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Abstract: Magnetic and inertial measurement units are an emerging technology to obtain 

3D orientation of body segments in human movement analysis. In this respect, sensor 

fusion is used to limit the drift errors resulting from the gyroscope data integration by 

exploiting accelerometer and magnetic aiding sensors. The present study aims at 

investigating the effectiveness of sensor fusion methods under different experimental 

conditions. Manual and locomotion tasks, differing in time duration, measurement volume, 

presence/absence of static phases, and out-of-plane movements, were performed by six 

subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. 

Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and 

complementary (Non-linear observer) filtering, were selected, and their accuracy was 

assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using 

stereophotogrammetric data as a reference. The sensor fusion approaches provided 

significantly more accurate results than gyroscope data integration. Accuracy improved 

mostly for heading and when the movement exhibited stationary phases, evenly distributed 
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3D rotations, it occurred in a small volume, and its duration was greater than 

approximately 20 s. These results were independent from the specific sensor fusion method 

used. Practice guidelines for improving the outcome accuracy are provided. 

Keywords: 3-D orientation; accuracy; wearable sensors; IMU; MIMU; Kalman filtering; 

gait; upper body; biomechanics; human 

 

Symbols 

MIMU  magnetic and inertial measurement unit 

GGF  Global Earth-fixed frame with one axis aligned with gravity 

ULF  MIMU local frame 

MLF  marker-cluster local frame 

INT  numerical time-integration method 

SF  stochastic filtering method (Extended Kalman Filter) 

CF  complementary filtering method (Non-linear observer) 

1. Introduction 

The quantitative observation of how humans move provides information concerning both the 

functions of the locomotor sub-systems and the overall strategy with which a motor activity is 

executed. An understanding of these functions and strategies can be gained from measurements 

provided by motion capture techniques, associated with mathematical models of the anatomy and 

physiology of the organs and systems involved. The validity and reliability of the scientific approach 

used to achieve this objective, as well as its cost effectiveness, are crucial issues that must be addressed. 

In the above-mentioned context, the accurate determination of the three-dimensional (3D) 

orientation of a body segment, relative to a global Earth-fixed reference frame, is of basic importance. 

An increasing number of clinicians evaluate the functional outcome of treatments of the locomotor 

apparatus analyzing joint kinematics and kinetics [1–4]. Body segment orientation is crucial also when 

monitoring activities of daily living in elderly people for walking instability evaluation and fall risk 

assessment [5,6]. Again, rehabilitation using virtual/augmented reality requires accurate information 

about body segment orientation in real time [7]. 

Several technologies are available for the estimation of the 3D orientation of a rigid body, based on 

optical, acoustic, mechanical, or magnetic and inertial sensors [8,9]. Among them, magnetic and 

inertial measurement units (MIMUs) are gaining momentum as they have the advantage of being 

small, portable, and wireless, thus allowing for unconstrained motion monitoring [10,11]. In addition 

they are appropriate for real-time applications and are relatively low-cost. Accuracy, however, is still 

an issue [12]. 

MIMUs consist of orthogonally mounted single-, two- or three-axis gyroscopes, accelerometers and 

magnetic sensors, providing the values of angular velocity, the sum of gravitational and inertial linear 
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accelerations, and local magnetic field vector components, about and along the axes of a Cartesian 

coordinate system fixed with the MIMU (unit local frame: ULF). 

The 3D orientation of a MIMU may be estimated by numerical time-integration of the kinematic 

differential equations that relate the time derivatives of the selected orientation parameters to the 

angular velocity provided by the gyroscope. The accuracy of this numerical integration is hindered by 

errors that grow over time due to gyroscope bias drift [13,14]. Moreover, the initial conditions of the 

integration process are unknown and need to be determined. 

To cope with the above-mentioned problems, the signals provided by the accelerometric and 

magnetic (aiding) sensors are also used [14] as described hereafter. The values provided by the 

accelerometers correspond to the acceleration the MIMU is subject to, as seen by a non-inertial 

observer undergoing free-fall. Thus, when the MIMU moves at constant speed or is stationary, the 

three components of the gravity vector are obtained. Since the components of the same vector in the 

global frame are known, an orientation (transformation) matrix relating ULF to the global frame can be 

obtained. It must be noted, however, that this matrix is not unique since rotations about the gravity 

vector cannot be detected. However, if an axis of the global frame is chosen to match the direction of 

the gravity vector (GGF), a unique solution for the two Euler angles about the other two axes (often 

referred to as pitch and roll, or, jointly, as attitude or inclination), can be determined. To obtain 

information about the third Euler angle, i.e., the orientation of the ULF in the horizontal plane (often 

referred to as yaw angle or heading), the representation of at least another non-vertical vector is needed 

in the same GGF. To this purpose, magnetic sensors are used. 

The direction of the Earth magnetic field vector varies according to latitude, being aligned with 

gravity at the poles and perpendicular to it at the equator. For most locations on Earth, both the vertical 

and horizontal components of the magnetic field are not negligible, although only the latter is needed 

to provide the complementary information to the accelerometer for heading estimation. Therefore, the 

attitude estimated from the accelerometer measurements is used to calculate the horizontal components 

of the magnetic field vector, thus obtaining the heading of the ULF with respect to GGF [15]. As a 

result, the heading accuracy is necessarily affected by the attitude accuracy. 

For practical reasons, both the gravitational and magnetic field vectors are assumed uniform and 

constant within the measurement volume. While this assumption is easily met by the gravitational 

field, this is not the case for the magnetic field vector, the magnitude and direction of which may vary 

due to the presence of ferromagnetic objects or electrical appliances, especially indoors [16]. This is 

why the estimation of the heading angle is often regarded as more critical than the attitude [17,18]. 

Additionally, the distortions of the local magnetic field cannot be easily modeled or mapped, leading to 

systematic errors in the identification of the true North. However, for short distance tracking, as 

occurring in human movement analysis, these errors are without consequence as the interest lies in the 

variations in heading with respect to a reference orientation rather than to the true North. 

In the light of the previous considerations, the information provided by the three sets of sensors can 

be combined within a sensor fusion framework. Two main sensor fusion approaches have been 

proposed in the literature. The first is stochastic filtering, often implemented in the form of an 

Extended Kalman Filter. Given a model of the time evolution of the state of the system under analysis 

(the MIMU orientation) and of its noisy observations (the MIMU output signals), Kalman-based 

methods provide an estimate of that state [19]. The second approach is complementary filtering, which 
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fuses multiple noisy measurements that have complementary spectral characteristics. For each 

measurement, the complementary filtering exploits only the part of the signal frequency spectrum that 

contains useful information [20]. In this case, the characteristics of the noise present in the process are 

not required to be modeled and incorporated in the algorithm. 

As highlighted by the extensive literature dealing with the development of the two categories of 

algorithms [20–30] and their relevant applications in human movement analysis [31–37], the main 

differences between them consist in: how gyroscope bias drift, inertial acceleration, and magnetic 

disturbances are modeled/accounted for; how the orientation is described (rotation matrix, unit 

quaternions, Euler angles); how magnetic sensor data are employed in the estimation of the heading 

and attitude angles, and, for the stochastic filtering approach, which parameters are included in the 

model of the state of the system [14]. 

The problem of the validity and reliability of these methods has been also dealt with in the 

literature. A large portion of the studies was based on the analysis of the movement of  

mechanisms operated by a motor (gimbal joint [38], gimbal table [12], robotic arm [20]) or manually 

(pendulum [39,40], table [27–29,41], tripod [42]). Only few works analyzed movements of human 

body segments (during sit-to-stand [43], treadmill walking [34,36], eating and morning routine  

tasks [31,44]), observed for time durations that varied from a few seconds, for the sit-to-stand, to a 

maximum of 80 s, for the walking task, and of 90 s, for the manual tasks. Movements exhibited small 

heading variations and were performed in small measurement volumes, and therefore did not allow to 

test the performance of the algorithms in some of the most challenging conditions. 

Despite the reported literature, there is still considerable confusion regarding the actual level of 

accuracy that can be obtained when estimating the 3D orientation from MIMU measurements in the 

different possible human movement scenarios. The main open issues are the following: (1) To what 

extent and in which circumstances the sensor fusion approach is more effective than the numerical 

integration approach? (2) Does the sensor fusion effectiveness depend on the specific algorithm 

selected? (3) Given an orientation estimation method, to what extent the overall measurement 

conditions (e.g., the tracking time duration, the measurement volume, the amplitude of the MIMU 

inertial acceleration, the presence of large angular movements, and the planarity of the movement) 

influence its performance?  

The purpose of the present work is to answer the above-listed questions for applications in human 

movement analysis. To this aim, two sensor fusion methods were selected, representative of the 

stochastic and complementary filtering approaches, and their accuracy was assessed and compared 

with that of the numerical integration approach. Reference concurrent measurements of orientation 

were obtained using a stereophotogrammetric system. The three methods were analyzed in two 

different motor scenarios, the general characteristics of which would be representative of the majority 

of every-day life movements performed by able-bodied individuals of any age or health status. The 

signals of a MIMU located on the forearm and generated during daily manual tasks and those of a 

MIMU located on the pelvis during walking along a curved path were recorded and analyzed, thus 

providing signals of distinct characteristics to which orientation estimators are most sensitive. As a 

result, a list of practical recommendations about critical aspects to be taken into consideration to 

improve MIMU-based 3D orientation accuracy is finally provided. 
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2. Materials and Methods 

2.1. Subjects and Experimental Set Up 

Six subjects (three male and three female, age = 28.6 ± 5.1 years) participated in the study. The 

research methodology described hereafter was approved by the university institutional review board. 

Daily manual tasks were acquired, characterized by a time duration of 60 s, a limited measurement 

volume (0.8 × 0.8 × 0.8 m3), the presence of temporal intervals during which the MIMU was 

stationary, and rotations occurring about the three MIMU axes exhibiting no prevalence of one degree 

of freedom with respect to the others. While seated in front of a table with a shelf below it, participants 

mimicked the following sequence of daily-life activities (manual routine): drinking a glass of water  

(5 s), writing with a pencil (5 s), writing using a keyboard (5 s), brushing teeth (10 s), brushing hair  

(10 s), reaching towards a small magnet placed on the table (5 s), and moving an object from the table 

to the lower shelf and back to the table (8 s). During each manual routine trial, a static pause of a 

couple of seconds was included between each of the activities described above. 

The second task was level walking (locomotion), characterized by a time duration of 180 s, a large 

measurement volume (4 × 2 × 0.1 m3) and the absence of static phases. Each participant was asked to 

walk at his/her self-selected speed along a “figure of eight” pathway. This pathway, which was 

determined by two cones located three meters apart, was devised to introduce large rotations in the 

horizontal plane and to reproduce both left and right turnings. At the beginning of each manual routine 

and locomotion trial, participants maintained a static posture for five seconds. 

Before the trials, a MIMU (Opal, APDM Inc., Portland, Oregon, USA) containing 3D gyroscopes, 

accelerometers and magnetic sensors (± 6 g with g = 9.81 m/s, ± 1500 °/s and ± 600 μT of full-range 

scale, respectively) was secured using an elastic belt to the participants’ lower back (L3–L4) for the 

locomotion trial and to the forearm for the manual routine trial (Figure 1). Angular velocity, 

acceleration and local magnetic field vector data were collected at 128 samples/s. 

To validate MIMU-based orientation estimates, four retro-reflective markers were rigidly attached 

to the unit case and marker trajectories were tracked by a nine-camera stereophotogrammetric system 

(Vicon MX3, Oxford, UK) at 100 sample/s. MIMU and stereophotogrammetric data streams were 

synchronized using a square wave signal simultaneously detected by both systems. All data processing 

was performed with customized functions using the Matlab® software (The MathWorks Inc., Natick, 

MA, USA). 

2.2. Stereophotogrammetric and MIMU Data Pre-Processing 

Marker trajectories and MIMU measurements were resampled at the same frequency, set at  

200 samples/s, using cubic spline interpolation. To remove random noise, marker trajectories were  

low-pass filtered using a 2nd-order zero-lag Butterworth filter. The cut-off frequency was determined 

by performing a residual analysis [45] on each trial of each subject. The values obtained were similar 

among different motor tasks and among different subjects (standard deviation less than 0.3 Hz). Thus, 

the cut-off frequency value was conservatively set to 6 Hz for all trials. 

A marker-cluster local frame (MLF) was defined using the markers attached on the MIMU to obtain 

its reference orientation with respect to the stereophotogrammetric global reference frame. The time 
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invariant orientation of ULF relative to MLF was estimated following the methodology proposed by 

Chardonnens et al. [46]. The two local frames were thus aligned, by eliminating this time invariant 

orientation, and rotated so as to have one axis aligned with the vertical line during the static postures, 

at the beginning of each trial. The 3D orientation of ULF and MLF was then expressed with respect to 

the same GGF, defined to match the ULF during the static postures (Figure 1). In this way, the changes 

in orientation of the MIMU were assessed with respect to its own initial orientation. Detailed 

information about the alignment and rotation procedures, as well as about the definition of the local 

and global frames, is reported in Appendix A. 

Figure 1. MIMU location and ULF orientation during the static postures (corresponding to 

the selected GGF): X axis, antero-posterior and positive forward; Y axis, medio-lateral and 

positive to the right; Z axis, vertically aligned with the direction of the gravitational field 

vector and positive downwards. 

 

Particular attention was paid to the correction of the static bias of the gyroscope signals. Once 

integrated, in fact, this bias leads to a drift error that grows linearly with time [47]. The bias was 

calculated as the mean of the gyroscope measurements during a one-minute static acquisition 

performed by placing the MIMU on a table in the middle of the experimental session, and it was then 

subtracted from the whole angular velocity time series. Moreover, the calibration of the accelerometers 

and magnetic sensors was checked at the beginning of the experimental session by performing the  

ad hoc data collection described hereafter. For what concerns the accelerometers, three static trials 

were acquired for the MIMU, in which each ULF axis was consecutively aligned with the direction of 

the gravitational field vector for one minute. A plumb line was used to verify the correct alignment of 

each axis with the vertical line. The average of the signal measured along each axis was computed and 

its value compared to its expected value (i.e., the gravitational field vector magnitude for the vertical 

component, and zero, for the two components lying in the horizontal plane). As the maximal difference 

between the measured and expected accelerations was 0.02 m/s2, the accelerometers were considered 
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as properly calibrated. For what concerns the magnetic sensors, the calibration procedure proposed by 

Gebre-Egziabher et al. [48] was followed. The MIMU was freely rotated about its three local axes, and 

the biases and sensitivities of the magnetic sensors were estimated. These parameters were then used to 

calibrate the sensor measurements during each trial. 

2.3. MIMU-Based Orientation Algorithms 

The 3D orientation of ULF with respect to GGF was estimated using three different methods. As 

reported in the introduction section, there are a huge number of MIMU-based orientation estimation 

algorithms in the literature. However, as most of them fall in the domain of stochastic or 

complementary filtering approaches, two recent algorithms, representing each approach, were 

considered and their performances were compared to that of the numerical integration approach. 

For all methods, a quaternion parameterization was adopted to describe the MIMU orientation in 

space with respect to GGF. The superiority of this parameterization with respect to the orientation 

matrices or the Euler angles representations is widely documented, both in terms of lower computational 

load [49] and of reduced errors associated with the numerical integration [50]. Since GGF was defined 

to be aligned with ULF during the static postures at the beginning of each trial, the initial orientation of 

the MIMU with respect to its own global frame was null. The initial condition for all methods was thus 

set to the null unit quaternion (ഥ = [	0	0	0	1]்). It must be specified that all three methods provide  

the orientation of GGF with respect to ULF and therefore the quaternion was finally transposed to 

obtain ഥி		ீீி . 

2.3.1. Numerical Time-Integration Method (INT) 

The INT method was based on the numerical time integration of the differential kinematic equation 

describing the relationship between the quaternion derivative and the angular velocity components 

measured by the gyroscope (߱,߱, ߱) [14,51]: ݀݀ݐ ഥ = 12 [߱ி் 	0]் ⊗ ഥ = 12 −[߱ி ×] ߱ி−߱ி் 0 ൨ ഥ = ષ(߱ி)ഥ (1)

where ഥ = ்]  ସ]் is the quaternion representation of the rotation from the global to the local frameݍ

and is composed of a vector part  and a scalar part ݍସ, whereas ⊗ is the quaternion product operator; ߱ி  is the angular velocity vector measured by ULF, [߱ி ×] is the skew-symmetric matrix of ߱ி, and ષ(߱ி) is the compact notation for the resulting 4 × 4 skew-symmetric matrix. It is worth 

noting that Equation (1) does not involve computationally expensive non-linear trigonometric 

functions and it is not affected by the presence of singularity points, in contrast to orientation 

parameterizations such as the Euler angles. The discrete-time equivalent of Equation (1) [14] is 

analytically integrated by assuming that the angular velocity signals are constant within each interval 

of time between two subsequent samples. 
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2.3.2. Stochastic Filtering Method (SF) 

The quaternion-based Extended Kalman Filter presented by Sabatini [14] was selected as 

representative of the stochastic filtering approach. On the one hand, state propagation (i.e., quaternion 

propagation) is performed through Equation (1), where ષ(߱)  is obtained from gyroscope 

measurements. On the other hand, accelerometers and magnetic sensors are used to prevent the drift 

resulting from the numerical integration of Equation (1) and are both involved in the estimation of the 

heading angle (Figure 2). Before performing the Kalman update step, measurements are verified in 

terms of expected fields magnitudes and directions. Online magnetic sensor bias estimation is 

implemented to cope with undesired variations of the local reference magnetic field. 

In general, all stochastic filtering approaches take the sensor measurements reliability into account. 

Data confidence is typically quantified in terms of standard deviation of the measurement noise that is 

required to be specified in the method. These standard deviations are then used to determine the weight 

assigned to each input measurement when estimating the state of the system. In the present work, eight 

parameters were considered and, based on the different characteristics of the tested motor tasks and on 

the results of a trial-and-error procedure, two different sets of parameters were defined for the manual 

routine and locomotion tasks. Their values are reported in Table 1. 

Figure 2. Framework of the SF method. 

 

Table 1. Input parameters for the SF method. 

 Manual Routine Locomotion

Process noise statistics   

Gyro standard deviation [°/s] 2.5 2.5 

Gyro bias process noise standard deviation [°/s2] 0 0.01 

Magnetic variations process noise standard deviation [μT/s] 1 10 

Magnetic variations process noise correlation time [s] 1 1 

Measurement noise statistics   

Accelerometer standard deviation [݃/10ଷ] 10 2.5 

Magnetic sensor standard deviation [μT] 3 3 

Threshold for vector selection   

Acceleration measurements [݃/10ଷ] 40 10 

Magnetic sensor measurements [μT] 5 5 

Prediction step

Gyroscopes

Jacobian
computation

Correction step Vector 
selection

Vector 
selection

AccelerometersMagnetic sensors

A posteriori 
estimate
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2.3.3. Complementary Filtering Method (CF) 

The non-linear observer proposed by Madgwick et al. [27] is a recent example of the complementary 

filtering technique and was selected as representative of this kind of approach (Figure 3).  

Figure 3. Framework of the CF method. 

 

Basically, Equation (1) is extended with a term derived from the accelerometer and magnetic sensor 

measurements, which is computed using a single-iteration minimization algorithm. Ferromagnetic 

disturbances are dealt with by defining a time varying representation of the local magnetic field, with a 

null component along the Y-axis. This procedure allows the magnetic sensors to provide an estimate of 

the heading angle while not affecting the attitude. It is worth to underline that, contrary to SF, no 

information about the noise characterizing the process is taken into account in the CF method, and no 

selective thresholds are set on the use of the accelerometer and magnetic sensor measurements. 

The only tuning parameter required for the CF method is ߚ , which represents the gyroscope 

measurement errors and can be estimated as follows: 

ߚ = ඨ34 ࣓௫ (2)

where ࣓௫  is the maximum gyroscope error (equal to three times the gyroscope noise standard 

deviation). For the gyroscopes of the MIMU used in the present study, the resulting ߚ value was about 

1.15 °/s. Similarly to what performed for the SF method, ߚ was modified according to the results of a 

trial-and-error procedure, and a final value of 0.1 rad/s (corresponding to 5.73 °/s) was selected for 

both the manual routine and the locomotion tasks. This value is in accordance with the default value 

set by Madgwick et al. in the open-source Matlab® implementation of the method (available at 

http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/, last accessed 18 September 2014). 

2.4. Orientation Accuracy Assessment 

For the manual routine and the locomotion tasks, the accuracy of INT, SF and CF in estimating the 

orientation of the MIMU was evaluated by computing the error quaternion expressing the orientation 

Jacobian
evaluation

Magnetic sensors 
and accelerometers

Quaternion 
derivative 
calculation

Quaternion 
derivative 
integration

Gyroscopes

Quaternion 
estimation
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of ULF with respect to MLF for each method: Δഥ = ெி		ഥி  [14,17] (see Figure A1 in Appendix A). 

The orientation error is obtained from the scalar component of Δഥ  according to the equation: 	Δθ = 2 cosିଵ(Δݍସ). The accuracy of each method was then expressed in terms of the Root Mean 

Square (RMS) value of the orientation error. It should be noted that the stereophotogrammetric  

errors [52] propagate to the angles of interest in this study causing a maximal inaccuracy of 0.5°. 

Because of the different contribution provided by the accelerometer and the magnetic sensor 

measurements in the estimation of the heading and attitude errors [17,31,53], the quaternion error was 

decoupled into two components: the heading error – ܴܵܯௗ – and the attitude error – ܴܵܯ௧௧. A 

detailed description of the procedures to decouple the orientation error into these two components can 

be found in Appendix B. 

2.5. Statistical Analysis 

For each motor task and each method, the normal distribution of ܴܵܯௗ and ܴܵܯ௧௧ was verified 

using the Shapiro-Wilk test of normality. Both error parameters relative to the manual routine were not 

normally distributed, whereas their distribution for the locomotion task was found to be normal. 

According to these results, non-parametric and parametric tests, respectively, were selected in order to 

answer the following questions: 

i. Is there any difference in the level of accuracy between the sensor fusion methods and the 

numerical integration approach? And, is there any difference between the accuracy of the SF and 

CF methods? To investigate the effect of the “method” factor, the Friedman test was performed 

separately on ܴܵܯௗ and ܴܵܯ௧௧ for the manual routine. When a significant “method” effect 

was found, pairwise comparisons were performed using the Mann-Whitney U test with the Sidak 

correction, after having verified the assumption of equality of variance between each pair of data. 

Similarly, for the locomotion task, a repeated measure one-way Analysis of Variance (ANOVA)  

was performed. The sphericity assumption was tested using the Mauchly test and the  

Greenhouse-Geisser correction was applied if this assumption was violated. If a significant  

p-value was reported for the “method” effect, the Sidak post hoc pairwise comparisons were 

performed using the relevant correction. The partial Eta squared measures were also computed, for 

each dependent variable, to give the proportion of variance accounted for by the “method” factor. 

ii. Is there any difference in the orientation accuracy between the manual routine and the  

locomotion tasks? For each tested method, an independent Mann-Whitney U test was performed 

separately on the ܴܵܯௗ and ܴܵܯ௧௧ obtained in the manual routine and locomotion tasks, in 

order to investigate whether significant differences exist between the levels of accuracy of the two 

scenarios.  

The alpha level of significance was set to 0.05 for all statistical tests. The statistical analysis was 

performed using IBM SPSS Statistics software package (IMB SPSS Statistics 21, SPSS IBM,  

New York, NY, USA). 
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3. Results 

3.1. Method Comparison 

For the manual routine, a significant effect of the “method” factor was observed for the heading 

error ܴܵܯௗ (߯ଶ = 12, p < 0.001). Mann-Whitney’s U test revealed significant differences between 

INT and both SF and CF (U6 = 0, p < 0.005, for both methods). Conversely, no significant difference 

was obtained between SF and CF. When the attitude error ܴܵܯ௧௧  was considered, a significant 

“method” effect was found (߯ଶ = 7, p < 0.05). Pairwise comparisons showed significant differences 

only between INT and SF (U6 = 4, p < 0.05), while no difference was found neither between INT and 

CF nor between SF and CF (Figure 4). 

For the locomotion task, the ANOVA analysis showed a significant effect of the “method” factor 

for ܴܵܯௗ  (F2,10 = 21.678, p < 0.001). The partial Eta squared was 0.81, indicating that the 

“method” factor by itself accounted for 81% of the overall variance in the dependent variable ܴܵܯௗ . Post hoc tests revealed significant differences between INT and both SF and CF  

(p < 0.05 for both methods). For the attitude error ܴܵܯ௧௧, a significant “method” effect was also 

found (F2,10 = 5.255, p < 0.05), with a partial Eta squared of 0.51. However, according to the post hoc 

comparisons, no significant differences were observed between each pair of methods (Figure 4). 

In Figure 5 the behavior of the heading and attitude errors as a function of time is depicted, during 

the three minutes locomotion task and for the three methods. 

Figure 4. Heading and attitude errors (mean and one standard deviation) for the manual 

routine (on the left) and the locomotion (on the right) tasks. Significant differences among 

the INT, SF and CF methods are indicated with an asterisk. 

 

3.2. Task Comparison 

When comparing the performance of each method between the manual routine and the locomotion 

tasks, significant differences were found on ܴܵܯௗ  for INT, SF and CF. In particular, for all 

methods, heading error values during the manual routine task proved to be significantly smaller than 

those obtained during the locomotion task (INT: U6 = 1, p < 0.005; SF: U6 = 1, p < 0.005; CF: U6 = 2, 

p < 0.005). When considering ܴܵܯ௧௧ , only SF performed significantly better during the manual 
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routine trials with respect to the locomotion task (U6 = 1, p < 0.005). Conversely, no difference was 

reported between the manual routine and the locomotion scenarios for INT and CF. 

Figure 5. Heading and attitude errors (Δθ) of the INT, SF and CF methods plotted as a 

function of time for the locomotion task. The mean ± one standard deviation (SD) curves 

over the six participants are reported. Note the different scale of the axes of the ordinate in 

the two graphs. 

 

4. Discussion 

In the present study, two sensor fusion methods for the estimation of 3D orientation using  

MIMUs were selected as representative of the stochastic and complementary filtering approaches,  

and their performance was compared with that of the numerical integration method. The three 

algorithms were analyzed during manual and locomotion tasks, and their level of accuracy was 

assessed, in terms of heading and attitude errors, with respect to reference orientations obtained 

through stereophotogrammetry. 

Average heading errors during the manual routine task were lower than 5.5° for the two sensor 

fusion approaches and lower than 10.5° for INT. Similar results were obtained for the attitude errors 

 These results .(௧௧ < 7.3°, for the sensor fusion methods and INT, respectivelyܵܯܴ ௧௧ < 3.5° andܵܯܴ)

are in agreement with the findings of two previous studies published by Luinge et al. [31,44], where 

the 3D orientation of an inertial sensor located on the forearm was estimated during both eating and 

morning routine tasks using an ad hoc developed Kalman filter. However, no magnetic sensors were 

included in both studies, therefore further comparison with the present work would not be appropriate. 

When considering the locomotion task, average heading errors increased up to 21° for the sensor 

fusion methods and to 32° for the INT method, while average attitude inaccuracies remained lower 

than 5.5° in all cases. Also in this case, a thorough comparison with previous studies can be hardly 

performed, due to the variety of experimental protocols and methodologies used to assess the accuracy 

of the analyzed methods or devices. In one study [32], participants were asked to walk in a straight line 

for 10 m and trunk, thigh and shank inclination in the sagittal plane was estimated using a non-linear 

filter. Trial duration was approximately 4 s and RMS differences of 1.5° and 3.0° between reference 

and estimated angles were found for the trunk and the shank segments, respectively. In other studies, 
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the orientation of a lower trunk mounted inertial sensor during treadmill walking was obtained by 

using an ad hoc developed Kalman filter [34] or a Weighted Fourier Linear Combiner adaptive  

filter [36]. Participants walked at natural, slow and fast speeds and trial duration was about 40 s [34] 

and 80 s [36]. RMS differences between reference and estimated attitude angles were lower than 1° in 

both studies. Only one study [36] estimated the heading angle, in which RMS values between 

reference and estimated angles were reported to be lower than 1.5°. Related to the range of motion 

considered in these studies, the low absolute values of these errors actually account for about 10% of 

the angular displacement, as no change of direction was performed. It is plausible that the larger errors 

obtained in the present study can be attributed to the longer time durations and to the larger 

measurement volumes involved, as well as to the large angular movements occurring on the horizontal 

plane (“figure of eight” pathway with rotations of about 260°). 

4.1. Method Comparison 

4.1.1. Heading Angle 

When comparing the performance of the three methods in the estimation of the heading angle, the 

SF and CF methods performed significantly better than the INT method, during both the manual 

routine and locomotion tasks. This result indicates that the sensor fusion approach is successful in 

limiting drift errors of the numerical integration approach when the heading angle is concerned, even 

when long time durations, large measurement volumes, no static or quasi-static phases, and changes of 

direction are involved. In particular, the time-error curves (Figure 5) show that the contribution of the 

sensor fusion methods starts to be considerable approximately after the first 20 s. Under this threshold, 

the performances of the three methods are essentially indistinguishable. Based on this result, it is clear 

that to analyze the benefit of sensor fusion methods in the accuracy of MIMU-based orientation 

estimation, motor tasks characterized by short time durations (few seconds) are not recommendable. 

Nevertheless, it must be noted that the motor tasks selected in this study do not involve impacts  

(e.g., as in jumping or clapping), in which case the benefit of a sensor fusion approach could be 

appreciable also in motions of short duration. 

It is also interesting to note that, during the manual routine, the subjects were asked to move their 

forearm towards a small magnet placed on the table. No detrimental effects were observed in the 

performances of SF and CF when the MIMU approached the magnet, indicating that both algorithms 

are effective in identifying and compensating sudden and relatively high ferromagnetic disturbances  

(B = 200 μT, equivalent to about five times the magnitude of the measured magnetic field vector). 

4.1.2. Attitude Angle 

Different results were obtained for the attitude angle, for which the contribution of the sensor fusion 

methods was evident only during the manual routine task. In particular, both SF and CF methods 

showed a higher level of accuracy with respect to INT (about 60% and 50% of error reduction for the 

two methods, respectively). However, this difference was statistically significant only for SF. This is 

probably due to the different assumptions that SF and CF make with respect to the use of the magnetic 

sensor data: SF uses these data to estimate both the heading and attitude angles, whereas CF relies on 
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magnetic measurements only for the heading estimates. It is plausible that, as far as small measurement 

volumes are concerned, the magnetic field is reasonably uniform and constant, thus making it 

convenient to rely on magnetic sensor data to estimate both the heading and the attitude angles. 

The results obtained for the attitude error during the locomotion task were somehow unexpected. No 

statistical difference between INT and the sensor fusion methods were found, probably because INT 

performs remarkably well providing an average ܴܵܯ௧௧ smaller than 5.5° and displaying a reduced 

drift error even after three minutes of numerical integration (Figure 5). Further investigation is needed 

in order to better understand which factors are actually involved in determining the amount of drift 

error associated with the integration of the gyroscope signals. However, the present results suggest that 

this drift depends not only on the time duration and on the standard deviation of the noise underlying 

the gyroscope signals [13], but also on the amplitude of the angular velocity itself. It can be speculated, 

therefore, that the reduced drift error associated with the attitude angle estimation are related to the 

reduced angular velocity values measured about the X and Y-axes during walking. In fact, during the 

locomotion trials, there is an uneven distribution of rotations about the three MIMU axes: in particular, 

the angular velocity about the vertical axis (more involved in heading estimation) was much higher 

(about 3.6 times) with respect to the other two axes (involved in the attitude assessment). Similar 

considerations can be drawn for the sensor fusion methods, as they both rely on the numerical 

integration of the gyroscope signals. 

4.1.3. Sensor Fusion Methods Comparison 

For both motor tasks and both error components, no statistical difference between SF and CF 

performance was found, indicating that the two methods can be considered equally effective in limiting 

drift errors of the numerical integration approach, within the scenarios analyzed in the present work. It 

cannot be excluded that in other contexts the two methods would perform differently, for instance 

when impacts or time durations largely exceeding three minutes are involved. The two methods 

however present different strengths: on the one hand, the complementary filtering approach has the 

advantage of requiring the tuning of only one parameter and entails a reduced computational load; on 

the other hand, Kalman-based approaches allow for considerable freedom in customizing the models 

used to describe both the time evolution of the system state and the observations, including the noise 

characteristics of each variable. This freedom can be exploited to conceive different variants of 

Kalman filters, with several opportunities available to fine-tune the filter structure. It was, however, far 

beyond the aims of the present study to provide a conclusive answer with respect to which contextual 

factors and implementation details determine the performance of each tested method. In this respect, a 

Monte Carlo simulation approach would be very well suited. 

4.2. Task comparison 

4.2.1. Heading Angle 

As expected, heading errors obtained during the manual routine were significantly lower than those 

obtained in the locomotion task, for all the three methods. Different factors, which differentiate the 

locomotion task with respect to the manual routine, are assumed to explain this result: first, the longer 
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time duration, which entails larger drift errors associated with the numerical integration of the 

gyroscope signals; second, the larger measurement volume, which affects the reliability of the 

magnetic sensor measurements due to the magnetic field vector variation, which may be too small and 

smooth to be identified as a disturbance by the sensor fusion methods; third, the absence of temporal 

intervals during which the MIMU was stationary, which influences the possibility to use the 

accelerometer as an aiding sensor to reduce the above mentioned drift errors; fourth, the large angular 

movements occurring in the horizontal plane and the uneven distribution of rotations about the three 

MIMU axes, which seems to be implicated in a reduction of the performance of both the INT and the 

sensor fusion methods [12]. 

4.2.2. Attitude Angle 

For the attitude errors, only SF performs significantly better during the manual routine with respect 

to the locomotion task. In this respect, it is interesting to note that, although for the manual routine the 

heading and the attitude errors present similar values, a large difference exists between the two error 

components for the locomotion task. This can be explained by two factors: (i) the similar angular 

velocity amplitude measured about the three MIMU axes in the manual routine, against the higher 

angular velocity measured about the vertical axis with respect to the other two axes, during the 

locomotion task; (ii) the critical estimation of the heading with respect to the attitude angle when 

dealing with the sensor fusion approach [15,18], especially in challenging conditions like those 

characterizing the locomotion task. Furthermore, it is worth noting that both ܴܵܯௗ  and ܴܵܯ௧௧ 
should be compared to the angular range of motion of the heading and attitude angles, respectively. As 

previously mentioned, in the manual routine, the amount of rotations was similar about the three axes 

(about 120°). Conversely, during locomotion, the angular displacement about the vertical axis was 

about 260°, whereas that about the other two axes was less than 10°. Although the average value of the 

attitude errors is about 5°, this error is in the same order of magnitude of the total range of movement 

occurring on the frontal and sagittal planes. In other words, although no statistical differences were 

found between the manual routine and locomotion attitude errors, care should be paid to the relative 

impact that these errors have on each task. Similar considerations can be drawn for the heading errors. 

5. Guidelines 

As resulting from the previous considerations, several critical aspects are involved in the accurate 

estimation of 3D orientation from MIMU data. A list of practical recommendations has thus been 

formulated with the aim of limiting those error sources that can be taken into account a priori. It is 

strongly advised to pay attention to the following aspects: 

A. Correct the gyroscope static bias. Special attention should be paid to the correction of the initial 

bias of the gyroscopes. It is recommended first to switch on the MIMU at least 20 min before the 

beginning of the acquisitions to ensure that the device will have reached its working temperature 

when the experimental session starts, thus avoiding wide variations of the static bias due to heating 

effects [13]. Second, at least one static acquisition should be performed to compute the bias of the 

gyroscopes: if, after the MIMU positioning on the participants, a static phase can be identified in 



Sensors 2014, 14 18640 

 

 

which the unit is reasonably still, such data can be employed for bias correction; otherwise the 

MIMU can be placed on a stable surface (e.g., on a table). The optimal duration of the static phase 

may depend on the electronics of the employed devices and, clearly, on the sampling frequency. 

However, to the authors’ experience, five seconds at a sample rate of 100 samples/s can be 

considered as a sufficient duration. As an example of the influence of the bias correction procedure 

on the outcome accuracy, Figure 6 displays the heading angle of the MIMU on the lower trunk with 

and without the static bias correction, during three complete “figures of eight” of one selected trial 

of the locomotion task. 

Figure 6. Heading angle as obtained during three complete “figures of eight” of one 

randomly selected locomotion trial. Angles obtained by the stereophotogrammetric system 

(solid line), and by numerical integration with (dashed line) and without (dotted line) bias 

correction (BC) are depicted. 

 

B. Check if the accelerometers and the magnetic sensors are properly calibrated. Careful attention 

should be paid to the calibration of the accelerometers and magnetic sensors. Different procedures are 

available in the literature aiming at verifying and, possibly, calibrating the accelerometers [54–56] and 

the magnetic sensors [48]. In both cases, ad hoc experiments should be performed to estimate the 

biases and sensitivities of the sensors under analysis. This information can then be used to correct 

the measurements obtained during the experimental sessions. Moreover, ferromagnetic  

disturbances can be reduced by following the safe procedures described by De Vries et al. [57] and 

Bachmann et al. [16]. 

C. Integrate the kinematic equations, not just the components of the angular velocity signals. The 

kinematic differential equations that describe the relationship between the time derivatives of the 

selected orientation parameters and the angular velocity components (e.g., Equation (1) for 

quaternion representation) describe not only the changes in orientation of the local reference frame 

with respect to the previous one in each instant of time, but also the orientation between the local 

and the global reference frames in each instant of time. The latter information is missing when the 

numerical integration is performed on the components of the angular velocity signal separately [51]. 

Additionally, the angular displacements obtained in such a way do not represent Euler angles. When 

out-of-plane movements or large rotations about at least one of the three MIMU local axes are 
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addressed, the piece of information neglected by the individual component integration can be 

crucial. Only when small rotations are involved and, thus, negligible changes in orientation between 

the local and the global reference frames occur, the results provided by the integration of the 

angular velocity components are comparable to those obtained by integrating the kinematic 

equations (this is the case, for example, of straight treadmill or over-ground walking using a MIMU 

placed on the lower trunk). Nevertheless, the integration of the kinematic equations should be 

always preferred, as more rigorous. As an example of the different results that can be obtained using 

the two integration methods, the heading angle obtained by integrating the kinematic equations and 

the angular displacement obtained by integrating the Z component of the angular velocity signal are 

reported during one randomly selected manual routine trial (Figure 7). 

Figure 7. Heading angles as obtained by the stereophotogrammetric system (solid line) and 

by integration of the kinematic equations (dashed line) are depicted together with the 

values obtained by integration of the Z component of the angular velocity (dotted line) 

measured by the MIMU on the forearm, during one randomly selected manual routine trial. 

 

D. Be careful when comparing MIMU-based estimates to validation measures. Regardless of the 

instrument used to validate MIMU-based orientation estimates, special attention should be paid to 

the initial alignment between the local systems of reference of the validation instrument and the 

MIMU. In case motion capture systems are used, different procedures exist that align the  

marker-based and the MIMU local frames by means of ad hoc acquisitions [46,58]. Furthermore, 

the validation instrument and the MIMU local systems of reference must be expressed in the same 

global reference frame. Usually the global frames of the two devices do not match, and therefore, 

the relative orientation between them is needed to define a common global system of reference. 

6. Conclusions 

In the present paper, a number of critical aspects related to the accurate estimation of 3D orientation 

from MIMU data in typical human movement analysis scenarios have been discussed and a set of 

structured guidelines have been provided as a useful outcome and code of practice for the scientific 

community working in the field. 
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The sensor fusion approach has proven effective in compensating the limitations associated with the 

use of the gyroscopes alone, particularly when the measurement conditions do not challenge the main 

limitations of the aiding sensors (i.e., variations of the local magnetic field vector for the magnetic 

sensor, and inertial accelerations for the accelerometer). This effectiveness does not depend on the 

sensor fusion approach selected, at least for the SF and the CF methods tested in the present study. 

Among the factors affecting the accuracy of MIMU-based 3D orientation estimation, the following 

are particularly noteworthy: time duration, measurement volume, and presence/absence of phases during 

which the MIMU is stationary. In addition, the distribution of rotations, as well as the amplitude of 

angular velocity about the three MIMU axes, seems to play a relevant role. Their combined effect has 

been assessed in the present study, however further investigation should be carried out to establish the 

individual role of the above-mentioned factors in determining the outcome accuracy. 

A comprehensive comparative assessment of all published algorithms developed for the estimation 

of 3D orientation from MIMU measurements is virtually impossible. The same applies to the variety of 

applications, even when limited to the context of human movement analysis. Nevertheless, the two 

main families of sensor fusion approaches have been considered and state-of-the-art algorithms have 

been selected as their representatives. Additionally, the motor tasks employed in the study not only 

represent the majority of every-day life movements, but also cover a wide range of challenging 

acquisition conditions to which MIMU-based orientation estimation methods are most sensitive. 

The general validity of the results of the present study, however, does not imply that the relevant 

conclusions can be straightforwardly applied to any context. Impacts, for instance, have not been 

considered, and their effect on the performance of sensor fusion methods may represent a challenge 

which requires further investigation. Moreover, the results cannot be directly extended to applications 

other than movement analysis (e.g., aircraft navigation) as they present features and challenges of a 

different nature. 
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Appendix A 

In this appendix, the procedures followed to align the marker (MLF) and the unit local frame 

(ULF), to rotate them so as to have one axis aligned with gravity, and to define the global reference 

frame (GGF) with respect to which both MLF and ULF orientations were expressed, are presented. 

MIMU and marker-based orientations were represented using quaternions (ഥ ) and orientation 

matrices (܀). Under the convention adopted in the present work, ܙி		ீீி  and ܀ி		ீீி  indicate the 

relative orientation of the local frame (LF) with respect to GFF and, therefore, allow a coordinate 

transformation between the two frames. 

A.1. Alignment of the Marker-Cluster and the MIMU Local Frames 

The MLF and the ULF were made as parallel as possible to each other by manually aligning the  

markers with the unit plastic case. However, this does not guarantee that MLF and ULF are perfectly 

aligned. Moreover, no information is provided by the MIMU manufacturer about the accuracy of the 

alignment of each single sensor with the unit case. Therefore, the time invariant orientation of ULF relative 

to MLF ( ெி		ி܀ ) was estimated following the methodology proposed by Chardonnens et al. [46]. The 

general concept of this method is to estimate the angles obtained by the numerical integration of each 

angular velocity component for both MLF and ULF, while performing rotations around three 
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orthogonal axes, and then to use an optimization algorithm to calculate the alignment matrix between 

the two local frames. 

A.2. Vertical MIMU and Marker-Cluster Local Frames 

Both ULF and MLF were rotated so as to have one axis aligned vertically during the static postures 

at the beginning of each trial. In particular, the resulting vertical systems of references (VULF and 

VMLF) were oriented as follows: Z axis vertical, aligned with the gravity line and positive 

downwards; X axis antero-posterior and positive forwards; Y axis medio-lateral and positive to the 

right (Figure A1). To this aim, the inclination of ULF with respect to gravity was computed during the 

static postures at the beginning of each trial using accelerometer measurements following the  

yaw-pitch-roll (߰, ,ߴ ߮) rotation sequence [14]: ߰ = 0 

(A1)
ߴ = − sinିଵ ൬ܽܿܿ݃ ൰ 

߮ = tanିଵ ൬ܽܿܿܽܿܿ൰ 

where ܽܿܿ, ܽܿܿ and ܽܿܿ are the acceleration components as measured by the MIMU and ݃ is the 

norm of the gravitational acceleration. Thus, VULF was defined as ULF rotated by the angles ߮, ߴ 

and ߰. The matrix describing the orientation of ULF with respect to VULF ( ி		ி܀ ) was then 

obtained [14]: [ ܴி		ி ] =  c ߴ c߰ c ߴ s߰ − sߴs߮ s ߴ c߰ − c߮ s߰ s߮ s ߴ s߰  c߮ c߰ s߮ c c߮ߴ s ߴ c߰  s߮ s߰ c߮ s ߴ s߰ − s߮ c߰ c߮ c ൩ (A2)ߴ

where ܿ and ݏ are compact notation for ܿݏ and ݊݅ݏ, respectively. The MIMU data (݇), measured with 

respect to ULF, were finally expressed with respect to VULF as follows: [ ݇	ி [(ݐ) = [ ܴிி ] ∙ [ ݇ி (A3) [(ݐ)

Similarly, assuming that VULF coincided with the vertical marker-cluster local frame (VMLF) 

while subjects were still at the beginning of each trial, the inclination of MLF with respect to VMLF 

was estimated during the static posture time lapse: [ ெி		ெி܀ ] = [ ிி܀ ] ∙ [ ிெி܀ ] ் (A4)

A.3. Inertial Global Frames Definition 

The vertical marker-cluster local frame (VMLF) and the vertical unit local frame (VULF) were 

expressed with respect to the same GGF, defined to match both VULF and VMLF during the static 

postures. In this way, the changes in orientation of VMLF and VULF were assessed with respect to 

their own initial orientation. To this aim, the time-invariant orientation between the stereophotogrammetric 

global frames (SGF) and GGF ( ீீி		ௌீி܀ ) was obtained during the static postures: 
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[ ீீி		ௌீி܀ ] = [ ெிீீி܀ ] ∙ [ ெிௌீி܀ ] ் (A5)

where ܀ெி		ீீி  was obtained through Equation (A4) as VMLF coincides with GGF during the static 

postures. Subsequently, the orientation of MLF with respect to GGF during the motion was estimated 

in each instant in time: [ ீீி		ெி܀ [(ݐ) = [ ௌீிீீி܀ ] ∙ [ ெிௌீி܀ (A6) [(ݐ)

Finally, the orientation of VMLF was obtained with respect to GGF: [ ீீி	ெி܀ [(ݐ) = [ ெிீீி܀ [(ݐ) ∙ [ ெிெி܀ ] ் (A7)

Figure A1. MIMU, marker and global frames are depicted during the static postures at the 

beginning of each trial (t0) and in a generic time instant during the trial (t1). The relative 

orientation of ULF with respect to MLF which corresponds to the orientation error is also 

indicated at t1. For clarity reasons, the distance between the origins of MLF and ULF has 

been emphasized. 

 

Appendix B 

In this appendix, the procedures used to decouple the orientation error Δθ into the heading and 

attitude components are described. 

For each method and each motor task, the error quaternion was first computed as follows: Δഥ = 	 ெி		ഥி = ഥெிீீி ିଵ ⊗ ഥிீீி  (B1)

where Δഥ represents the orientation of VULF with respect to VMLF. 

Second, Euler angles were extracted from Δഥ  following the yaw-pitch-roll (߰, ,ߴ ߮)  rotation 

sequence, and Δഥௗ was set to the quaternion corresponding to the yaw angle error: Δഥௗ 	= 	 [0 0 sin(߰/2) cos(߰/2)] (B2)

whereas the contribution of the pitch and roll angles was assembled in Δഥ௧௧, which was calculated as 

the product of the quaternions representing the pitch and roll angle errors, respectively: Δഥ௧௧ 	= 	 [0 sin(2/ߴ) 0 cos(2/ߴ)] ⊗ [sin(߮/2) 0 0 cos(߮/2)] (B3)

The orientation errors Δθௗ and Δθ௧௧ were then obtained from the scalar components of Δഥௗ 

and Δഥ௧௧: respectively: 



Sensors 2014, 14 18649 

 

 

Δθௗ 	= 	2 cosିଵ(Δݍସௗ)        and        Δθ௧௧ = 2 cosିଵ(Δݍସ௧௧)  (B4)

The accuracy of each method was finally expressed in terms of the Root Mean Square (RMS) value 

of the orientation errors: ܴܵܯௗ and ܴܵܯ௧௧. 
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