
Sensors 2014, 14, 9833-9877; doi:10.3390/s140609833

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Flexible Unicast-Based Group Communication for

CoAP-Enabled Devices À

Isam Ishaq
1,2,

*, Jeroen Hoebeke
1
, Floris Van den Abeele

1
, Jen Rossey

1
,

Ingrid Moerman
1
 and Piet Demeester

1

1
 Department of Information Technology (INTEC), Ghent University - iMinds, Gaston

Crommenlaan 8 Bus 201, Ghent 9050, Belgium; E-Mails: jeroen.hoebeke@intec.ugent.be (J.H.);

floris.vandenabeele@intec.ugent.be (F.V.A.); jen.rossey@intec.ugent.be (J.R.);

ingrid.moerman@intec.ugent.be (I.M.); piet.demeester@intec.ugent.be (P.D.)
2
 Said Khoury IT Center of Excellence (SKITCE), Al-Quds University, Abu Deis,

Jerusalem 51000, Palestine

À
 This paper is a revised and expanded version of a paper entitled ñGroup Communication in

Constrained Environments Using CoAP-based Entitiesò presented at the 2013 IEEE International

Conference on Distributed Computing in Sensor Systems (DCOSS), Cambridge, MA, USA,

21ï23 May 2013 [1].

* Author to whom correspondence should be addressed; E-Mail: isam.ishaq@intec.ugent.be;

Tel.: +32-933-14-900; Fax: +32-933-14-899.

Received: 15 April 2014; in revised form: 28 May 2014 / Accepted: 29 May 2014 /

Published: 4 June 2014

Abstract: Smart embedded objects will become an important part of what is called the

Internet of Things. Applications often require concurrent interactions with several of these

objects and their resources. Existing solutions have several limitations in terms of

reliability, flexibility and manageability of such groups of objects. To overcome these

limitations we propose an intermediately level of intelligence to easily manipulate a group

of resources across multiple smart objects, building upon the Constrained Application

Protocol (CoAP). We describe the design of our solution to create and manipulate a group

of CoAP resources using a single client request. Furthermore we introduce the concept of

profiles for the created groups. The use of profiles allows the client to specify in more

detail how the group should behave. We have implemented our solution and demonstrate

that it covers the complete group life-cycle, i.e., creation, validation, flexible usage and

deletion. Finally, we quantitatively analyze the performance of our solution and compare it

OPEN ACCESS

Sensors 2014, 14 9834

against multicast-based CoAP group communication. The results show that our solution

improves reliability and flexibility with a trade-off in increased communication overhead.

Keywords: Internet of Things; CoAP; sensors; wireless sensor networks; group

communication; entities

1. Int roduction

The Do-It-Yourself (DIY) movement is spreading beyond traditional domains, such as home

painting, to more modern domains, such as programming. DIY programming gets especially

interesting when it involves real-time data from the growing amount of smart objects with embedded

sensors and when actuators can be triggered to perform real-world actions accordingly. It becomes

even more interesting and appealing when access to these smart objects can be obtained over the

ubiquitous Internetðleading to what is now mostly known as the Internet of Things (IoT). However,

these smart objects are typically optimized for low-power consumption and low-cost. They are

constrained in their processing capabilities (CPU, RAM, ROM,é) and thus unable to run standard

Internet protocols. The networks that connect these objects together are often referred to as low power

and lossy networks (LLNs).

Connecting LLNs to the Internet, communicating with smart objects, and manipulation of sensor

data and actuators was largely done in proprietary ways. Each vendor had its own set of protocols and

tools to access, interpret and if needed manipulate sensor data and to trigger actuators. More recently a

lot of effort has been put into the development of open standards that cover many aspects of

communication and access to smart objects. At the networking layer 6LoWPAN allows IPv6

communication with these objects through an adaptation layer [2]. At the application layer standards

are being prepared to allow access to these objects in a RESTful way, similar to how most information

on todayôs Internet is accessed over HTTP. The main driver behind this is the Internet Engineering

Task Force (IETF). The IETF established the Constrained RESTful Environments (CoRE) working

group with the aim of realizing the REST architecture in a suitable form for the most constrained nodes

and networks. Constrained devices are turned into embedded web servers that make their resources

accessible via the CoAP protocol. CoRE is aimed at machine-to-machine (M2M) applications such as

smart energy and building automation [3].

Typically, each of the constrained servers has at least one CoAP resource that may be queried by

clients to obtain information about the smart objects themselves (e.g., battery level), about the

environment that they monitor (e.g., temperature of the room), or to trigger the objects to perform

real-world actions (switch the light on). These CoAP resources are identified by a Uniform Resource

Identifier (URI) such as coap://[aaaa::1]/temperature.

Depending on the application, information from individual objects might not be sufficient, reliable,

or useful. An application may need to aggregate and/or compare data from several nodes in order to

obtain accurate results. In the same way, a single user request might need to trigger a series of actions

on multiple actuators. This need to communicate with groups of objects is obvious in many IoT

scenarios. For example, in a smart home, when you leave your bed during the night, you might want

Sensors 2014, 14 9835

that the lights in the bedroom, hall and toilet turn on automatically until you go to bed again. Or, when

suspicious movement is detected in the living area during the night, several actuators may be triggered

such as an alarm going off and particular lights being turned on or made flashing. From these two

simple examples, one can already see that the same lights can be parts of different groups according to

the needs of the user. The needs can change regularly and thus the grouping and ungrouping of

resources should be flexible and easy. Similar examples for the need of group communication can be

found in virtually any IoT scenario.

The need for group communication is very well recognized in the IETF. This can be clearly seen

from the charter of the IETF CoRE Working Group. The charter clearly states that the ñinitial work

item of the WG is to define a protocol specification for CoAP that includes é the ability to support a

non-reliable multicast message to be sent to a group of Devices to manipulate a resource on all the

Devices in the group.ò The charter also states that ñthe working group will not develop a reliable

multicast solutionò [4].

Although multicast may be used to transmit the same request to several objects, multicast

communication in LLNs has some disadvantages. For instance, it is more difficult to route multicast

traffic with a minimum of message duplication at the receiving hosts than in the case of unicast.

Furthermore, basic multicast is not reliable in an LLN, which is problematic for requests that require

guaranteed delivery. Also, the creation of multicast groups, defining which objects should be

addressed when using a particular multicast address, is hard to realize inside LLNs. Additionally, the

use of network wide multicast increases the footprint of the code that needs to fit on the constrained

objects, and it is to be expected that this functionality will not be available in many LLNs.

As an alternative, unicast-based solutions may be considered. Some unicast-based solutions (such

as reliable messaging) have been introduced to alleviate some of the problems above, but these

features are insufficient. The current CoRE drafts do not foresee any unicast-based way to manipulate

resources that are located on multiple smart objects with a single client request. To overcome this

shortcoming and be able to perform such composite requests, intelligence is typically added to the

client application to make it communicate with the smart objects individually. This leads to more

complex user applications, and the added intelligence and programming cannot be easily shared with

other applications. Furthermore, complex user applications may be unmanageable. Any modifications

to those complex user applications may require significant testing time, thus limiting the flexibility of

the user applications. Additionally a large overhead of communication between the client machine and

the smart objects is generated, especially when many smart objects are involved in these actions. When

the communication between the client and the smart objects is done across the Internet, delays are

unpredictable and a sequence of actuator commands might arrive out of order and possibly have

unwanted results. Furthermore, if the communication occurs over costly links, communication between

the client and the smart objects might get unnecessarily expensive.

In this paper we propose a novel solution for communication with a group of resources across

multiple smart objects based on CoAP unicast. The group members can be homogeneous or

heterogeneous, on a single node or on multiple nodes, or another group. The group that we create is

itself exposed as a RESTful CoAP resource, and thus can be accessed by any CoAP client (including

other constrained devices). We include optional validation of the group at creation time; we attach a

profile to the created group and thus can customize its behavior and provide fine-grained control over

Sensors 2014, 14 9836

it. We have implemented our solution and provide a functional and performance evaluation for it. In

the past, we have already presented our concept along with an initial implementation in [1]. In this

expanded article, we elaborate on the concept, add more advanced features to the implementation,

compare our solution with multicast and evaluate its functionality and performance.

The remainder of this paper is structured as follows: first, we will briefly provide an overview of

CoAP in Section 2. We then discuss CoAP group communication requirements and related work in

Sections 3 and 4. Next, in Section 5, we describe our approach in detail. In Section 6, we present our

implementation and evaluate the functionally and the performance of our solution. In Section 7, we

discuss the results and compare them to the requirements. Section 8 concludes this work with a

summary and outlook.

2. CoAP Overview

The focus of this paper is to enable interaction with a group of devices from a service/application

perspective in a way that is in line with ongoing standardization activities in the field of IoT. In the last

few years a lot of effort has been put in defining a standard application protocol, similar to HTTP,

but more suitable for constrained devices, namely CoAP. The base CoAP protocol is defined in

draft-ietf-core-coap [5] in conjunction with a number of additional specifications. In this section we

briefly introduce the base CoAP specification and those extensions that are relevant to our group

communication work.

2.1. Base CoAP

CoAP uses the same RESTful principles as HTTP, but it is much lighter so that it can run on

constrained devices [6,7]. To achieve this, CoAP has a much lower header overhead and parsing

complexity than HTTP. It uses a 4-bytes base binary header that may be followed by compact binary

options and payload. Figure 1 shows the CoAP message format as specified in version 18 of the draft.

This version was approved by the Internet Engineering Steering Group (IESG) in July 2013 and was at

the time of writing this article being edited by the RFC editor to convert the draft into an RFC. Thus, it

is expected that this will be the final CoAP message format.

Figure 1. CoAP Message Format consisting of a 4-bytes base binary header followed by

optional extensions.

The CoAP interaction model is similar to the client/server model of HTTP. A client can send a

CoAP request, requesting an action specified by a method code (GET, PUT, POST or DELETE) on a

resource (identified by a URI) on a server. The CoAP server processes the request and sends back a

response containing a response code and payload. Unlike HTTP, CoAP deals with these interchanges

asynchronously over a datagram-oriented transport layer such as UDP and thus also supports multicast

Sensors 2014, 14 9837

requests. This allows CoAP to be used for point-to-multipoint interactions which are commonly

required in automation. Optional reliability is supported within CoAP itself by using a simple

stop-and-wait reliability mechanism upon request. Secure communication is also supported through the

optional use of Datagram Transport Layer Security (DTLS) [8]. As can be seen in Figure 1 all CoAP

messages start with a 4-bytes base binary header that consists of the following fields:

Å Version (V): indicates the CoAP version number. Current version is 1.

Å Type (T): indicates if this message is of type Confirmable, Non-Confirmable,

Acknowledgement or Reset.

Å Token Length (TKL): indicates the length of the variable-length Token field.

Å Code: indicates if the message carries a request (1ï31), a response (64ï191), or is empty (0). In

case of a request, the Code field indicates the Request Method (GET, POST, PUT and DELETE);

in case of a response a Response Code.

Å Message ID: is used for the detection of message duplication, and to match messages of type

Acknowledgement/Reset to messages of type Confirmable/Non-confirmable.

To be able to offer communication needs that cannot be satisfied by the base binary header alone,

the base 4-bytes header may be followed by one or more of the following optional fields:

Å Token: the Token is used to correlate requests and responses.

Å Options: an Option can be followed by the end of the message, by another Option, or by the

Payload Marker and the payload.

Å Payload: if present and of non-zero length, it is prefixed by a fixed, one-byte Payload Marker

(0xFF) which indicates the end of options and the start of the payload. The payload data

extends from after the marker to the end of the UDP datagram, i.e., the Payload Length is

calculated from the datagram size. The absence of the Payload Marker denotes a

zero-length payload.

CoAP defines a number of options which can be included in a message. Both requests and

responses may include a list of one or more options. Each option instance in a message specifies the

Option Number, the Option Length and the Option Value of the defined CoAP option. As an example

of a simple CoAP option consider the Content-Format option. This option indicates the representation

format of the message payload. This option has the Option Number 12 and its Option Length is

between zero and two bytes. The Option Value itself is a numeric content format identifier that is

defined in the CoAP Content Format Registry (Section 12.3 of the draft [5]). Another example is the

Max-Age option which has the Option Number 14. This option indicates the maximum time a response

may be cached before it is considered not fresh. The Option Value is an integer number of seconds

between 0 and ς ρ inclusive (about 136 years). If this option is not included in any CoAP

response, it can be assumed that the response will be fresh for 60 s and thus will not be queried again

by a cache within this time frame.

When using confirmable messages CoAP tries to achieve reliability by using a simple stop-and-wait

retransmission with exponential back-off. By default the initial back-off is set to a random time

between 2 and 3 s. This means that if a reply to a confirmable packet is not received within the initial

back-off time, the CoAP sender will double the initial back-off time and retransmit the packet. If a

Sensors 2014, 14 9838

reply to the first retransmission is not received, CoAP will again double the back-off time and retry the

transmission until MAX_RETRANSMIT (by default 4) is reached. If no reply is received after

expiring of the back-off time of the last retransmission, the client will be notified about the error condition.

The IETF CoRE working group considers constrained RESTful environments as an extension of the

current web architecture. The group envisions that CoAP will complement HTTP and that CoAP will

be used not only between constrained devices and between servers and devices in the constrained

environment, but also between servers and devices across the Internet [9]. An important requirement of

the CoRE working group is to ensure a simple mapping between HTTP and CoAP so that the protocols

can be proxied transparently. Thus proxies and/or gateways play a central role in the constrained

environments architecture. These proxies have to be able to communicate between the Internet

protocol stack and the constrained environments protocol stack and to translate between them as needed.

2.2. Resource Discovery

In machine-to-machine (M2M) applications where there are no humans in the loop, it is important

to provide a way to discover resources offered by a constrained server. For HTTP Web Servers, the

discovery of resources is typically called Web Linking [10]. The use of Web Linking for the

description and discovery of resources hosted by constrained web servers (CoAP or HTTP) is specified

by the CoRE Link Format- RFC 6690 [11]. A well-known relative URI ñ/.well-known/coreò is defined

as a default entry-point for requesting a list of links to resources hosted by a server. Once the list of

available resources is obtained from the server, the client can send further requests to obtain the value

of a certain resource. The example in Figure 2 shows a client requesting the list of the available

resources on the server (GET /.well-known/core). The returned list (in CoRE Link Format) shows that

the server has, amongst others, a resource called /s/t that, when queried, returns the temperature in

degrees Celsius. The client then requests the value of this resource (GET /s/t) and receives a plain text

reply from the server with the value of the current temperature as payload of the message (23.5).

Figure 2. An example of Constrained RESTful Environments (CoRE) direct resource

discovery and Constrained Application Protocol (CoAP) request.

Sensors 2014, 14 9839

However in many M2M scenarios, nodes might have long sleeping periods and thus making direct

discovery of resources not practical. To solve this problem, the CoAP community is proposing to use

CoRE Resource Directories (RD) that host descriptions of resources held on other servers [12]. This

way a CoAP server can register its resources with one or more RDs. Clients in turn can discover these

resources by performing lookups against an RD. For example the same resource discovery that was

performed by using direct communication between the client and the server in Figure 2 can now be

performed by using an RD as illustrated in Figure 3. For more details about the registration and lookup

interfaces of Resource Directories we refer to [12].

Figure 3. An example resource discovery by using a Resource Directory.

2.3. Blockwise Transfer

In many cases the payloads that CoAP needs to carry are very small (e.g., just a few bytes for

temperature sensor, door lock status or toggling a light switch). In these cases the basic CoAP message

provides very efficient means of communication and works very well. However in some cases CoAP

needs to handle larger payloads (e.g., images or firmware update). Since CoAP is based on datagram

transports such as UDP or DTLS, data fragmentation and reassembly is not offered by these transport

protocols. Relying on IP fragmentation is also not very helpful, because IP fragmentation can handle

only payloads up to 64 KB. Thus, providing a mechanism at the application layer that is able of

transferring large amounts of data in smaller pieces becomes a necessity. This will not just help

avoiding the 64 KB UDP datagram limit, but will also help avoiding both IP fragmentation (MTU of

1280 for IPv6) and also 6LoWPAN adaptation layer fragmentation in LLNs (60ï80 bytes).

To overcome the payload size limitation, draft-ietf-core-block defines two CoAP options: Block1

and Block2 [13]. By using this pair of options CoAP becomes capable of transferring a large payload

in multiple smaller CoAP messages. Both Block1 and Block2 options can be present both in request

and response messages. In either case, the Block1 Option pertains to the request payload, and the

Block2 Option pertains to the response payload. Block sizes are represented inside the Block1 and

Sensors 2014, 14 9840

Block2 Options as a three-bit unsigned integer called Ὓὤὢ indicating the size of a block to the power

of two. Thus:

ὦὰέὧὯίὭᾀὩς (1)

The allowed values of Ὓὤὢ are 0 to 6 and thus the resulting allowed block sizes are: 16, 32, 64, 128,

256, 512 and 1024 bytes.

6LoWPAN might start using fragmentation/reassembly for datagrams as soon as the payload size

gets larger than 60 bytes. This fragmentation/reassembly process burdens the lower layers with

conversation state and is sometimes not implemented to conserve resources at the constrained devices.

To avoid such fragmentation and reassembly, blockwise transfer with Block1 and Block2 sizes of 16

or 32 should be used whenever the payload exceeds 60 bytes.

An important aspect of the blockwise transfer mechanism is that often the server can handle block

transfers in a stateless fashion. It does not require connection setup and the server does not need to

track each transfer separately and thus conserves memory.

2.4. Group Communication

The IETF CoRE working group has recognized the need to support a non-reliable multicast

message to be sent to a group of devices to manipulate a resource on all the devices in the group.

Therefore, they have developed the ñGroup Communication for CoAPò Internet Draft [14], which

provides guidance for how the CoAP protocol should be used in a group communication context.

Group Communication refers to sending a single CoAP message to all members of a specific group by

utilizing UDP/IP multicast for the requests, and unicast UDP/IP for the responses (if any). This implies

that all the group members (the destination nodes) receive the exact same message. The solution

proposed by the IETF CoRE working group is discussed further in Section 4.

3. Group Communication Requirements

In our work we broaden the CoAP group communication definition from Section 2.4: CoAP-based

group communication is a method to manipulate a group of resources on devices using CoAP as the

underlying protocol. Such a group of resources is called an entity and the resources themselves are

called the entity members. We classify two types of entities based on the entity members:

¶ Homogeneous Entity: is an entity in which the members share a common set of properties (URI

path, method, content-type, block-size, observe, etc).

¶ Heterogeneous Entity: is an entity in which not all members share a common set of properties.

Within this context, we now define the requirements and goals for CoAP group communication and

motivate their importance in the context of IoT applications, constrained devices and LLNs:

(1). Flexibility: as it is expected that the IoT will contain a huge amount of devices, it is also

expected that the amount of device types will be enormous. To interact with a subset of these

devices in a group, the group communication solution should be very flexible to accommodate

the differences between devices and device types. In particular the solutions should be flexible

enough to offer:

Sensors 2014, 14 9841

a. Support for homogeneous and heterogeneous groups. CoAP servers may be

heterogeneous in terms of their CoAP resources, even if they provide the same

functionality. For example the IPSO (Internet Protocol for Smart Objects) Alliance has

published an Application Framework that recommends a classification of resources

based on their functionality by defining a set of Resource Types [15]. However even if

a group of resources offers the same functionality (same resource type), the actual

resource path of the resource on different group members might be different. In some

cases one might even want to have a group of resources with different resource types

and simply query it (e.g., collecting heterogeneous environmental data). Also other

types of heterogeneity in the resources are possible: e.g., different payload to PUT

request, different media-types, etc.

b. Support of group members that are not part of the same network. Often, it is assumed

that all members in a group belong to the same network. However, group

communication solutions should not be limited to this setting. In the future, it may as

well be that group communication involves nodes from different sensor networks,

networks that may be co-located or spread over different locations.

(2). Light-Weight (footprint): the group communication solution should have limited footprint on

constrained devices. It is expected that a lot of the IoT devices will be of Class 1 (~10 KB of

RAM, and ~100 KB of ROM) [16]. Any overhead involved by a group communication

solution should not prevent the solution from running on Class 1 devices. Furthermore the

solution should scale with the number of groups a certain member can be part of.

(3). Use of Standards: to allow the creation of groups across a variety of members from different

vendors and domains, it is mandatory to use standard protocols that are widely supported. The

focus of our work is on using CoAP as an application layer standard protocol. As mentioned in

Section 2, CoAP consists of a base protocol and a set of optional extensions. It is expected that

not all CoAP servers will support all CoAP extensions. Thus it becomes essential to limit the

use of optional extensions in order not to exclude potential CoAP servers of becoming group

members due to missing extensions.

(4). Performance: CoAP is designed to run on resource constrained devices. In order to keep it this

way, any CoAP group communication solution should have little overhead and be efficient in

the use of resources of the nodes and the LLN. In particular the number and size of messages

sent in the LLN should be kept to a minimum, in order to conserve valuable node energy

(nodes are often battery powered, or harvest energy from the environment). A very powerful

method for limiting the number of messages inside the LLN is using efficient caching

techniques. This not only limits the number of messages and energy consumption, but it also

decreases response latency. CoAP transactions and options are thus well optimized to support

caching whenever possible. Group communication should not be an exception and should not

hinder the use of caches.

(5). Validation and Error Handling: since a group might include heterogeneous members, it should

be possible to validate the group in order to make sure that the group works as intended. The

group should have mechanisms for reporting and handling error conditions such as node or

route failures.

Sensors 2014, 14 9842

(6). Reliability: sometimes it is not essential to get reliable replies from all group members (e.g., it

might be enough to get the temperature measurements from just one of the many temperature

sensors in a room). However in many other cases, it can be important to have reliable

communication with all group members. For example, one would expect that all lights in the

room would go on when one flips on the light switch.

(7). Ease of Group Manipulation: the needs of the user might change with time and thus group

membership might also change. In dynamic environments the changes might be frequent. It is

important to be able to handle such changes easily. One should avoid node reconfigurations, as

this might be a tedious task. Also it should be possible for nodes to be part of different groups

at the same time or at different times.

(8). Expressiveness/Control: there are several results that one might want to achieve by interacting

with a group of objects/object resources. In some cases one might be interested in all the

individual results of all members as in the case of turning the lights on. In many other cases the

individual values might not be of interest at all. In these cases one might be interested in an

aggregated value (e.g., min, max, avg,é) of all, or even of just a subset of, the group members.

Thus it is desired to have support for processing of individual group member results and

replying to the requester with aggregated results. For example it should be possible to query a

certain subset of the members and compute the average, or reliably update all members.

(9). Security: secure communication might be of little interest inside a shielded and controlled

environment. However, by exposing sensors and actuators to the Internet, security becomes

a major concern. In some scenarios having an end-to-end security is a strict requirement.

Communicating with a group of resources is no exception. In fact it is even more sensitive than

communicating with an individual resource, since compromising the group means compromising

all the individual members.

4. Existing Solutions

As mentioned, to address the group communication needs, the IETF CoRE Working Group

has developed the ñGroup Communication for CoAPò Internet Draft [14]. This draft discusses

fundamentals and use cases for group communication patterns with CoAP and provides guidance for

how the CoAP protocol should be used in a group communication context. The draft provides an

approach for using CoAP on top of non-reliable IP multicast and does not attempt to provide a reliable

solution for CoAP group communication as set forward by the Working Group charter. Certainly the

use of multicasts allows reducing the amount of requests in the LLN, by sending one request to several

destinations at the same time. However, multicasts are not cache-friendly, preventing possible

reduction of requests and replies by utilizing caches. Depending on the use case and network topology,

the reduction of packets as a result of using a cache can be better than the reduction obtained

from using multicasts. This approach exhibits the limitations of multicasts as discussed in Section 1.

Also multicasts are not useful when a single user action needs to trigger different sensor requests, since

one multicast request delivers the same message to all group members. Additionally, secure

communication with the group members is not possible, since all communication based on this draft

operates in CoAP NoSec (No Security) mode. Finally, multicast is not supported on all LLN MAC

Sensors 2014, 14 9843

protocols, especially MAC protocols that use Radio Duty Cycles (RDC) to shut down their radios

when not in use. For example Xmac does not support multicast since it shuts down its receiver to avoid

overhearing. Special MAC protocols that support multicast have been proposed such as in [17].

Interestingly, this MAC protocol will send the multicast data to each receiver one by one (unicast) if

the multicast data drops below a certain threshold.

As mentioned, the use of multicast as a means to interact with multiple objects concurrently

requires multicast support in the network. Typically IP multicast relies on topology maintenance

mechanisms to discover and maintain routes to all subscribers of a multicast group. However,

maintaining such topologies in LLNs may not be feasible given the available resources. As a result,

special multicast protocols have been proposed for the use inside LLNs. For example, the ñMulticast

Protocol for Low power and Lossy Networks (MPL)ò internet draft uses the Trickle algorithm to

manage message transmissions for both control and data-plane messages and avoids the need to

construct or maintain any multicast forwarding topology [18]. An alternative is the stateless multicast

RPL forwarding algorithm (SMRF), which according to [19] achieves significant delay and energy

efficiency improvements at the cost of a small increase in packet loss. Regardless of the used multicast

protocol, all nodes on the path between the sender and receivers must be extended to support

the protocol.

The ñGroup Communication for CoAPò Internet Draft was the basis for the work presented in [20],

in which web services based CoAP multicasts were used to access data from Building Automation

Systems (BAS). It shows how using multicasts allows creating basic building control scenarios without

the need of a central control unit. Certainly this approach has several advantages such as eliminating

the need for a control unit, often less power consumption than using unicasts and its suitability in many

non-critical use cases (due to the lack of reliability of multicasts). However this approach exhibits the

limitations of multicasts as discussed in this section above.

Simple unicast solutions are defined in the CoRE Interfaces draft [21]. Among other interface types,

this draft defines the Batch interface type and its extension, the Linked Batch interface type. Batch

interfaces are used to manipulate a collection of sub-resources at the same time. Contrary to the basic

Batch, which is a collection statically defined by the web server, a Linked Batch is dynamically

controlled by a web client. The resources forming the linked batch are referenced using Web

Linking [10] and the CoRE Link Format [11]. The draft does not foresee any way to manipulate

resources that are located on multiple smart objects with a single client request.

An approach somewhat more similar to ours, also using the notion of an entity, has been presented

in [22]. The aim here is to annotate real-world objects by using entities that are automatically created

based on semantic information, which resides on the constrained devices. One problem of using

semantics on constrained devices is that semantics can easily require a lot of memory that might not be

available on the constrained devices. Further, in our approach users can create entities as required and

we address important aspects related to entity validation and entity behavior.

The authors of [23] present an extension to CoAP called SeaHttp, that enables communication with

a group of resources. Similar to our work, SeaHttp also uses unicasts to realize group communication.

The authors propose to extend CoAP with two additional methods (BRANCH and COMBINE) to

allow members to join and leave groups without the need for a separate group manager. This means

that members should have the intelligence to know which group they should join/leave. Constrained

Sensors 2014, 14 9844

devices will not have this intelligence, so again, a ñmanagerò will be needed to inform the devices so

they can take appropriate actions. Furthermore, BRANCH and COMBINE can maybe reduce the

number of messages; however the trade-off is the need to implement a new mechanism. It is better to

use an approach that can be plugged in into any existing network without major modifications (or at

least not a modification to every node). The article does not discuss if the use of caches will still be

possible with SeaHttp resources. However, should this be possible then also the caches should be

extended accordingly. Finally this approach does not have the flexibility we target, since group

members have to be reprogrammed with the groups they should join each time the requirements of the

user changes.

To our knowledge, these are the only works that explore communication solutions for interacting

with a group of CoAP-enabled constrained devices. Next to these, there exist other solutions to realize

or improve multicast communication in Wireless Sensor Networks, such as [18,24]. These solutions

can alleviate some of the problems related to (reliable) multicasting, but their scope is different from

the work presented here.

5. Group Communication Using Unicasts

We aim to create an intermediate level of aggregation to be able to easily manipulate a group of

resources across multiple smart objects. To avoid increasing the footprint of the constrained devices,

we use the same technology as used to manipulate individual resources, i.e., CoAP, and extend it

accordingly. Such a group of resources is called an entity and the entity can be used or manipulated

through a single CoAP request. Similarly, the creation of an entity by a client is realized via a single

CoAP request and includes a complete validation of the entity. Furthermore we introduce the notion of

profiles for the created entities. The use of entity profiles allows the client to specify in more detail

how the entity should behave (e.g., if it should use confirmable or non-confirmable CoAP messages),

and, through updating the profile, allows manipulation of this behavior. As such, we strive to combine

ease of creation, ease of usage and flexibility in behavior into a complete solution for interacting with

CoAP resources from different objects inside a LLN. By building upon standardized concepts, the

impact on the constrained devices is limited. In the following subsections we discuss the details of

our approach.

5.1. System Overview

We call the component that manages the entities, the Entity Manager (EM). This component, which

can reside, e.g., on the Border Gateway of the LLN, is responsible for maintaining entities that are

created from groups of resources residing on CoAP servers (i.e., sensors and actuators) inside

the LLN. Clients on the Internet can interact with an EM to create new entities and/or customize how

these entities should behave. Optionally the client can elect to contact a resource directory [12] in

order to discover which resources are available in the network. Figure 4 shows an overview of the

involved components.

Sensors 2014, 14 9845

Figure 4. Clients create entities consisting of several smart object resources on the Entity

Manager. Clients can optionally query a resource directory to discover the existence of

the resources.

The EM functionality does not have to be put on a dedicated device. Theoretically any CoAP server

can be extended to become an EM (Figure 5). The choice of the most appropriate location to put the

EM functionality depends on the size and topology of the network. For example, it can reside on a

smart object in the constrained network with enough resources, in the Cloud, on the client device itself,

or on a gateway at the edge of the LLN. The latter case has the added benefit that security can be

centrally managed besides offloading the processing from constrained devices. One can also decide to

implement multiple EMs (at the same or at different locations) to avoid having a single point of failure

and thus improving reliability, availability and scalability.

Figure 5. The Entity Manager functionality can be integrated into any CoAP server. The

optimal location for the EM depends on the use case.

Regardless of the location of the EM, it will serve as a ñproxyò between the client and the

constrained devices. Client requests will be sent to the EM, which will analyze and verify the requests

and then issue the appropriate requests to the constrained devices using CoAP. Once the EM receives

responses from the constrained devices, it will combine them according to the needs of the client and

will send back an aggregated response to the client.

Sensors 2014, 14 9846

When a client tries to create a new entity consisting of a group of resources inside LLNs, the EM

performs a sanity check on the request in order to make sure that the resulting entity would make

sense. For example it verifies that the resources inside the entity are valid, whether they support a

certain content format and whether their data can be aggregated. Customization of the entity behavior

is accomplished by creating profiles for the entities. A profile of an entity can specify for example

whether to return the values of all resources in the entity, only the computed average of all values or a

subset of all values. Figure 6 shows a high-level structure of the Entity Manager. It shows that the EM

contains two databases:

Å Entity Database: in this database all entities are stored along with their profiles as defined

by the user.

Å Capabilities Database: this optional database provides rules and knowledge that can be used to

match user requests with sensor capabilities. This can be as simple as translating a request for

temperature in degrees Celsius while obtaining the data from a sensor that only supports

Fahrenheit. It can also be more complex, e.g., converting resource representations from one

content format into the other.

Figure 6. Entity Manager (EM) high-level structure.

5.2. Entity Creation

To facilitate the creation and manipulation of entities, the Entity Manager offers a CoAP resource

ñ/eò. We call this resource the Entity Management Resource. This interface only supports the CoAP

POST request method. As payload of the request, it expects a collection of resources in CoRE link

format [11], which together should form the entity. In the response, the Location-Path CoAP option is

used to specify the name of the newly created resource. In the current design, the payload of the

response is in plain text and describes the results of the validation tests performed by the Entity

Manager on the collection of resources.

Sensors 2014, 14 9847

Thus, when a client wants to create an entity consisting of several members, it has to compose a

CoAP POST request and send it to the Entity Management resource on the Entity Manager. The EM

creates the entity, assigns it a unique URI, and stores the entity in the entity database for future usage.

Then the EM starts the entity validation process (explained in the next subsection). The client is

informed about the URI to use in order to access or further customize the newly created entity and

about the results of the validation of the entity. In addition, the new entity resource can be registered in

a resource directory as well, making it available for lookup. If the entity did not pass the validation

process the client should fix any errors and resubmit the entity for validation again before the client

can use the entity.

An example of the entity creation process is shown in Figure 7. In this simple example the client

requests the creation of an entity consisting of two members: coap://[Sen5]/tmp and coap://[Sen8]/tmp,

with Sen5 and Sen8 the IPv6 addresses of the two sensors. The Entity Manager creates the new entity,

assigns it the URI ñ/1ò and informs the client about the newly created entity. From now on, any client

can access the newly created entity by accessing the ñ/1ò resource on the EM. Please note the

validation process is not shown in Figure 7 for simplicity.

Figure 7. A CoAP client requesting from an Entity Manager (EM) to create a new entity

that contains two resources.

At creation time, the client can use optional URI-Query CoAP options with the POST request to

specify the name of the entity to be created or to customize the default behavior of the entity. For

example, a POST to coap://[EM]/e?path="/room_humidity"&eo="min" will create the

entity ñroom_humidityò that returns by default the minimum value of all members when queried. We

will discuss customization of the entity behavior in more detail in Section 5.5.

5.3. Validation Process

Whenever a client requests to create a new entity or to modify an existing entity, the EM performs a

validation process. The purpose of this validation process is twofold:

(1) Make sure that the members in the entity exist and can be used.

(2) Derive the properties of the entity based on the properties of the members it contains.

If the entity successfully passes validation the EM marks the entity as a valid entity and stores the

entity along with its calculated properties in the entity database for future usage. If the entity fails

Sensors 2014, 14 9848

validation it is still created, but marked as invalid. The entity validation is based on EMôs knowledge

of the individual members and their profiles and based on the knowledge in the capabilities database as

will be discussed in the next paragraphs.

Resource profiles can be used to express capabilities of a CoAP server and its resources [25].

Profiles are usually expressed in JSON format [26]. To briefly illustrate resource profiles, let us

assume that in Figure 7 the temperature sensor at ñcoap://[sen5]/tmpò supports the ñUri-Hostò (3),

ñETagò (4), ñObserveò (6), ñUri-Portò (7), ñUri-Pathò (11) and ñContent-Formatò (12) CoAP options (op).

This sensor further supports the ñapplication/jsonò (50) content format (cf) and the allowed method (m)

is GET (1). This will result in sen5 having the following profile:

If the Entity Manager does not know any of the members in an entity (e.g., based on knowledge in a

resource directory) or does not know the member capabilities, it tries to obtain this information

according to a fallback mechanism as follows:

(1) The EM tries to contact the object containing the resource in order to obtain the resource

profile, since this returns the most complete information about the resource.

(2) If the resource profile does not exist, the EM tries to derive information about this resource

from /.well-known/core of the respective object.

(3) If this fails as well, the EM tries to query the resource directly to discover, as a minimum, if the

resource exists or not.

The validation process that the Entity Manager performs on entities is shown in a simplified form in

Figure 8. In essence the process will:

Å Verify whether the individual members contained in the entity are valid (i.e., the resources exist

on the respective nodes).

Å Derive the operations that can be performed on the entity, based on the operations supported

by the individual members (e.g., which CoAP options are supported, which RESTful methods

are allowed?).

Å Verify whether the individual members do not conflict. A sample conflict can occur when an

entity creation request contains a sensor member that supports only the GET method and an

actuator member that supports only the PUT method.

Å Verify whether the responses sent by the individual members can be combined together using a

common denominator or knowledge from the capabilities database.

Res: 2.05 Content (ap plication/json)

{

 "profile":[

 {

 "path":"tmp",

 "op":[3,4,6,7,11,12],

 "cf":[50],

 "m":[1]

 }

]

}

Sensors 2014, 14 9849

Figure 8. Entity validation process flow.

Once the EM knows all information about the members that should become part of the entity and

once all necessary checks have been passed, the EM creates a profile for the entity based on this

information and the EMôs capabilities database. To illustrate this let us further assume that the second

temperature sensor in Figure 7 ñcoap://[sen8]/tmpò supports the same options as sen5 except for the

observe option. Only the GET method is allowed and the supported content formats on this sensor are

ñtext/plainò (0) and ñapplication/jsonò (50). Thus sen8 will have the following profile:

Based on these two profiles the EM constructs a profile for the newly created entity. This

profile contains information related to the resource itself, as described in [25]. In this example, this

includes the options that are supported, the supported methods (only GET) and the content format

ñapplication/jsonò (50). In addition, the profile is extended with an entity specific part, providing more

information about the entity itself. The resulting profile of the entity looks as follows:

Res: 2.05 Content (application/json)

{

 "profile":[

 {

 "path":"tmp",

 "op":[3,4,7,11,12],

 "cf":[0,50],

 "m":[1]

 }

]

}

Sensors 2014, 14 9850

This simple example illustrates how an entity profile is constructed; either based on information

from individual resource profiles or based on information retrieved via other means such as resources

attributes derived from /.well-known/core. Much more information than shown here can be included

and, by using a flexible representation format, the profile concept can be easily extended with

new information.

The entity specific part of the profile currently supports the following fields:

¶ Entity Resources (er): a list of the individual resources out of which the entity is composed.

¶ Entity Message Type (emt): specifies the message type to be used for communication between

EM and members. Possible values are con (confirmable) and non (non-confirmable). The

default is con.

¶ Entity Number of Replies (enr): specifies the number of replies that should be received from

the members before sending a reply to the client. This makes it possible not to wait for all

members to reply. The default behavior is to wait until all replies have been received or have

timed out.

¶ Entity Operation (eo): The operations that can be performed on the results obtained from the

members. The operation is used to combine replies received from all the members (or the

number of replies specified by enr) into one reply to the client. If at the time of querying the

entity the client does not specify which operation to use, the first operation listed in this field

will be used. Currently the following Entity Operations are supported:

o List (lst): A list of replies received from the members, without any arithmetic

processing. This is the default behavior if no entity operation was specified.

o Average (avg): The average value.

o Minimum (min): The minimum value.

o Maximum (max): The maximum value.

¶ Delay between Requests (delay): specifies the delay that should be injected between the

requests sent from the EM to the members. The default is 0 and thus the EM will send the

requests as fast as it can.

These entity profile fields can be provided by the client upon creation time. If no values are

provided, the EM will use default values for the newly created entity. To construct the entity profile,

Res: 2.05 Content (application/json)

{

 "profile":[

 {

 "path":"1",

 "op":[3,4,7,11,12],

 "cf":[50],

 "m":[1]

 }

],

 "entity":[

 {

"er":"coap://[sen5]/tmp,coap://[sen8]/tmp",

"eo":["lst", "avg", "min", "max"]

 }

]

}

Sensors 2014, 14 9851

the EM uses its internal knowledge to offer additional features that are not provided by the individual

members. For example, the EM can interpret certain member payloads, convert between content

formats and return the entity result in particular content format. Currently we support conversion

between plain-text, JSON and RDFN3 content formats for numerical sensor values. The list of

conversion functions can be extended easily.

5.4. Entity Usage

Once an entity has been created, a response is sent back to the client. This response contains the

URI of the entity, which was either requested by the client or assigned dynamically by the EM. The

client can now interact with the entity by issuing a single CoAP request to the resource representing

the entity. When a request for an entity arrives, the process flow shown in Figure 9 is executed. The

EM breaks down the request into its components and sends the individual requests to the respective

smart objects using unicast CoAP messages. It can either do that in parallel or sequentially with a

configurable delay between requests to the members in order to avoid potential network congestion.

Once all needed answers have been received, the EM creates a response to the client based on the

individual responses and sends it to the client. Note that aspects such as how many members should

respond, how the response is composed, how it should look like, etc. depend on the entity profile and

can be customized using URI queries as will be explained later on.

Figure 9. Simplified entity usage process flow.

Figure 10 shows an example of using the entity that was created previously in Figure 7. The client

issues a GET request on the entityôs resource ñ/1ò. This results in the EM issuing two GET requests to

the individual members, waiting for replies from both of them and then sending both results in one

combined response back to the client.

Sensors 2014, 14 9852

Figure 10. A CoAP client requesting from an Entity Manager to obtain the values for the

entity that was previously created in Figure 7.

The client can decide to query the entity using its default behavior as described in the entity profile

or to customize its behavior. To customize the behavior the client can include URI queries in its

request to the entity. The supported URI queries that can currently be used are: Entity Operation (eo),

Entity Number of Replies (enr) and Delay Between Requests (delay) as described in Section 5.3. For

example, to obtain the average value of the two temperatures of the entity /1 in Figure 10, the client

should use the URI: coap:/ /[EM]/1?eo=òavgò and should use coap://[EM]/1?enr=ò1ò

to indicate to the EM that it is enough to send just any one of the two member replies as a reply to the

entity. This last example demonstrates how our solution can be used to achieve a behavior similar to

anycast requests when there are redundant members available.

5.5. Entity Modification and Behavior Manipulation

It is possible that a client wants to modify an entity after its creation. For example, a client might

want to add new members to the collection of members in the entity or remove a number of members.

Alternatively, the client may want to customize the behavior of an existing entity. The latter can

include aspects such as the default number or percentage of members that should respond before the

entity manager replies to the client, the default content format of the response, the default operation

(e.g., average, max, min, etc.) that should be performed on the results before sending them

to the client, etc. Modifications to the entity or to its behavior can be made by updating the entityôs

profile and posting the updated information (PUT or POST) to coap://[EM]/.well -

known/profile?path=ò[ENTITY_URI]ò, in which /.well-known/profile is a resource for

accessing the profile of a resource as described in [25] and ENTITY_URI the URI of the entity, e.g.,

ñ/1ò in our example. When a client wants to modify the profile of an entity, this information is passed

to the EM, which will validate the request and change the profile if the validation was successful.

Finally, removing an entity can be realized by sending a GET request to the entity management

resource that includes action=òdeleteò URI query and specifying the entity to be deleted, e.g.,

coap://[EM]/e?path="ENTI TY_URI"&action="delete" .

Sensors 2014, 14 9853

6. Implementation and Evaluation

Our solution described above enables the use of unicast messages as an alternative to using

multicasts for realizing CoAP group communication. In order to evaluate our solution and to show

how it can be used in a real-world scenario we have implemented it and built a demo box for

demonstration purposes. In this section we present the implementation of our solution and a basic

description of the demo box followed by functional and performance evaluation.

6.1. Implementation

The key in our group communication solution is the Entity Manager. We have implemented the

Entity Manager functionality on the gateway of the LLN using the CoAP++ framework [27]. The

framework itself and the Entity Manager implementation on top of it have been realized in Click

Router, a C++ based modular framework that can be used to realize any network packet processing

functionality [28]. The CoAP++ implementation on the gateway also includes a resource directory and

a cache that are used in the evaluation tests.

As group members we have used Zolertia Z1ôs boards [29] that run the popular Contiki 2.6

operating system [30]. This version of Contiki was the current version when we started our

experiments and included a stable implementation of CoAP, namely the Erbium CoAP server [31].

Our group communication approach does not require any changes on the CoAP enabled constrained

devices. However, in order to demonstrate how the EM can use resource profiles to validate entities,

we have added resource profiles to the constrained CoAP servers. Additionally, in order to be able to

compare the performance of our solution with a multicast based solution, we have added multicast

support to Contiki by using an open source implementation [32].

The CoAP++ frameworkôs interoperability with the Erbium CoAP server as well with other CoAP

implementations has been formally tested by the European Telecommunications Standards Institute

(ETSI), a non-profit standards organization, in three events called CoAP Plugtests [33].

To demonstrate the practical use of our solution we have built a portable demo box (Figure 11). The

box has two layers. The top layer has a floor plan of a house with several rooms. Each of the rooms is

equipped with some wireless sensors and some wireless actuators. The top layer can be easily tilted to

reveal the wireless sensor network that consists of eight wireless sensor nodes that are mounted on the

back of the top layer and the bottom layer. The wireless sensor nodes are in the form of Zolertia Z1ôs

boards that are running the Contiki operating system. Each of these nodes has been equipped with a

number of sensors and actuators. The sensors include light intensity, temperature, proximity,

movement (PIR), force, RFID and magnetic switch sensors. Supported actuators include multiple

lights (in the form of LEDs) and a cooling fan. These sensors and actuators each have a corresponding

CoAP resource. One of the wireless sensor nodes runs a 6LoWPAN border router and is connected to

an Internet gateway. The gateway for this network is an Alix system board running voyage Linux.

Apart from routing traffic, the gateway also provides the Entity Manager services.

Sensors 2014, 14 9854

Figure 11. iMinds IoT portable home automation demo box. (a) The upper level shows a

map of a house with various sensors and actuators installed; (b) Looking at the lower layer

of the box the connections of the sensors are shown.

Using this demo box we are able to show several home automation scenarios that use our group

communication solution. For example it is possible to turn on all lights in a room (or a set of rooms)

when the pressure sensor in the bed indicates that the person has left the bed while it is dark in the

room. For more details about our demo box we refer to [34].

Besides its function as a showcase for our CoAP implementations, we have used the demo box for

the functional evaluation of our group communication solution. However the demo box does not

provide a suitable environment for good performance evaluation for several reasons. Since the box is

relatively small, all radios are very near to each other and build a full-mesh single hop topology. This

makes it impossible to perform multi-hop experiments. Furthermore, since the number of nodes in the

demo box is only eight nodes, no larger scale experiments can be performed. Consequently, in order to

obtain good insights in the proposed solution and to obtain a comprehensive performance evaluation it

is needed to turn to either a simulation environment or larger scale testbeds. For this paper, we opted

for the first, i.e., a simulation study using the Cooja network simulator, which is part of the Contiki

operating system. The simulation environment allows both a functional and performance evaluation,

with the demo box complementing the functional evaluation.

The simulation environment enables the initial evaluation of the performance of our solution for

varying entity sizes and number of hops to the entity resources. Evaluation on larger real-life testbeds

will prove useful for validating the simulation experiments and for conducting experiments in more

dense and more realistic (e.g., Wi-Fi interference) environments. However this will take a significant

amount of time and is beyond the scope of this work.

6.2. Functional Evaluation

The functionality for creating, validating, using and deleting entities has been implemented as

described above. In this subsection we demonstrate the main functionality of the implementation using

a series of screenshots covering the life cycle of an entity. These screenshots are taken while

communicating with the sensors in iMinds demo box. Figure 12 shows a screenshot demonstrating

the result of sending a CoAP POST request to the EM to create an entity with five heterogeneous

Sensors 2014, 14 9855

members. This request results in the creation of the entity with the URI ñ/2ò and in the validation of

this entity by querying all members profiles. All complexity related to the creation and validation of

the entity is hidden for the client and managed transparently by the EM. At this moment, the entity has

been created and the client can use the newly created entity and interact with it by sending a single

CoAP request to the entity resource.

Figure 12. Sending a CoAP POST request to the Entity Manager to create an entity with

five members, results in the creation of the entity with the URI ñ/2ò and in the validation of

the entity.

Figure 13 shows a client issuing a CoAP GET request to the newly created entity on the EM. The

request ultimately results in a single reply from the EM, which combines the results of querying all

five members of the entity. The client does not have to bother executing all individual requests and

processing the corresponding results.

The above example demonstrates how an entity can be created and used with default values, since

the client did not specify anything about its behavior neither at creation time, nor at usage time.

However as described in Section 5, the EM allows the client to customize the behavior of the entity at

creation as well as at usage time by using URI queries in the CoAP requests. Some of these features

are shown in the example in Figure 14. In Figure 14a the client used URI queries at creation time to

create an entity of six members, naming it ñroom_temperatureò and specifying that only four out of the

six members need to reply before sending the combined reply to the client. Figure 14b shows the

profile of the newly created entity, which, among others, shows that the entity supports four entity

operations (eo=[ñlstò,òavgò,òminò,òmaxò]) with lst being the default operation as it is the first

operation listed. As expected, when querying the entity, the Entity Manager returns a list of the first

four replies it has received from all members in a single JSON reply in Figure 14c. When the client

Sensors 2014, 14 9856

uses the URI query (?eo=òavgò) to obtain the average instead of the default list, the individual responses

are processed by the Entity Manager and the average value is returned as shown in Figure 14d.

Figure 13. Sending a CoAP GET request to the entity results in a reply that combines the

results of querying all members in the entity.

Figure 14. Advanced EM features. (a) Creation of an entity of 6 members and naming it

ñroom_temperatureò and specifying that only 4 out of the 6 members need to reply, before

sending the combined reply to the client; (b) The profile of the newly created entity;

(c) Querying the entity with default operation ñList Repliesò; (d) Querying the entity and

specifying that the reply should only contain the average of the member values.

(a)

(b)

Sensors 2014, 14 9857

Figure 14. Cont.

In the last screenshot (Figure 15) we show how a client can select resources from a list of resources

obtained from a resource directory to create an entity. The resource directory lists all CoAP resources

of the sensors in our real-life wireless sensor network testbed, namely w-iLab.t [35]. Once the Entity

Manager creates the entity, the resource directory is immediately informed about the newly created

entity resource and uses this information to update the list of available resources.

Figure 15. Creation of an entity by selecting three members from a list of resources

provided by a resource directory.

6.3. Performance Evaluation

In order to evaluate the performance of our group communication solution and compare it with

multicast based solutions we performed a series of tests using the Cooja network simulator. In this

(c)

(d)

Sensors 2014, 14 9858

subsection we present the results of these tests and analyze key performance indicators for

both approaches.

6.3.1. Experiment Setup

In our test we used a star topology with the gateway (node ID 0) in the middle of the five-leg star

(Figure 16) and the nodes along the legs at 50 m distances. The transmission range (55 m) is enough to

make the signal travel from one node to the other node on the same leg, but does not allow the signal

to be heard between nodes on different legs. The interference range is 105 m, so that it covers the

distance between three nodes on the same leg. The reason for selecting this topology is that it allows

minimizing the impact of the underlying routing protocol on our measurements, as each node has only

one deterministic route to the gateway. The gateway is running the example rpl-border-router provided

by Contiki and therefor it is the RPL DODAG root, delegates the global IPv6 prefix and routes traffic

to and from the constrained network. All other nodes run the Erbium server extended with resource

profiles and multicast support as discussed in Section 6.1. Table 1 summarizes the parameters of the

simulations in Cooja.

Figure 16. The network topology used in performance evaluation experiments. The inner

circle shows the transmit range of the gateway and the outer circle shows its interference range.

Table 1. Cooja network simulator settings.

Radio Medium Unit Disk Graph Medium (UDGM): Distance Loss

Transmit Range 55 m

Interference Range 105 m

Distances between nodes 50 m

Transmit Ratio 100%

Receive Ratio 50%ï100% (depending on the experiment)

Sensors 2014, 14 9859

Since evaluating the performance of MAC and routing protocols is beyond the scope of this work,

we had to take special care during the experiments to make sure that what we are observing is not a

result of routing or MAC errors. For example, when introducing link errors in the simulations, routes

can get lost or can be changed which has a considerable impact on the delivery rate of packets in the

LLN. One solution would have been to use static routes. This is however not practical, since each node

needs to be programmed with its own routes each time we change anything to the topology. To avoid

such manual reconfiguration and since a stable version of RPL is available within Contiki, we used

RPL as a routing protocol in all of the experiments. However, in order to minimize route changes from

impacting our results we have taken the following two measures in all experiments:

(1). Before sending any CoAP messages in the LLN, we wait for some time to allow RPL to

establish routes to all nodes. In our chosen topologies, waiting for 2 min was in most cases

sufficient to achieve this goal. In a few cases (with a high percentage of packet loss) we had

to wait more than an hour, since the time between RPL neighbor updates is exponential up

to a certain value.

(2). The Contiki implementation of RPL relies on Contiki to maintain the neighbor table.

Contiki in turn removes a neighbor if it does not hear its heartbeat a consecutive number of

times (three by default). In very lossy networks (such as in our experiments with high packet

loss) this behavior might lead to neighbors being removed and thus all routes via that

neighbor as well. However in all of our experiments the nodes are static and never disappear

from the network. As such they should not be removed from the neighbor

table. To achieve this goal we have changed the Contiki configuration parameter

UIP_CONF_ND6_MAX_UNICAST_SOLICIT from its default value of 3 to 100. This

allowed all experiments to be completed without routes to the nodes being lost.

With these two measures in place it was possible to get stable routes during the experiments. The

other factor that may heavily impact the measurements is the used MAC protocol. In order to save

energy, MAC protocols for LLNs use Radio Duty Cycles (RDC) to shut down their radios when not in

use. Contiki has its own MAC protocol, called ContikiMAC, with a good RDC schema. However

ContikiMAC requires more resources than other MAC protocols. In our experiments we also need,

next to CoAP and multicast, debug information in order to be able to collect measurement statistics. As

such, it was impossible to fit CoAP, multicast, RPL, debug info and ContikiMAC on the used Z1

motes. Instead of ContikiMAC we therefore used null-rdc, which is Carrier Sense multiple Access

(CSMA) MAC protocol without RDC (radio always on). While using null-rdc is not realistic for

battery-powered devices, it still helps avoiding delays in the collection of measurement statistics as

imposed by the RDC protocols. However, to still get an idea about the impact of RDC on our solution,

we repeated some of the tests using Xmac. Xmac uses a simple RDC, but has less stringent

requirements in terms of memory consumption than ContikiMAC.

In all the experiments presented in this subsection the multicasts were sent using none-confirmable

CoAP messages as required by the group communication draft [14] and the unicast were sent using

confirmable CoAP messages to achieve reliability.

Sensors 2014, 14 9860

6.3.2. Congestion Control Optimizations

An important aspect of group communication is congestion control, especially in LLN where

resources are limited. Network congestion can lead to extended response times and significant energy

consumption, due to frequent retransmissions of packets. CoAP provides basic congestion control by

using the exponential back-off mechanism (Section 2.1) and by limiting the number of open requests

from a client to any server to one request by default. Furthermore, CoAP specifies that, when using

multicasts, a certain random delay should be inserted before forwarding the request to other nodes. In

CoAP terms, this delay is called Leisure. The server could either use a default value for Leisure or

compute a value for it. If the server has a group size estimate G, a target data transfer rate R and an

estimated response size S, a rough lower bound for Leisure can then be computed as:

ὒὩὭίόὶὩ
Ὓz Ὃ

Ὑ
 (2)

When only taking into account the 1-hop neighbours of the gateway in our test network in

Figure 16, G equals 5, S equals approximately 80 bytes, and the target rate can be set to a conservative

8 kbit/s = 1 kB/s. The resulting lower bound for the Leisure is then equal to 0.4 s. However, since

CoAP servers will often not be able to compute the Leisure, we elected to use the default Leisure value

(5s) in all of our multicast experiments. For a more complete discussion of the Leisure period and its

estimation we refer to Section 8.2 of [5].

CoAP does not specify a congestion control mechanism when a single client is communicating with

many servers using unicasts as is the case in our group communication solution. However our

experience shows that this can quickly lead to congestion. A simple solution for avoiding network

congestion when using unicasts is to limit the rate at which requests are sent. In order to examine this,

we conducted a series of experiments to query an entity of five members and measure the response

time, which is expressed as the time between the moments the client issues the request to the EM until

it gets back the response. We repeated the same experiment for different delays between the requests

sent from the EM to the members. We repeated the experiment 50 times for each setting and computed

the averages. The same set of experiments was repeated when all members were either one or two hops

away and while using null-rdc or Xmac.

As expected, the experiments revealed that the average response time of an entity can be improved

by inserting small delays between the requests for individual entity members (Figure 17). However,

the best delay depends on both the topology and the used MAC protocol. This is most obvious in the

graph of Xmac for 1-hop communication. Here one observes two peaks at about 100 ms and 400 ms.

The first peak is a result of collisions between the forwarded requests from the nodes at the first hop to

the nodes at the second hop with the delayed requests for the next member. The second peak is a result

of collisions between the replies from the members at the second hop with the delayed requests for the

next member. For delays less than 0.5 s the used MAC protocol had more effect on the response time

than the delay inserted between the requests. However as the delay between requests grows larger it

becomes the dominating factor for the total response time with a linear relationship between the two.

Sensors 2014, 14 9861

Figure 17. The average response time of an entity can be improved by inserting small

delays between the requests for individual entity members. The best delay depends on the

topology and the used MAC protocol.

In the remaining experiments we used only null-rdc as MAC protocol for two reasons. First, we

wanted to avoid measuring the delays in communication as imposed by the use of Xmac. Second,

Xmac does not support multicast well, and thus we would not have been able to make a fair

comparison between our group communication solution and multicast based solutions.

For the star topology which we used in most of our experiments, a delay of about 50 ms provided

the best response when null-rdc was used. As a result we have used a 50 ms delay between requests to

the members in all other experiments discussed later in this section. In addition to this delay there are

other delays that impact the communication. The nodes and the EM need some time to process the

CoAP packets they send and receive (e.g., time needed by nodes to prepare the CoAP reply and the

delay needed by the EM to combine all replies into one reply to the client). We call the sum of all such

delays the Processing Delay Ὀ . Finally we call the sum of the average signal propagation time and the

average time need to send and receive a packet over any transmission link the Transmission delay Ὀ,

We have experimentally evaluated Ὀ and Ὀ by averaging the values for 100 transmissions for our

network topology when communicating with the nodes that are only 1-hop, 2-hops or 3-hops away.

Table 2 provides a summary of the delays in our experimental topology.

Table 2. Summary of communication delays in used topology.

Entity Delay between Requests to Group Members ╓▄ □▼

Processing delay Ὀ ρςπ άί

Transmission delay Ὀ ςσ άί

0

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Delay between requests (s)

Average response time (s)

null-rdc

2-hop
xmac
1-hop

2-hop

1-hop

Sensors 2014, 14 9862

6.3.3. Reliability

Reliability is a key performance indicator. In this subsection we first present the theoretical model

for calculating the reliability of the two group communication approaches and then present the results

obtained from our simulations.

Theoretical Calculation

Let us assume that the probability of losing a packet when it is sent over any link in a lossy network

is equal to ὰ. Thus the probability for success at any link-transmission in the network equals ρ ὰ. If

the communication is over N-hops, the number of links equals ὔ and the probability that the

communication succeeds over the ςὔ link-transmissions (since every link has to be crossed once for

the request and once for the reply) is:

ὖ ρ ὰ (3)

This communication success probability applies for multicast communication as well as for

non-confirmable (non) CoAP unicast communication. However, when using confirmable (con) CoAP

unicast communication as the case in our group communication solution, CoAP tries to achieve

reliability by using a simple stop-and-wait retransmission with exponential back-off (see Section 2.1).

This means that if a reply to a confirmable packet is not received within the back-off time, the CoAP

sender will retransmit the packet. If a reply to the first transmission is not received, CoAP will retry the

transmission until MAX_RETRANSMIT (by default 4) is reached. Again these retransmissions have

the same probability for success as the first attempt. And thus the probability that ὶ retransmissions are

needed for successful transmission over ὔ hops (ὶ can go from 0 to 4) is:

Ὑ ὖ ρ ὖ (4)

Thus the probability for success when using CoAP con communication equals the sum of the

probabilities of successful communication of any of the five transmission attempts:

ὖ Ὑ ρ ρ ὖ (5)

In many group communication use cases, it is desirable to get answers from all members of the

group. A complete group communication is considered successful when all members in the group also

have successful communication:

ὖ ὖ

ὖ ὖ
(6)

This reliability of the unicast group communication is achieved by relying only on default CoAP

retransmissions. If higher reliability is desired, the EM can perform its own retransmissions or

fine-tune the default CoAP retransmission settings on an entity-wide level or per member.

Sensors 2014, 14 9863

Experimental Evaluation

To measure the reliability we used the same star topology to communicate with a group of five

members that were either 1-, 2-, or 3-hops away from the gateway. We varied the percentage of packet

loss in the network in 5% steps and measured the reliability of getting responses to the respective

requests. We repeated the same experiment for our group communication solution and for multicasts.

We run each experiment 50 times. Figure 18 shows the effect of packet loss on the communication

reliability in our 1-, 2-, and 3-hop star network. Multicasts are not transported reliably and thus

reliability of the network decreases as soon as there is packet loss in the network. When using our

unicast group communication solution, CoAP confirmable messages are used. In our 1-hop test

topology reliability was higher than 99% even when the packet loss of the network reached 25%.

At 30% packet loss the reliability is reduced to 97% (compared to 49% in the case of multicasts).

Figure 18 also shows that the packet loss increases with an increasing hop count, both for unicast and

multicast communication. This is due to the fact that every message (both request and reply) between a

client and a server has an additional chance of getting dropped at each hop on the way to its destination.

Nevertheless, in our 2-hop network 100% reliability was maintained for unicast communication until a

packet loss ratio of 10%. In the 3-hop network the unicast reliability started dropping below 100%

already by 5% packet loss. The dashed and the dotted lines in Figure 18 are the theoretically expected

values up to networks with 4-hops, while the points are the actual obtained results from the

experiments (up to networks with 3-hops). It is clear that there is a good match between both.

Figure 18. The reliability of individual group members is a lot better when using entity

based group communication.

Figure 19 shows the effect of packet loss on the reliability of the complete group in our 1-, 2-, and

3-hop star network. Certainly the reliability of a complete group is less than the reliability of its

individual members, since the loss of a message to or from a single member, renders the complete

group request unsuccessful. In these cases the use of multicasts does not provide good results. Already

0

20

40

60

80

100

0 5 10 15 20 25 30
Packet Loss (%)

Reliabilty of individual resources (%)

1-hop

1-hop
2-hop

2-hop

mcast

3-hop

entity

3-hop

4-hop 4-hop

