulse to travel the distance from the emission point to the detection point after 

reflecting off the object (ultrasonic sensors and time-of-flight LIDAR) or, alternatively, by measuring 

the phase difference between the incident and the reflected waves (phase-shift LIDAR). The main 

disadvantages of ultrasonic sensors come from their low spatial resolution, highly divergent sonic 

cones, lack of scanning systems and potential interference between proximal sensors [4]. On the other 

hand, due to their high speed of measurement, resolution and accuracy, LIDAR systems are becoming 

one of the most used sensors for characterizing vegetation. If, in addition, the measurements of these 

sensors are synchronized with their spatial coordinates obtained by geo-referencing systems (e.g., GPS), 

it is possible to obtain maps of the parameters of interest of the plots analysed: canopy volumes, LAI, 

crop foliage density, 3D crop model, etc. Figure 1 shows a 3D point cloud obtained in a vineyard by 

displacing a LIDAR sensor along an alley between two adjacent rows. 

Figure 1. Point cloud obtained in a vineyard by the displacement of a LIDAR sensor along 

an alley between 2 rows (different colors correspond to different beam orientation angles). 

 

However, it is still necessary to continue reducing the costs of sensors and associated electronics. It 

is also essential to develop suitable software programs for the post-processing of data, to increase both 
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the usability and speed of calculation to assist decision making. This will contribute to the expansion 

of the use of systems for characterization of vegetation in many agricultural practices, being the 

application of pesticides one of which more advances and improvements may incorporate. 

2.1. Measurement of Vegetative Volume 

The use of terrestrial LIDAR technology for the geometric characterization of vineyards has  

mainly been concentrated in the last 10 years [2,3,5–9]. Two-dimensional terrestrial laser-LIDAR 

scanners (2D TLS) make two-dimensional sweeps in just one measuring plane. The additional third 

dimension can be obtained by moving the LIDAR in a direction perpendicular to the scanning plane. 

Although 2D TLS systems are normally simpler and more affordable than 3D TLS systems, they tend 

to be less accurate, and it can be difficult to properly control the movement of the LIDAR when 

collecting the data. Currently, the measurement systems based on 2D TLS allow three-dimensional 

scanning of vines with horizontal and vertical distances between points (size of the scan mesh) below 5 

cm, and distance measurement accuracies of about 1 cm. To fully scan a row of vines, it is necessary to 

scan both sides of the row and unify both point clouds into a single coordinate system [3]. 

The 3D point clouds obtained provide a huge amount of data. These, once processed into 

appropriately formatted information, can be very useful in the precise application of PPP. An 

important variable is the volume occupied by the point cloud (Figure 2), the so-called tree row 

LIDAR-volume (TRLV) [4]. The TRLV depends on: (i) the real size of the vegetation; (ii) the shape 

and size of the scan mesh; and (iii) the position(s) of the sensor with respect to the vineyard. 

Figure 2. Resulting volume after processing the point cloud obtained with a 2D TLS 

dynamic measurement system in a vineyard. 

 

Since the main function of plants is photosynthesis, the distribution and position of the leaves is 

directly related to the availability of light. For this reason, the preferred position of leaves is normally 
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on the outer layer of the crown. With this precedent, in [6] the hypothesis that there must be a  

non-linear relationship between the TRLV and the leaf area density (LAD) is presented. 

For the calculation of the LAD in a section of the vineyard, one must know the TRLV and the leaf 

surface area. The latter is calculated by manually defoliating and measuring the surface of the leaves. 

The study reported in [6] reveals a good logarithmic fit between the TRLV and the LAD. According 

to the results, the LAD can be estimated from the TRLV. If the LAD is multiplied by the TRLV, the 

leaf area of the vegetation under study can be obtained. It is therefore concluded that by using the 

information provided by the LIDAR 3D Dynamic Measurement System, a good estimation of the leaf 

area in hedgerow vineyards can be obtained. 

Improvements in obtaining parameters related to geometric characterization such as TRLV, LAD or 

leaf area represent a major advance in improving the accurate application of PPP. 

2.2. Leaf Area Index Estimation by Using the Tree Area Index Parameter 

The LAI is defined as the one-side leaf area per unit of ground area and is probably the most widely 

used index for characterizing grapevine vigour. Currently, the LAI can be estimated using different 

types of sensors. Among the proposed technologies, vineyard leaf area can be indirectly estimated 

using ground-based laser sensors (or LIDAR systems) to obtain information about the geometry of the 

canopy [2,9,10]. Specifically, canopy volume is measured to subsequently obtain the total leaf area by 

an allometric relationship between both parameters. Faced with this procedure, [5] proposed to use the 

tree area index (TAI) to estimate the LAI in vineyards. 

The process for obtaining the TAI was explained in detail in [11] and was later adapted to vineyards 

by [5]. Adopting the reference system shown in Figure 3, the Oz axis (not shown) is parallel to the 

ground and in the direction in which the tractor-mounted LIDAR sensor moves. Thus, several scans 

can be obtained along the vine row, each of which results in a vertical semicircle in the plane Oxy. 

Finally, all interception points within the canopy are projected relative to the Oz axis onto a  

two-dimensional grid of polar cells in the Oxy plane (Figure 3). In particular, the overall projected 

cross-section of the canopy volume is divided into cells with equal angular increments of Δθ = 3° and 

equal radial increments of Δr = 100 mm. For each of the cells (k, j), it is possible to calculate the 

number of laser beams reaching the entrance side of the polar cell, nk,j, and the number of 

interceptions, Δnk,j, within the cell. The TAI is finally calculated using Equation (1): 
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where, apart from the parameters Δθ, Δnk,j and nk,j described above, W (m) is the distance between the 

vine rows, rj is the radial distance between the polar cell and the sensor position and δk,j is a binary 

variable that represents the presence or absence of foliage in each cell (δk,j = 1 when the coefficient 

Δnk,j/nk,j is greater than or equal to 0.01, and δk,j = 0 when the coefficient is less than 0.01). In fact, the 

TAI is formulated as the ratio between the crop area detected by the LIDAR sensor and the ground 

area. In their calculation, it is also assumed that the probability of the laser beam's transmission within 

the vines could be approximated by the Poisson probability model when sufficiently small distances 

(Δr) and a random spatial distribution of the leaves are considered. In any case, this approach allows 
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the laser beam interception through the canopy to be described using an extinction probability model, 

in a manner similar to how the light extinction that occurs within vines is described. 

Figure 3. Two-dimensional grid of polar cells for calculating the tree area index Each 

polar cell is defined by two coordinates (rj, θk). The first, rj, is the distance from the 

reference origin (LIDAR sensor), and the second, θk, is the angle between the Oy axis and 

the radial direction (clockwise). Hg is the height of the LIDAR sensor with respect to the 

ground (approximately constant, 1.65 m), and dt is the distance used to exclude intercepted 

points at ground and trunk level (with permission of the editor of Precision Agriculture). 

 

To validate this method, the LMS-200 laser sensor (SICK AG, Waldkirch, Germany) has been used. 

More detailed information on this sensor can be found in [5]. The operation of the sensor is based on 

using the time-of-flight (TOF) principle to estimate the distances to the leaves within the canopy. The 

vines are scanned from one side of the row, and the data provided by the sensor are the polar 

coordinates of each interception point, i.e., the radial distance (with an accuracy of ±15 mm in a  

single-shot measurement and 5 mm standard deviation in a range up to 8 m) and the angle of the laser 

beam (with an angular resolution of 1°). Data transfer from the sensor to a laptop is done via the  

RS-232 protocol using a MATLAB-based program for sensor control and data acquisition. The 

specific research conducted in a vineyard (cv. Merlot) in Raimat (Lleida, Spain) has made it possible 

to establish a model (Equation (2)) to estimate the leaf area using the TAI: 

1.2646 0.1935LAI TAI   (2) 

where LAI is the leaf area index (m
2
/m

2
) and TAI is the tree area index (dimensionless). The model can 

be applied to row lengths of 1 m, 2 m and 4 m, and has its main advantage in its applicability 

regardless of the side of the row from which the LIDAR reading is performed. Additionally, this 

method is non-destructive and does not require the use of allometric relationships. The disadvantages 

to this method are the large amount of data provided and the complexity of the algorithm used to 

calculate the TAI. 
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2.3. Electronic versus Manual Canopy Characterization 

The accuracy of electronic measurements has been widely evaluated, and several field tests have 

been developed to compare electronic canopy estimations with manual measurements. The authors  

of [12] compared ultrasonic and laser measurements of citrus canopy volumes with manual 

measurement methods. They concluded that laser measurements provided a better prediction of canopy 

volume than the ultrasonic system because of the inherent higher resolution, but in any case they 

recommended the use of both ultrasonic and laser sensors for automatic mapping and quantification of 

the canopy volume of citrus trees. Arnó et al. used a LIDAR sensor to evaluate the leaf area index in 

vineyards, and the results were compared with manual measurements [13]. They found a good 

correlation between both values, which allowed the creation of canopy maps for subsequent 

applications. Based on that evidence, and with the aim to evaluate the different electronic alternatives 

for canopy characterization in vineyards, a comparative research study was carried out by [9]. The 

overall goal of that study was to evaluate the applicability of ultrasonic and LIDAR sensors for 

mapping canopy structures of different varieties and crop stages in vineyards, and to correlate the 

measurements of the canopy characteristics using manual methods, LIDAR and ultrasonic sensors. 

Three different canopy parameters were manually measured in each field test: crop height, crop 

width and leaf area index. The measuring procedure was arranged according to [14], where the total 

canopy height was divided into three parts. For each of those parts, height and canopy width values 

were obtained. A partial leaf area corresponding to each of the three height levels was determined by 

applying the weight–area ratio obtained for every variety and crop stage. This ratio was determined by 

measuring the weight and surface area of 50 leaf samples collected from the bottom, middle and upper 

parts of the canopy in a randomized procedure, following the method described in [15]. The leaf 

surface (one side) was measured with a LI-COR LI 3100C electronic planimeter (LI-COR, Lincoln, 

NE, USA). 

The obtained average values for the most important parameters used to define the canopy structure, 

such as crop height, crop width and crop volume obtained with the three investigated methods 

(manual, ultrasonic and LIDAR sensors) were analysed. A preliminary evaluation indicates that the 

values of canopy height measured manually (CHM) and with the LIDAR sensor (CHL) were relatively 

close. The values of crop width measured manually (CWM) were in all cases greater that those obtained 

with the ultrasonic sensor (CWU). The crop width obtained with the LIDAR sensor (CWL) results in the 

lowest values, probably due to it being the most precise scanning method and its greater ability to 

detect gaps in the canopy. Then, as a consequence of the observed tendency of those parameters, the 

measurements and estimations of crop volume present the same ranking, going from the highest 

values, obtained manually (CVM), to the lowest, obtained with the LIDAR sensor (CVL). 

The comparative assessment included not only the above described and most important canopy 

structure characteristics but also others, obtained either from manual measurements in the field such as 

the leaf area index or numerical values derived from the use of the sensors, such as percentage of zero 

values measured on the crop with ultrasonic or LIDAR sensors, ZU and ZL, respectively, or IL 

(impacts·m
−1

) defined as the number of impacts (points where the laser beam detected the canopy). A 

good example of those relationships is shown in Figure 4, where the LAI can be predicted from the 
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number of impacts obtained with LIDAR in the canopy or from the values of the canopy height 

measured with the same sensor, respectively. 

The leaf wall area (LWA) is one of the proposed parameters to be used during pesticide spray 

applications in fruit crops, and is for that reason widely analysed in this field of research. Crop height 

values obtained with a LIDAR sensor (CHL) allow one to calculate the total leaf wall area on one side 

of a row canopy. The comparison of the manually estimated leaf wall area (LWAM) with the values 

measured with the LIDAR sensor (LWAL) indicates that in most cases the manual estimation of this 

parameter exceeds that obtained with the LIDAR sensor by about 30%, except in some particular 

cases. Those differences can be related to the total row length, L, with average values of 0.29 m
2
·m

−1
. 

Those differences can substantially affect the calculation of the total amount of pesticide applied to a 

target area, leading to unnecessary overdose. 

Figure 4. Relation between laser impacts obtained with LIDAR and LAI (Left). The 

correlation between canopy heights calculated with LIDAR and the canopy volume manually 

measured (Right) (published in [8], with permission of the editor of Sensors journal). 

 

One of the most important problems during the electronic process of canopy characterization using 

electronic devices comes from the tedious process of data analysis. In order to facilitate this process, a 

specific tool, PROTOLIDAR v1.0, was developed [16] to use data specifically from the LidarScan 

v.1
®

 program [17], with the aim of helping in the process of analysing the data generated by LIDAR 

measurements. PROTOLIDAR [18] was created to run in R
®

 and was released under the GPL 2 

license. It consists of a package with a set of functions that helps to characterize the canopy of the 

grapevine (height, width and front view) from the LIDAR scan, performs statistical analysis on the 

outputs, plots and calculates the LAI, LWA and Tree Row Volume (TRV).  

3. Vineyard Mapping 

3.1. Mapping the Leaf Area Index Using A Ground-Based LIDAR Scanner 

Precision viticulture (PV) is a concept that is beginning to have an impact on the wine-growing 

sector [19]. Grape-yield maps and remote sensing tools are used with varying success, the management 
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of the spatial variability of grape quality being the remaining challenge. Furthermore, the application 

of plant protection products also raises controversy about the risk of contamination by drift and residue 

in grapes due to overdosing. The use of vegetation maps (LAI maps) might be an interesting way to 

assist in defining zones of different leaf surfaces. Then these zones could be managed differentially by 

applying the proper dose and avoiding environmental problems. 

So far, there are few references in relation to obtaining vineyard LAI maps using LIDAR sensors. In 

any case, to facilitate the subsequent zoning according to leaf surface, it is advisable to generate LAI 

raster maps using a specific protocol associated with LIDAR sensor data. This idea has been discussed 

in [20], by mapping six rows of vines (cv. Syrah) in Raimat (Lleida, Spain), occupying an area of 

about 0.70 ha. The plot is ideal for generating a vegetation map due to the presence of a considerable 

spatial variation in the vine vigour along the rows, probably due to changes in topography within the 

plot. The LIDAR sensor used was again the SICK LMS-200, together with an inertial sensor (IMU, 

Inertial Measurement Unit) and a GX 1230 GG model GPS + RTK system (Leica Geosystems AG, St. 

Gallen, Switzerland) for later georeferencing and mapping the acquired information. Considering 

LIDAR readings from both sides of the row, the LAI per meter of row length can be estimated by 

calculating the left and right side areas (leaf wall areas including gaps) and the area which encloses the 

top of the row [2]. LAI values can then be georeferenced at points that are equally spaced by 1 m and 

are placed along the line of the grapevine trunks. The information generated (X, Y, LAI) can be 

displayed as a point vector map, and then converted to a raster map by geostatistical interpolation 

(Figure 5). Specifically, the raster map can be obtained by using the VESPER software [21], in this 

case, using a block kriging and a grid of 2 m for the projection of the interpolated data.  

Figure 5. Sampling points, LAI raster map and maps of the LAI zones. 
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The spatial variability of the LAI is evident (Figure 5), and, more importantly, the pattern of 

variation seems to be highly structured, allowing the delimitation of well-defined and compact areas 

within the field. Adopting the approach suggested by [22], an unsupervised classification algorithm 

(fuzzy c-means) can be applied to the interpolated data to classify the LAI and then generate LAI zone 

maps (two or three zones, Figure 5). Ultimately, it is possible to optimize the applied doses of 

pesticides according to the amount of vegetation in each area and according to the benefits in product 

savings and drift reduction. There are also difficulties: The post processing is somewhat complex since 

the LIDAR sensor and GPS receiver normally have different frequencies, and the LIDAR data needs to 

be adjusted to match the LIDAR readings from both sides of the row. 

3.2. Georeferenced LIDAR 3D Vine Plantation Map Generation 

Generation of canopy maps and their further use in the improvement of different agronomy 

procedures in fruit and wine plantations has been the objective of several research groups. In the same 

way, canopy map generation has enhanced the quality of information obtained using LIDAR sensors, 

which has improved the knowledge of vegetation parameters. In addition, during the last decade, the 

systems for geographic positioning have helped to link all data obtained in the field into an accurate 

global geographic position. This work was conducted to generate a georeferenced canopy map of 

measured vine plantations using LIDAR measurements [8]. This process used to georeference every 

single point obtained with the LIDAR sensor is defined in [8]. Data obtained with LIDAR sensors 

while driving a tractor along a crop row can be managed and transformed into canopy impact density 

maps by evaluating the frequency of LIDAR returns. The readings have been made using the precise 

position information provided by a DGPS (Differential Global Positioning System) sensor.  

In that research, the team followed the same scan technique discussed in Section 2.3 of this paper, a 

technique that permits the scanning of the vineyard crop from both sides (Figure 6a). This scan 

provides a point cloud that defines the crop with high accuracy (Figure 6b). This point cloud can be 

georeferenced using the geographic position provided by the DGPS system; when this information is 

processed, it is possible to obtain an impact density map (Figure 6c). The impact density represents the 

foliar density of the canopy that has been scanned. 

This methodology was applied and tested in different vine varieties, and the results show an 

accurate definition of some crop parameters; this is for the case of the LAI, which in its conventional 

implementation is a destructive measurement. 

This same process of calculation can be useful to create maps of plantations using different sensors 

or analysing different parameters from this LIDAR sensor, like height, width or foliage density of the 

crop. These maps could be used either in real time to instantaneously modify the working parameters 

of the sprayer in sprayer applications, or in a post-process way as a base of information for DSS 

(decision support systems) tools. [13,23–25]. 

Another interesting step in the developed process was the process to share and visualize the 

obtained impact density maps. Once the impact density map was obtained, the UTM coordinates of 

each pixel were defined. Applying a conversion process to this image led to the production of a new 

file that was saved as a Google Earth
®

 compatible file (a KMZ file). The use of Virtual Globes, such as 

Google Earth
®

 and NASA World Wind representations of scientific data, have been thoroughly 
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reviewed by [26]. Launching the KMZ file on a computer in which Google Earth
®

 had previously  

been installed enables the proposed application of the obtained maps and allows the drawing of  

the generated density map exactly over the orthophotograph of the measured parcel (Figure 7). 

Identification of gaps, leaf accumulation zones or other related aspects affecting canopy development 

can then be used in the crop management process. 

Figure 6. Graphical process to georeference LIDAR sensor data using the information 

provided by the DGPS system. The final results provide maps of the impact density in 

vineyards. (a) Image of real vines, lateral view; (b) Point cloud obtained, lateral view;  

(c) Impact density map generated, top view.  

 

Figure 7. Procedure for conversion of an image file to a KMZ file. This proposed method 

superimposes the density map on the image of the field (published in [8] with permission 

of the editor of Sensors journal). 

 

4. Variable Rate Application of Plant Protection Products 

Electronic canopy characterization allows the implementation of variable application rate 

techniques in fruit and vineyard crops, whereby pesticide application rates are modified according to 

crop characteristics [15,23,24,27–33]. In all cases, relevant benefits in terms of dose reduction, drift 

control and uniform deposition were achieved by all of the proposed methods. In the specific case of 
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vineyards, the research group of Universitat Politècnica de Catalunya has developed a sprayer 

prototype that can apply a variable amount of liquid according to the canopy variability along the crop 

row [33]. The control algorithm is based on the measurement of the canopy width and its variations 

along the crop line. Once that parameter is electronically determined, information about the forward 

speed of the tractor along the row and the canopy height of every single measured section is added; the 

algorithm was developed in order to calculate the canopy volume to be sprayed per unit time, which is 

expressed in m
3
∙min

−1
. Equation (3) indicates the relationship applied for this process: 

     
     

  
              (3) 

where CVj is the unit canopy volume to be sprayed per unit time at section j (m
3
·min

−1
); CWj, the 

canopy width at a certain position at section j (m); CHj, the canopy height at section j (m); and v, the 

forward speed of the tractor (km·h
−1

). 

The main objective of the algorithm was to modify the emitted nozzle flow rate based on the 

measurements of the canopy volume along the crop row and its variations in order to maintain a 

constant objective application coefficient of 0.095 L∙m
−3

, selected according to previous research [34,35]. 

The prototype was developed to be capable of a variable application rate according to the canopy 

variations along the crop line by proper modification of the nozzle flow rate. 

In order to obtain continuous data about the canopy characteristics, three ultrasonic sensors were 

fitted to a stainless steel mast placed on the left side of a conventional air-blast orchard sprayer. A GPS 

antenna was also installed on top of the mast so that a GPS receiver could be used to evaluate the 

uniformity of the forward speed along the track and to record geographical coordinates. The sensors 

continuously estimated the canopy width from only the left side of the sprayer. All the sensors were 

connected to a controller placed in a waterproof box located on the right rear side of the sprayer. The 

controller was a Compact Field Point (National Instruments, Austin, TX, USA) equipped with 

analogue and digital input/output modules. A rugged computer and wireless router were also 

connected to remotely monitor and control the system. A box containing three sets of electrovalves 

(proportional and on–off), an electronic flow meter and a general pressure sensor were installed on top 

of the sprayer at the rear. Individual pressure sensors were also placed on every manifold. 

The results indicated an average potential saving of 21.9%. There was a higher savings potential in 

the narrow canopy zones where the canopy width was below 0.22 m, which had an average savings of 

31.4%. This value dropped to a 12.5% average for zones with a canopy width of over 0.22 m. These 

results indicated a similar response by the prototype that was independent of the canopy variation; 

instead, it was influenced by the crop stage and sensor position. In general, these estimated savings 

values are similar to the results of previous research [15,36] and can be directly related to more precise 

and safe use of plant protection products in accordance with the new European Directive for the 

sustainable use of pesticides [37]. 

5. Use of LIDAR Sensor in Drift Measurements 

In general, the arrangement of field tests for drift measurement is very difficult and expensive. The 

ISO 22866:2005 standard defines the procedure to quantify drift during field tests, but this method is 

complex, time-consuming and heavily depends on external conditions such as wind speed and 
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direction, which makes such tests difficult to use and may result in poor repeatability of results. As an 

alternative process, using sensor technology is another interesting option for drift evaluation purposes. 

Several studies [7,38–40] were carried out using LIDAR technology to measure drift. The specific 

scenario of spray processes in orchards is one of the most risky activities from the environmental point 

of view. In [7], a LIDAR system was used to measure the concentration of small droplets in the air 

above an orange orchard canopy during and after the sprayer operation. The authors of [38] developed 

a model to predict airborne drift based on the target structure. The model utilizes LIDAR 

measurements of optical transmission to predict the characteristics of airborne drift of PPPs leaving the 

target orchard at different growth stages and modified the drift characteristic for different methods of 

dose adjustment. Good agreement was demonstrated between the measurements and predictions of the 

drift from a semi-dwarf apple orchard at full-dose application rates. 

Based on the above-described work, the research group arranged a research project [7] with the 

aims of (1) verifying the use of a LIDAR sensor to measure the drift cloud during pesticide application in 

a vineyard and (2) studying the effect of different working parameters (nozzle type, sprayer 

characteristics and air settings) on the total amount of liquid exceeding the target canopy. Drift 

measurements were made using a LIDAR sensor located at a distance 4 m from the last sprayed 

canopy row, oriented so that it could measure the cloud drift on a perpendicular plane relative to the 

canopy row (Figure 8).  

Figure 8. Example of LIDAR data plotted. 3D view of the drift cloud escaping the  

canopy (Left). Measurement process determining the values of angular position (θi)  

and radial distance (ri) of every LIDAR impact (Right) (published in [7] with permission 

of the editor of Sensors journal).  

 

The LIDAR scanner used in this work was a low-cost general-purpose Sick LMS-200, adjusted to 

have an angular resolution of 1° and a scanning angle of 180°. The spray drift cloud exceeding the 

canopy was scanned for an average of 40 s (the total time of LIDAR scanning in a single test) during 

the spray track along the row, for 20 s before the sprayer passed in front of the LIDAR and for 20 s 

afterward, representing a total measurement distance of 50 m. In order to compare the LIDAR 
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measurements, spray deposit over 20 m away from the last row (perpendicular lane) was also collected 

and quantified using tartrazine as a tracer. 

The obtained results indicate that, in general, the use of the LIDAR sensor represents an interesting 

and easy technique for establishing the potential drift of a specific set of sprayer settings and 

environmental conditions. The LIDAR system provides an idealized optical view of spray droplets 

escaping the canopy and its distribution in position with respect to the target. Furthermore, it allows 

drift to be evaluated with less labour, cost and time than other current methods. In general, a good 

correlation has been observed between the measured drift cloud with LIDAR and the deposition 

distribution obtained with the artificial collectors placed in the test bench. However, it seems that drift 

measurements using LIDAR can be affected by droplet size. The proposed use of LIDAR will help 

users to configure an adequate deposition over the whole canopy according to the specifications of the 

treatment and could be used as a drift prediction tool depending on the target geometry, also in 

accordance with [38]. 

As an alternative approach, the research group is developing a LIDAR-based system that analyses 

the temporal characteristics of the backscattered signal received when the laser beam passes through 

the drift cloud (range-resolved LIDAR) [40]. Such LIDAR devices, which are widely used in 

atmospheric studies, are based on different types of interaction between the electromagnetic radiation 

near the visible range and atmospheric molecules, elastic backscatter being the most commonly used 

technique. These systems allow the characterization and visualization, in near real-time, of the drift 

plume section in terms of the density of PPP droplets present in the air and hence allow the 

quantification of the amount of PPP lost. The LIDAR instrument being developed, specifically 

designed for the characterization of the PPP drift, benefits from the experience gained by the group as 

a result of various experimental trials with an ultraviolet LIDAR for atmospheric studies, which was 

employed to monitor PPP drift in orchards [41]. 

6. Software to Determine the Optimal Volume Rate in Vineyards 

In the context of advanced technologies in vineyard spraying, several decision support systems 

(DSS) have been developed in the last decade for improving and making more sustainable pesticide 

applications (e.g., [42,43]). In this context, DOSAVIÑA [44,45] is a DSS used to determine the 

optimal volume rate for spraying of vineyards based on achieving the optimal coverage (impacts·cm
−2

) 

according to the characteristics of the crop canopy. It also considers the establishment of an efficiency 

factor that depends on aspects such as the type of sprayer used, nozzle type and size, operational 

parameters and weather conditions. Several field experiments showed that the use of this DSS  

reduced the volume rate by an average of 39.9% and reduced pesticide use by 53% in comparison  

with conventional applications, maintaining the deposition, uniformity and disease control [45]. 

DOSAVIÑA establishes the applied volume rate according to the characteristics of the canopy. This 

fact implies an important reduction in pesticide use in comparison with traditional application values. 

The results obtained demonstrated the amount of this reduction and also the corresponding application 

efficiency. Applications made according to the DOSAVIÑA recommendations resulted in generally 

higher values of recovery relative to the total applied amount that was retained on the leaves. 
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This reduction in pesticide use can be directly related to the intended global reduction in the use of 

pesticide proposed by the EU [37]. However, those values could also be linked to those proposed  

by [46], which stated that for agricultural applications, dose has little to do with efficacy because there 

is already sufficient pesticide to kill all the pests in the field many times over. 

7. Conclusions/Outlook 

All the previous research on the use of new technologies to improve the pesticide application 

process in viticulture has demonstrated interesting results in terms of the reduction of the total amount 

of pesticides used, reduction of the risk of environmental problems and the possibility to adapt the 

applied amount of PPP to the canopy characteristics. A further analysis of all those aspects, either 

individually or as a whole, indicates how all the new developments and their applications, in this case 

in viticulture, represent tools to implement the policies in the new and very restrictive European legal 

frame in all aspects concerning the use of plant protection products. 

Since new legislation has applied efforts to the use-phase of pesticides, it is now time to integrate all 

the disposable tools that previous research have demonstrated to be interesting devices. However, there 

is still another key element that is absolutely needed to achieve success in the whole process: an 

adequate training of all the professionals involved in the process, which also according to the mandate 

established in [37] represents, as demonstrated by different researchers, the key factor for the whole 

integration. Only when adequate training has been achieved in all of the European territory will the 

system be able to implement the policies in the legal framework and to produce in a better and more 

sustainable way. 
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