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Abstract: A group of signal reconstruction methods, referred to as compressed sensing
(CS), has recently found a variety of applications in numerous branches of science and
technology. However, the condition of the applicability of standard CS algorithms (e.g.,
orthogonal matching pursuit, OMP), i.e., the existence of the strictly sparse representation
of a signal, is rarely met. Thus, dedicated algorithms for solving particular problems have
to be developed. In this paper, we introduce a modification of OMP motivated by nuclear
magnetic resonance (NMR) application of CS. The algorithm is based on the fact that the
NMR spectrum consists of Lorentzian peaks and matches a single Lorentzian peak in each
of its iterations. Thus, we propose the name Lorentzian peak matching pursuit (LPMP). We
also consider certain modification of the algorithm by introducing the allowed positions of
the Lorentzian peaks’ centers. Our results show that the LPMP algorithm outperforms other
CS algorithms when applied to exponentially decaying signals.

Keywords: compressed sensing; orthogonal matching pursuit; exponentially
decaying signal; nuclear magnetic resonance; non-uniform sampling; Lorentzian peaks
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1. Introduction

Compressed sensing (CS) theory provides the methods to solve an underdetermined linear equation
y = Ax within a set of sparse vectors x ∈ Cn. The unconstrained linear equation for an m× n matrix
A of a maximum rank may have infinitely many solutions for m < n. However, the number of sparse
solutions happens to be finite. Vectors in Cn having at most l ∈ N non-zero coordinates are referred to
as the l-sparse vectors.

All l-sparse vectors fulfilling the equation y = Ax may be found by considering
(
n
l

)
linear

sub-problems of solving y = Ax with the constraint x ∈ CI , where CI ⊂ Cn denotes the subspace of
vectors supported by I ⊂ [1, n]. This provides all l-sparse solutions, but the overall problem was proven
to be NP-hard. Remarkably, the sparsest vector x̂ solving y = Ax may be found as the solution of the
`1-minimization problem:

x̂ = argmin
y=Ax

‖x‖1

where ‖x‖1 denotes the `1-norm of x. The `1-norm convexity and the linear constraint y = Ax allow the
application of linear programming algorithms, as long as A has a restricted isometry property; see [1].

A number of CS algorithms has been proposed, including: iterative soft thresholding (IST) [2],
orthogonal matching pursuit (OMP) [3], compressive sampling matching (COSAMP) [4], stage-wise
orthogonal matching pursuit (StOMP) [5] and iterative re-weighted least squares (IRLS) [6]. Inspired
by the greedy CS algorithm, OMP, and motivated by a case of nuclear magnetic resonance (NMR)
spectroscopy, we propose an approach that is designed specifically to recover a signal being a
combination of exponentially decaying components. The spectrum of such a signal consists of Lorentzian
peaks. The algorithm matches a single peak in each of its iterations, and thus, the name Lorentzian
peak matching pursuit (LPMP) is proposed. The peaks’ centers and heights are found as in the OMP
algorithm, whereas the widths of the peaks are determined in a novel way.

2. NMR Spectroscopy and CS

The sources of the free induction decay (FID) signal measured in NMR spectroscopy are magnetic
moments of atomic nuclei with non-zero spin, e.g., 1H,13C,15N,19F, that undergo coherent precession
when excited by radio-frequency irradiation in the presence of a high static magnetic field [7]. The time
dependence of an ideal FID signal f(t) is given by the following linear combination:

f(t) =
N∑
k=1

akfk(t) (1)

of the exponentially decaying oscillations:

fk(t) =

{
e−2πγkte2πıωkt t ≥ 0

0 t < 0

whereN is a number of nuclei groups differing in resonance frequency; ak are amplitudes (the∝ number
of nuclei in the k-th group); γk is a relaxation rate for the k-th group; and ωk is an oscillation frequency
of the k-th group.
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The precession frequencies (and thus, the frequencies of the emitted FID signal) are in the order of
MHz, but their band is very narrow, typically a few kHz. In such a narrow range, tens or even hundreds
of peaks are present. Often, the spectral resolution (peak width compared to the difference in resonance
frequencies) is too low to resolve peaks and, thus, makes an analysis difficult. Fortunately, the peak
dispersion can be improved by the acquisition of the multidimensional NMR signal [8] where additional
(“indirect”) time dimensions are introduced. Peaks in the multidimensional NMR spectrum correspond
to groups of nuclei coupled by some physical interaction. Using the above notation, the formula of the
two-dimensional FID is:

f (t1, t2) =
N∑

k1,k2=1

ak1,k2fk1(t1)fk2(t2) (2)

where t1 is indirectly sampled time and t2 directly sampled time.
The reason for the application of CS in multidimensional NMR spectroscopy is a time-consuming

sampling of the indirect dimensions of the FID signal (t1 in Equation (2)). There are three reasons for
the lengthy acquisition. Firstly, each measurement point in the indirect dimension takes a few seconds of
“real” time. Secondly, the sampling density has to fulfil the Nyquist theorem [9]. Finally, the sampling
has to reach far into the indirect time domain to provide sufficient spectral resolution [10]. The latter,
together with the Nyquist condition for the sampling density, means that, often, many thousands of
sampling points have to be acquired. This makes an experiment unacceptably long (days in the case of
three or four dimensions) or completely impossible in the case of higher dimensionality (5D and more).
Thus, there is a need for alternative sampling approaches that allow one to save expensive spectrometer
time preserving the spectral information. Most of them use the non-uniform sampling, where the
major part of the points is not measured, but reconstructed after the experiment based on certain
assumptions [11,12]. The CS, where the assumption is spectral sparsity, has been successfully applied in
NMR exploiting the algorithms based on convex `1-norm or non-convex `p-norm minimization [13,14].
The history of the application of the “greedy” algorithm, OMP, in NMR is long; in fact, the algorithm was
transferred from radio astronomy, where it existed under the name, CLEAN [15]. Direct application of
CLEAN in NMR is possible [16], but far from being perfect, because of the aforementioned approximate
sparsity of the signal. Thus, various modifications of CLEAN have been proposed [17–19]. Importantly,
none of these works refer to OMP formalism and do not explain the modifications by the sparsity criteria.
We propose an approach that directly exploits the fact that the NMR spectrum consists of a low number
of Lorentzian peaks. Thus, LPMP is based on the sparsity concept, which is more relevant in the case of
NMR than classical CS methods.

3. OMP Algorithm

Let us fix the notation. For m,n ∈ Z and m < n, we write [m,n] = {m,m + 1, . . . , n}. Let
m,n ∈ N. For matrix A ∈ Mm×n(C), its range and kernel are denoted ranA and kerA, respectively.
The Hermitian conjugate of A is denoted by A∗. The number of non-zero coordinates of x ∈ Cn is
denoted by ‖x‖0, and suppx (the support of x) denotes the set of x non-zero coordinates. Note that
‖x‖0 = # suppx (the cardinality of a set I is denoted by #I). We define Xn,l ⊂ Cn:

Xn,l = {x ∈ Cn : ‖x‖0 ≤ l}
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OMP algorithm arose in the context of the sparse approximation problem; see [3]. In order to
formulate the problem, let us fix a matrix A ⊂ Mm×n(C) satisfying ranA = Cm. The matrix A is
in this context referred to as the dictionary matrix.

Definition 1. Adopting the above notation, we say that x ∈ Xn,l is an optimal l-sparse approximate
representation of a vector y ∈ Cm if:

‖y −Ax‖2 = min{‖y −Ax′‖2 : x′ ∈ Xn,l}

We say that y is l-representable, if there exists a vector x ∈ Xn,l, such that y = Ax.

For a subset I ⊂ [1, n] of cardinality l, we define a vector subspace CI ⊂ Cn:

CI = {x ∈ Cn : supp(x) ⊂ I}

The restriction of A to CI is denoted by AI : CI → Cm.

Definition 2. We say that A ⊂ Mm×n(C) is l-injective if kerAI = {0} for all I ⊂ [1, n], #I = l.

For an l-injective matrix A and I ⊂ [1, n], #I = l, we define:

xI = argmin
x′∈CI

‖y −AIx
′‖2 (3)

Since xI is a vector satisfying AIxI = yI , where yI is an orthogonal projection of y onto ranAI ,
we may see the uniqueness of xI for l-injective A. Let us note that x ∈ Xn,l is an optimal l-sparse
approximate representation of y ∈ Cm if:

‖y −Ax‖2 = min
{I:#I=l}

‖y −AxI‖2

Although l-injectivity of the matrix A does not exclude a vector x′ ∈ Xn,l, x′ 6= x, such that
‖y−Ax‖2 = ‖y−Ax′‖2, we shall usually choose an optimal l-sparse approximate and denote it by xl.

The OMP algorithm provides a certain approximation of xl ∈ Cn, which we denote by xOMP
l .

Remarkably, xOMP
l is found on the basis of xOMP

l−1 . Denoting the xOMP
l support by IOMP

l , the index
il ∈ [1, n] is given by:

il = argmax
i∈[1,n]

|A∗(y −Axl−1)|i

The OMP vector xOMP
l is defined as xOMP

l = xIOMP
l

; see Equation (3) for the definition of xIOMP
l

.
For the coherence, restricted isometry property (RIP) conditions that imply the equality xOMP

l = xl,
we refer to [3] and [20], respectively. For the recovery limits of the OMP, see [21]. The OMP algorithm
(Algorithm 1) is schematically described below.



Sensors 2015, 15 238

Algorithm 1 Orthogonal matching pursuit.
Input:

• measurement matrix A ∈ Mm×n(C)

• measurement vector y ∈ Cm

• accuracy parameter ε > 0

Output:

• x ∈ Cn

Initialization:

• I = ∅, x = 0

The main loop:
while ‖y −Ax‖2 ≥ ε do

I = I ∪ {argmax
j∈[1,n]

|A∗(y −Ax)j|}

x = argmin
supp(z)⊂I

‖y −Az‖2

end while

4. Free Induction Decay Signals in NMR

The free induction decay signal in NMR consists of the combination of exponentially decaying
oscillations (see Equations (1) and (2)). The signal can be multidimensional, but for the sake of
simplicity, we will limit ourselves to the one-dimensional indirect part of the two-dimensional signal,
corresponding to f(t) from Equation (1). Given the damping factor γ ≥ 0 and the oscillation frequency
ω ∈ R, a single decaying oscillation is given by:

f(t) =

{
e−2πγte2πıωt t ≥ 0

0 t < 0

Its Fourier transform:
f̂(ν) =

∫
R
f(t)e−2πıνtdt

has the form of complex Lorentzian peak:

f̂(ν) =
1

2π

1

γ − ı(ω − ν)

The FID signal is sampled at the rate given by the Nyquist theorem for the range cut off ν ∈ [−Ω,Ω].
In order to perform the NMR signal processing, the frequency resolution ∆Ω is introduced, where
∆Ω = Ω

2N+1
and N ∈ N. For any l ∈ [−N,N ], we get the basic complex oscillation e2πıωlt, where

ωl = lΩ
2N+1

. The NMR signals can be approximated by the finite combination of the basic complex
oscillations:

f(t) ≈
N∑

l=−N

ale
2πıωlt
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The approximation being 2N+1
Ω

-periodic works only for 0 ≤ t ≤ 2N+1
Ω

. Assuming that the series∑N
l=−N ale

2πıωlt evaluated at tk = k
Ω

coincides with sampling points of f , i.e., f(tk) for k ∈ [0, 2N ],
we get:

al =
1

2N + 1

2N∑
k=0

f(tk)e
−2πıωltk

Introducing the time unit 1
Ω

and the frequency unit Ω
2N+1

, we may enumerate the time and frequency
by the integers [0, 2N ] and [−N,N ], respectively. Then, the relation between the peak intensities a and
the time samples f is given by a = Ff , where F is the Fourier transform matrix:

F kl = e−2πıkl/2N+1

l ∈ [−N,N ] and k ∈ [0, 2N ]. In order to model the Lorentzian peaks within our framework, let us
introduce the width peak unit Γ and a damping matrix C ∈ M(2N+1)×(2N+1)(C):

Ckk′ = δkk′e
−2πkΓ/Ω

for k, k′ ∈ [0, 2N ]. Then, the Lorentzian peak of width Γ centered at l is represented by Ll:

Ll = F−1CF l

where F l is the l-th column of F . Similarly, the Lorentzian peak of the width jΓ centered at l is
represented by:

Lj
l = F−1CjF l (4)

Using the above notation, the FID signal is given by:

f =
∑
jl

bjlFLj
l (5)

where bjl ∈ C.

5. Lorentzian Peak Matching Pursuit

The spectrum f̂ corresponding to FID signal (Equation (5)) is given by:

f̂ =
∑
jl

bjlL
j
l

We shall assume that j ∈ [0, J ], which gives the maximal width JΓ and the width resolution Γ. Let
K = {k1, k2, . . . , km} ⊂ [0, 2N ] be the sampling scheme, y ∈ Cm the measured signal yi = f(tki) and
A = FK the matrix consisting of rows of the Fourier matrix F enumerated by the elements of K.

The Lorentzian peak matching pursuit algorithm matches a Lorentzian peak Lj
l in each of its

iterations. In order to match a peak Lj
l , LPMP establishes first the peak’s center l. The center

l1 ∈ [−N,N ] of the first peak is determined by:
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l1 := argmax
l∈[−N,N ]

|(A∗y)l|

In order to determine the width of the first peak j1 ∈ [0, J ], we find bl1,j ∈ C, such that:

‖y − bl1,jALj
l1
‖2 = min{‖y − zALj

l1
‖2 : z ∈ C}

Then, j1 ∈ [0, J ] is a number satisfying:

‖y − bl1,j1ALj1
l1
‖2 = min{‖y − bl1,jALj

l1
‖2 : j ∈ [0, J ]}

and we put f̂ 1 = bl1,j1L
j1
l1

.
In the second step of the algorithm, we determine the second peak’s center l2 by:

l2 = argmax
l∈[−N,N ]

{|A∗(y −Af̂ 1)l|}

In order to determine the second peak’s width j2 ∈ [0, J ], we find bl2,j, bl1,j1 ∈ C minimizing:

‖y − z2ALj
l2
− z1ALj1

l1
‖2

where z1, z2 ∈ C. Defining j2 ∈ [0, J ] as a number satisfying:

‖y − bl2,j2ALj2
l2
− bl1,j1ALj1

l1
‖2 = min{‖y − bl2,jALj

l2
− bl1,j1ALj1

l1
‖2 : j ∈ [0, J ]}

we put f̂ 2 = bl2,j2L
j2
l2

+ bl1,j1L
j1
l1

.
We begin the third step of the algorithm by determining the third peak’s center l3:

l3 = argmax
l∈[−N,N ]

|A∗(y −Af̂ 2)l|

Then, j3 and f̂ 3 are found as in the previous steps.
Note that in the k-th step of the algorithm, the peak’s width jkΓ is found and not changed afterwards.

The blk,jk coordinate may, in turn, vary in the n-th step of the algorithm for n > k. The algorithm is
performed until the accuracy threshold ‖y−Ax‖ ≤ ε is achieved; for a different stopping criterion, see
Section 5.1.

5.1. Stopping Criterion

If a number of Lorentzian peaks in the spectrum cannot be assumed a priori, then the stopping
criterion for the LPMP becomes a crucial issue.

Notably, the dimension of a measurement vector y provides a mathematical bound for the number
of iterations in LPMP. The implementation of the LPMP algorithm uses an inversion of a matrix, which
ceases to be invertible when the number of peaks exceeds the number of measurements. In what follows,
we shall introduce the stopping criteria that further restrict the number of iterations. One commonly used
criterion is the threshold ε of accuracy used in Algorithm 2.

Let us denote the result of the k-th LPMP iteration by f̂k. The k + 1 iteration is performed if:
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‖y −Af̂k‖2 ≤ α‖y −Af̂k−1‖2

where α ∈ [0, 1] is an user-defined number. The criterion reflects the idea that the LPMP is continued as
long as its actual iteration increases the explanation of the measured data by the factor α with respect to
the previous iteration. In our simulations described in the next section, we put α = 0.98.

Alternatively, the noise amplitude σ can be used for a stopping criterion. In this case, LPMP stops on
the k-th iteration if |f̂k(lk)| ≤ σ.

Algorithm 2 Lorentzian peak matching pursuit.
Input:

• measurement matrix A ∈ MK×2N+1(C)

• measurement vector y ∈ CK

• accuracy ε > 0

• Lorentzian peaks Lj
l ∈ C2N+1 where j ∈ [0, J ], l ∈ [−N,N ]

Output:

• f̂LPMP ∈ C2N+1

Initialization:

• f̂LPMP = 0, j = 0, b = 0, i = 0

The main loop:
while ‖y −Af̂LPMP‖2 ≥ ε do

i = i+ 1

li := argmax
l∈[−N,N ]

|A∗(y −Af̂LPMP)l|

(bli,j, bli−1,ji−1
, . . . , bl1,j1) = argmin

z∈Ci

‖y −A(ziL
j
li

+ zi−1L
ji−1

li−1
+ . . .+ z1L

j1
l1

)‖2

ji = argmin
j∈[0,J ]

‖y −A(bli,jL
j
li

+ bli−1,ji−1
L
ji−1

li−1
+ . . .+ bl1,j1L

j1
l1

)‖2

f̂LPMP = bli,jiL
ji
li

+ bli−1,ji−1
L
ji−1

li−1
+ . . .+ bl1,j1L

j1
l1

end while

5.2. Mask

NMR experiments are often performed in series, with some or all peaks preserving their positions in
at least some of the dimensions. This fact has been exploited to restrict the allowed peak frequencies
and to improve the results of NUS (non-uniform sampling) reconstruction, e.g., in hyperdimensional
spectroscopy [22], the SIFT method [23] or high-dimensional spectra [24]. It is easy to use this
information in the LPMP algorithm by introducing the subset Mask ⊂ [−N,N ] of admissible peak
centers in the frequency domain. In what follows, we give a detailed description of the masked LPMP
algorithm (Algorithm 3), taking into an account the stopping criterion described in Section 5.1.
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Algorithm 3 Lorentzian peak matching pursuit with a mask.
Input:

• measurement matrix A ∈ MK×2N+1(C)

• measurement vector y ∈ CK

• stopping parameter α > 0

• Lorentzian peaks Lj
l ∈ C2N+1 where j ∈ [0, J ], l ∈ [−N,N ]

• Mask ⊂ [−N,N ]

Output:

• f̂LPMP ∈ C2N+1

Initialization:

• f̂LPMP = 0, j = 0, b = 0, i = 0, δ = ‖y‖2

The main loop:
while ‖y −Af̂LPMP‖2 ≤ αδ or i = 0 do

δ = ‖y −Af̂‖2

i = i+ 1

li := argmax
l∈Mask

|A∗(y −Af̂LPMP)l|

(bli,j, bli−1,ji−1
, . . . , bl1,j1) = argmin

z∈Ci

‖y −A(ziL
j
li

+ zi−1L
ji−1

li−1
+ . . .+ z1L

j1
l1

)‖2

ji = argmin
j∈[0,J ]

‖y −A(bli,jL
j
li

+ bli−1,ji−1
L
ji−1

li−1
+ . . .+ bl1,j1L

j1
l1

)‖2

f̂LPMP = bli,jiL
ji
li

+ bli−1,ji−1
L
ji−1

li−1
+ . . .+ bl1,j1L

j1
l1

end while

6. Results and Discussion

In this section, we present the results of the LPMP performance tests. Extensive simulations on
different levels of sampling sparsity provided a quantitative characterization of the method. As an
example of an application, we have chosen the challenging NOESY (nuclear Overhauser effect
spectroscopy) experiment [25] with a high dynamic range of peak intensities.

The parameters of the synthetic spectrum used in the simulations are given in Table 1. The spectral
parameters were chosen to simulate various experimental scenarios, i.e., (I) peak widths differ from peak
to peak, which corresponds to the differences in relaxation rates in the case of the NMR experiment;
(II) the range of intensities is high; (III) two of the peaks overlap; and (IV) the peaks’ centers and widths
are off-grid.
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Table 1. Peak coordinates for the simulation presented in Figure 1.

Center 5.6 22.7 67.8 70.4 194.5 239.25

width 5.2 5.4 2.6 2.8 4 1.5

Figure 1. Example of the Lorentzian peak matching pursuit (LPMP) recovery. The size of
the spectrum is 256. The number of randomly chosen samples is 120. The result of LPMP
recovery (blue line) is compared with the original spectrum (red line).

An example of the LPMP recovery of an NMR spectrum based on 120 sampling points drawn at
random from a 256-point full grid is presented in Figure 1. The signal was contaminated with 5% of
noise. We performed systemic simulations with a varying sampling level. For each level, 50 different
sampling schedules were generated. Denoting the frequency spectrum vector obtained from the full
sampling by f̂ and the LPMP recovery by f̂LPMP, we compute the recovery error ‖f̂ − f̂LPMP‖, and
then, we average it over 50 sampling distributions. The LPMP performance is depicted in Figure 2 (left),
where it is also compared with other popular CS algorithms: IST, OMP, COSAMP and StOMP. For all
sampling levels, LPMP is revealed to be superior to other CS algorithms.

In order to test the masked version of LPMP algorithm, we introduced the mask of ±5 frequency
points around the peaks’ centers. The simulation results are presented in Figure 2 (right). As expected,
masking has a more pronounced effect on the low sampling levels.
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Figure 2. Quality of the reconstructions of the spectrum from Figure 1. (Left) The
comparison of the performance of various algorithms: LPMP (solid line), iterative soft
thresholding (IST) (dashed line), stage-wise orthogonal matching pursuit (StOMP) (dotted
line), compressive sampling matching (COSAMP) (stared line) and orthogonal matching
pursuit (OMP) (squared line). (Right) The performance of the masked LPMP algorithm
(solid line) compared with the performance of non-masked LPMP algorithm (dashed
line). The absolute recovery errors (in intensity units) are plotted vs. the number of
sampling points.

Figure 3. 1D indirect dimension slice from 2D NOESY spectrum: LPMP-reconstruction
from 200, 225 and 250 samples out of a 512-point full grid compared with a fully
sampled spectrum.

The qualitative aspects of LPMP reconstruction can be evaluated on the data from the 2D NOESY
experiment. Each reconstructed 1D slice of the 2D NOESY spectrum contains one dominating peak
accompanied by a group of smaller peaks. Such a case of large intensity range is very challenging for
CS methods. In Figure 3, we present the results of the LPMP spectrum recovery obtained on the basis of
200, 225 and 250 random measurements of the corresponding FID signal of length 512. The 2D NOESY
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spectrum was recorded on a 600-MHz Varian UNITY Inova spectrometer at 25 ◦C using a sample of
human ubiquitin protein (1 mM concentration).

In order to explain the effectiveness of LPMP algorithm in the NMR context, let us emphasize the
key difference between the OMP and LPMP methods. OMP tries to obtain the frequency-domain
representation having the minimal number of non-zeros, which cannot be exact, even for a single
Lorentzian peak. LPMP improves OMP by replacing every determined spectral non-zero with the
Lorentzian peak of the appropriate width. Roughly speaking, this corresponds to the concept of sparsity
in the sense of a number of Lorentzian peaks.

7. Conclusions

Our results show that LPMP is superior to the generic CS methods when applied to exponentially
decaying signals. Comparison with OMP, StOMP, IST and COSAMP revealed that the assumption of
the Lorentzian spectral line shape improves the quality of the reconstruction with LPMP. Moreover, its
performance can be further improved by limiting (“masking”) the support of a signal. We believe that
this method will find applications in NMR spectroscopy. Other fields of possible application may include
different kinds of spectroscopy, wireless communications, sonar and radar. In fact, reconstruction of any
non-uniformly sampled exponentially-damped signal can benefit from the application of LPMP.
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