
Sensors 2015, 15, 14435-14457; doi:10.3390/s150614435

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Inertial Sensor-Based Touch and Shake Metaphor for
Expressive Control of 3D Virtual Avatars

Shashidhar Patil, Harinadha Reddy Chintalapalli, Dubeom Kim and Youngho Chai *

Graduate School of Advanced Imaging Science, Multimedia and Film Chung-Ang University,

Seoul 156-756, Korea; E-Mails: patil.shashidhar@hotmail.com (S.P.); harinath@cau.ac.kr (H.R.C.);

rodin1818@hotmail.com (D.K.)

* Author to whom correspondence should be addressed; E-Mail: yhchai@cau.ac.kr;

Tel.: +82-2-820-5335.

Academic Editor: Vittorio M.N. Passaro

Received: 19 March 2015 / Accepted: 12 June 2015 / Published: 18 June 2015

Abstract: In this paper, we present an inertial sensor-based touch and shake metaphor for

expressive control of a 3D virtual avatar in a virtual environment. An intuitive six

degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control

input device with a sensor fusion algorithm. The algorithm enables user hand motions to be

tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based

complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic

time-warping is developed for efficient recognition of dynamic hand gestures with real-time

automatic hand gesture segmentation. Our approach enables the recognition of gestures and

estimates gesture variations for continuous interaction. We demonstrate the gesture

expressivity using an interactive flexible gesture mapping interface for authoring and

controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This

synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in

the motion database using hand gesture sequences from a single inertial motion sensor.

Keywords: inertial sensors; gestural interfaces; expressive control; gesture recognition;

gesture variations; interactive systems; touch and shake; virtual avatar

OPEN ACCESS

Sensors 2015, 15 14436

1. Introduction

Rapid developments in computing technology and recent advances in user interfaces have replaced

the conventional interaction tools such as keyboard and mouse. In daily life, the use of human gestures

to communicate and control interactive applications such as computer games and humanoid interfaces

in virtual environments is increasing. Gestural interfaces enable users to naturally interact with the virtual

environment. Designing a dynamic gesture interface system to recognize a user’s actions and

corresponding reaction from the application in real time is a challenging task. Gestures are meaningful

body motions, and can include static or dynamic physical movements of the fingers, hands, face, or body

for interaction with the environment.

Gestural interfaces are currently being developed for applications such as virtual reality, sign

language, and remote control using different motion tracking and gesture recognition techniques [1].

The use of different imaging and tracking devices are required to recognize the gestures. A user interface

based on the conventional keyboard and mouse is not suitable for interactive and dynamic environments;

rather, devices that sense a user’s body must be used. Many researchers have developed gesture

recognition techniques using vision-based methods [2].

In [3], the authors present a motion-capture-based performance animation system that maps detailed

user motion to a virtual avatar; an optical motion capture system is described in [4]. However,

motion-capture-based methods require significant user set-up time. They are limited by the capture

environment and lighting conditions, and their cost makes them impractical for personal use. Gesture

recognition can be used in entertainment and serious games to control avatars or interact with virtual

worlds. Low-cost motion-capture depth sensor devices, such as Microsoft’s Kinect, are widely used for

body movement recognition [5]. In [6], a Kinect was used to capture depth images for American Sign

Language (ASL) detection. In [7], both depth and color information from a Kinect were used to detect

hand and gesture recognitions. The Leap Motion Controller [8] hand-motion sensing device also employs

a depth camera to track user hand movements in a constrained environment. Moreover, vision-based

sensors suffer from occlusion problems. These vision-based techniques are limited to wearability and have

prohibitive computational costs, are sensitive to lighting conditions, and require a large workspace.

Inertial-sensor-based gesture recognition has been successfully used in mobile and pervasive

computing [9–12]. Interaction devices such as the Nintendo Wii [13] and Sony Motion Controller have

been widely used in computer games, and allow interaction with the game by employing a user’s natural

motions, such as moving the device, hand, or full body. This approach is appealing because it is

cost-effective and low power, and can easily provide intuitive expressions through the linear and angular

acceleration generated by hand motions.

In [14], the authors describe the use of accelerometers to search for matched motion from a motion

database. In [15], a small number of inertial motion sensors are used as a performance animation

interface that tracks human motion to identify identical motion from a database and reconstruct character

animation. These approaches focus on finding an example of the input motion in a database. The fusion

of microelectromechanical systems (MEMS)-based inertial sensors and low-resolution vision sensors

has been used for 2D human gesture tracking and recognition using an extended Kalman filter [16].

Existing gesture interface techniques are cumbersome and lack control over the expressive

movements of user motion. Gesture data are collected through observations of the human body using

Sensors 2015, 15 14437

sensors; the received sensor data are used to train the model for different activities. These trained models

are subsequently used to predict the activities of new gestures. Such interface systems lack dynamic

control, and are ineffective in mapping the user intentions. Therefore, interactive applications such as

games and virtual worlds would benefit greatly from dynamic control and adaptive methods.

Recognition of user gestures is important in gesture-based interaction techniques. Many gesture

recognition methods exist for 3D spatial gestures, such as hidden Markov models (HMMs), support

vector machines (SVMs), and dynamic-time-warping (DTW). In [17,18], HMM-based approaches were

shown to be effective at increasing the recognition rate of inertial sensing-based gesture recognition.

However, HMM classifiers are expensive on account of their computational complexity; moreover, they

require more than one training sample to efficiently train the model and obtain better recognition rates.

The DTW algorithm measures similarity and computes the distance between two signals that may

vary in terms of time or speed. DTW is effective even when only one training dataset is available.

Furthermore, it is easy to execute, computationally efficient, and more accurate for time series data than

other statistical gesture recognition methods. Many researchers have demonstrated the effectiveness of

the DTW algorithm [19–21]. For example, [22] applied DTW for the recognition of musical gestures,

and [23] employed DTW for personalized gesture recognition. Trajectory-based gesture recognition for

Arabic numerals has also applied DTW [16].

An expressive control interface system that enables users to author and control a 3D virtual avatar

and its motion is needed. The present research is motivated by this need for an intelligent, dynamic, and

user-intuitive gesture interface system with expressive control that uses gesture variation for continuous

interaction. Our goal is to provide an interactive control interface that will enable users to expressively

author and control the 3D virtual avatar motion in real time, allowing users intended motion features to

be perceived.

We herein present an interactive gesture-based control interface for authoring and controlling

a 3D virtual avatar and its motion by tracking user dynamic hand gestures with a single

six-degrees-of-freedom (6DOF) wireless inertial motion sensor. It is not easy to author and control a

high-dimensional 3D virtual avatar using a single inertial motion sensor. To overcome the dimensionality

problem and the lack of sensor inputs, we consider data-driven motion synthesis using a small human

motion database to author a high-dimensional virtual avatar. In this paper, we show that the stylistic

variations of 3D avatar motions can be quickly and easily generated from a single example of motion data

and user-specified dynamic gestures using a single inertial motion sensor.

Statistical methods for controlling character animation have been used by many researchers. For

instance, a method that uses a dynamic Bayesian network to model spatiotemporal variations of human

motion has been developed [24,25]. The authors of [26] used a statistical dynamic model of motion capture

data to generate animation. The above methods are heavily dependent on the motion modeling topology,

initialization, and latent variation parameters. To handle stylistic variations, these latent variable models

must be manually adapted. In [27], principal component analysis (PCA) is used to decompose sets of

motion data; PCA coefficients are then used to synthesize new motions with different styles.

We adopt a data-driven motion synthesis method. Specifically, a statistical approach that uses

independent component analysis (ICA) is employed as a motion decomposition method for the analysis

and synthesis of stylistic avatar motion. The idea of using ICA to extract meaningful motion features

Sensors 2015, 15 14438

from motion data was proposed by [28]. In [29], styles were separated from motion data using ICA to

decompose a single motion into linear combinations of independent components.

Our approach uses a distinct method of generating stylistic motions from a single motion example.

The proposed expressive control of a 3D virtual avatar employs a dynamic gesture interface using a

DTW-based recognition technique to control avatar motion with user hand gestures. This technique

generates various styles of avatar motion with spatial and temporal variations from a single motion

example by decomposing the avatar motion data and dynamic gesture data into linear combinations of

independent components.

The remainder of this paper is organized as follows: Section 2 provides an overview of our system

interface. The inertial motion sensor is presented in Section 3. In Section 4, the implementation of an

appropriate dynamic gestural interface is explained. Gesture-to-motion mapping with expressive motion

synthesis is described in Section 5, and experimental results are discussed in Section 6. Section 7 concludes

our paper with suggestions for future work.

2. System Overview

Our system uses a single inertial motion sensor with a dynamic gesture-based interactive control

interface to author and control avatar actions according to user intentions. From user-generated gesture

data, a DTW-based dynamic gesture mapping interface extracts the significant motion components from

example motion data, and an expressive motion synthesis module modifies these motion components with

the extracted features and components from the user hand gesture. This enables the synthesis of new

stylistic motion and variations that effectively convey the user intentions in real time. Figure 1 illustrates

the overall process of our dynamic gesture-based expressive control interface system.

Figure 1. Dynamic gesture-based expressive control interface system.

Sensors 2015, 15 14439

3. Inertial Motion Sensor

3.1. Wireless Motion Controller

To enable effective 3D motion tracking, we employ commercial solid-state MEMS inertial sensors in

a custom-made wireless motion sensor system using tri-axis magnetic, angular rate, and gravity (MARG)

measurements. A sensor fusion algorithm then enables the user’s hand to be tracked with 6DOF in 3D

space. It is well known that inertial sensor measurements contain a significant amount of noise. If the

measurements are not carefully obtained, this can result in inaccurate sensor fusion output. We

programmed our wireless motion sensor system with sophisticated automatic calibration algorithms and

a quaternion complementary filter sensor fusion algorithm [30]. This filter computes quaternions relative

to the direction of gravity and the Earth’s magnetic field.

In this section, we use a notation system of leading superscripts and subscripts, similar to the system

used in [31], to denote the relative frame of orientations and vectors. For example, ݍ௧ describes the
quaternion of sensor body frame ܾ relative to Earth frame ݁ at time ݐ, and ܣ௦௧ is an estimated vector

described in frame 	ܾ. The ⊗ operator denotes a quaternion product.

Figure 2. Wireless motion sensor system.

The wireless motion sensor system shown in Figure 2 incorporates a tri-axis gyroscope, tri-axis

accelerometer, and tri-axis magnetometer (9-axis MEMS sensor MPU-9150, InvenSense, San Jose, CA,

USA). These have selectable ranges of up to ±2000º/s, ±8 g, and ±1200 μT, respectively. The gyroscope
measures angular rates	߱௫, ߱௬, and ߱௭ about the x, y, and z axes of the sensor body frame; the accelerometer

measures accelerations	ܽ௫, ܽ௬, and ܽ௭; and the magnetometer measures magnetic fields 	݉௫, ݉௬, and ݉௭.

A digital thermometer is included to compensate for time-varying temperature biases in the MEMS

sensors. The sensors, along with buttons, status LEDs, and a Bluetooth transceiver, are connected to a

microcontroller for collecting, controlling, and processing data. The motion data are acquired and

processed at 100 Hz.

Sensors 2015, 15 14440

3.2. Quaternion Complementary Filter

Sensor fusion attitude and heading reference system (AHRS) algorithms compute the 3D attitude

from a gyroscope. These algorithms use additional reference measurements from an accelerometer and

a magnetometer to compensate for drift. A complementary filter uses the gyroscope data to compute the

quaternion rotation. To compensate for the drift in the quaternion rotation, a gravity vector of the

accelerometer is used along the x and y axes; a heading vector of the magnetometer is used for z-axis

drift. Additionally, a complementary filter incorporates a magnetic distortion compensation technique

to correct for nearby sources, such as metal structures or power supply busses. This filter has a
proportional and integral (PI) controller with two tuning parameters (proportional gain ܭ and integral

gain ܭ), which are used to tune the algorithm. A block diagram of this filter is shown in Figure 3.

Figure 3. Complementary filter block diagram.

3.2.1. Quaternion Computation

If the angular rates in radians per second are arranged into a vector, as shown in Equation (1), then

the quaternion derivative describing the rate of change of the Earth frame relative to the sensor body

frame at time t can be calculated as shown in Equation (2) [32]. Equation (3) describes how to compute

the attitude quaternion at time t by numerically integrating the expression in Equation (2). In

Equation (3), Δt is the sampling period, ݍ௧ିଵ is the previous attitude quaternion, and 	ݍଵ, ,ଶݍ ସݍ	 and	ଷ,ݍ

represent elements of the quaternion: ߱௧ = ൣ0 ߱௫ ߱௬ ߱௭൧ (1)ݍ௧∗ = 12 ௧ିଵݍ ⊗ ߱ ௧ (2)ݍ௧ = ଵݍ] ଶݍ ଷݍ [ସݍ = ௧ିଵݍ + ௧∗ݍ ݐ߂ (3)

Sensors 2015, 15 14441

3.2.2. Estimation Block

The normalized magnetic field measurements can be arranged into a vector, as shown in Equation (4).

This vector is incorporated into the estimation block, along with the previous attitude quaternion ݍ௧ିଵ , to

estimate the direction of gravity and the magnetic field. Equations (5) and (6) are used to compensate for

magnetic distortions; they are represented by a red box in the block diagram, and ݍ௧ିଵ∗ 	 represents the

conjugate of the quaternion at time 	ݐ − 1. Equations (7) and (8) estimate the direction of the gravity and

magnetic field vectors, respectively: ܯ௧ = ൣ0 ݉௫ ݉௬ ݉௭൧ (4)ܪ௧ = ൣ0	ℎ௫ ℎ௬ ℎ௭൧ = ௧ିଵݍ ⊗ ܯ ௧ ⊗ ௧ିଵ∗ݍ ௧ܤ(5) = ൣ0	ܾ௫ ܾ௬ ܾ௭൧ = [0 ටℎ௫ଶ + ℎ௬ଶ 0 ℎ௭] (6)

௦௧,௧ܩ = ௫௬௭ ൩ = ସݍଶݍ)2 − ଶݍଵݍ)ଷ)2ݍଵݍ + ଵଶݍ(ସݍଷݍ − ଶଶݍ − ଷଶݍ + ସଶ (7)ݍ

௦௧,௧ܯ = 	ݓ௫ݓ௬ݓ௭ ൩ = 2ܾ௫(0.5 − ଷଶݍ − (ସଶݍ + 2ܾ௭(ݍଶݍସ − ଷݍଶݍ)ଷ)2ܾ௫ݍଵݍ − (ସݍଵݍ + 2ܾ௭(ݍଵݍଶ + ଷݍଵݍ)ସ)2ܾ௫ݍଷݍ + (ସݍଶݍ + 2ܾ௭(0.5 − ଶଶݍ − ଷଶ) (8)ݍ

3.2.3. Error Block

The error block computes the total error, which is the sum of gravity and the magnetic field error

vectors, by incorporating the normalized acceleration and magnetic field measurements along with the

results of Equations (7) and (8). Further inspection of Equation (9) reveals that the error is the

cross-product between the estimated and measured quantities of gravity and the magnetic field:

ܧ = 	݁௫݁௬݁௭ ൩ = ൫ܽ௬௭ − ܽ௭௬൯ + (݉௬ݓ௭ − ݉௭ݓ௬)(ܽ௭௫ − ܽ௫௭) + (݉௭ݓ௫ − ݉௫ݓ௭)൫ܽ௫௬ − ܽ௬௫൯ + (݉௫ݓ௬ − ݉௬ݓ௫) (9)

3.2.4. Proportional Integral Controller

The PI controller in the block diagram is the heart of the algorithm; it provides two tuning parameters,
proportional gain ܭ and integral gain 	ܭ. ܭ determines how quickly the algorithm output converges to

the accelerometer and magnetometer measurements. In other words, ܭ enables us to tune the degree to

which the sensors are trusted; a low value denotes greater trust of the gyroscope; e.g., ܭ = 0

indicates that the accelerometer and magnetometer data will be ignored; ܭ = 0.5 is suitable in most cases. ܭ	 corrects for gyroscope bias; we assume ܭ = 0 , because calibrated data is supplied to the filter.

Equation (10) outputs the adjustment that will be sent to the correction block. The angular velocity at time 	ݐ, ߱௧, is corrected using this adjustment:

Sensors 2015, 15 14442

௧ܷ = ܭ݁௫ + ݁௬ܭ݆௫ܭ + ݁௭ܭ݆௬ܭ + ܭ ௭݆ ݓℎ݁݁ݎ		ܬ௧ = ݆௫݆௬݆௭ = ቄ ௧ିଵܬ + ܧ ∗ ݐ߂ ܭ > 00 ݁ݏ݅ݓݎℎ݁ݐ

(10)

4. Dynamic Gesture Interface

Real-time hand gesture recognition using an inertial sensor is a challenging task, because the gestures

performed by different individuals can vary dramatically. We are especially interested in free-space hand

motion gestures. A hand gesture involves symbolic and continuous data. Hand gesture motions are

primarily used for natural and continuous interactions among people. These gestures reflect emotional

states, and can be intentionally manipulated or constrained. The constrained, symbolic, and qualitative

nature of hand gestures can be an advantage for a dynamic gesture interface system.

Figure 4. Hand gesture segmentation and recognition.

Existing gesture recognition techniques identify the gesture being performed from the motion sensor

data. Our goal is to not only recognize the particular gesture being performed, but also to recognize how

that gesture is being performed. The present approach assesses the gesture expressivity from variations

in the gesture performance, and uses these variations to design an interactive avatar control application.

We employ two techniques to develop expressive interaction, namely gesture tracking and gesture

recognition. A DTW-based algorithm is used to estimate the gesture variations as well as to perform

real-time gesture recognition. Figure 4 depicts a block diagram of our gesture segmentation and

recognition process.

4.1. Hand Gesture Tracking and Segmentation

MARG sensor signals generated from a wireless motion sensor by hand movements are transmitted to a

PC via a Bluetooth transceiver. The measured signals always contain noise and errors from both the sensor

and involuntary user movements. To eliminate the noise and errors, we apply a preprocessing procedure to

Sensors 2015, 15 14443

the acquired signals. This procedure uses signal calibration to reduce sensitivity and offset errors from the

raw signals, and removes high-frequency noise from the calibrated signals via low-pass filtering.

The acceleration data contain motion-induced acceleration and gravity components. The gravity

component is handled as noise, and is thus removed, because it does not depend on user motion. To

compensate for gravity, we use the direction of gravity estimated from the quaternion complementary

filter by Equation (7).

The quaternion ݍ, which represents the orientation of the sensor frame, is used to transform the

sensor-coordinated acceleration into an Earth coordinate using the quaternion operator given by

Equation (11). After obtaining the acceleration from the Earth coordinate system, the gravitational

acceleration ܩ is subtracted from the acceleration to obtain motion-induced acceleration, as shown in

Equation (12): ܽ = (ݐ)ݍ ⊗ ܽ௦ ⊗ (ݐ)݈݁ܿܿܽ(11) (ݐ)∗ݍ = ܽ(ݐ) − (12) ܩ

Each gesture can be considered as an ordered sequence of segments. We employ a computational

method to automatically segment an expressive gesture into a sequence of symbols. This simplifies the

gesture recognition process. Segmentation enables the early recognition of gestures and the estimation

of gesture variations with respect to a learned reference template. For our inertial sensor-based hand

gestures, the accelerometer and gyroscope data from the motion sensors are processed and segmented

for improved recognition efficiency. This also allows gesture variation features to be extracted from each

gesture action in real time.

We employ user hand-motion constraints for gesture segmentation, as this is simple and effective

for real-time use. The magnitude of linear acceleration and angular rate data from the user hand motions

are calculated by Equations (13) and (14) for the segmentation of gesture actions into candidate

gesture templates: ݃ܽܯ݈݁ܿܿܣ = ට݈ܽܿܿ݁௫ଶ + ݈ܽܿܿ݁௬ଶ + ݈ܽܿܿ݁௭ଶ (13)

݃ܽܯݎݕܩ = ට݃ݎݕ௫ଶ + ௬ଶݎݕ݃ + ௭ଶ (14)ݎݕ݃

Using a threshold-based detection method, we segment the performed gestures into candidate gesture

templates. We use a small constant, such as 0.2 G for the acceleration threshold, to detect the occurrence

of segmentation. In the evaluations, using only an acceleration threshold led to unexpected gesture

segmentations; therefore, we employ a temporal threshold with the acceleration threshold. Segments that

occur within the same temporal threshold are assumed to be the same segments, and are thus combined.

Similarly, for the gyro threshold, a small constant such as 20°/s determines whether segmentation has

occurred. In our evaluations, gyro-based segmentation produced no unexpected effects. From this, we

can conclude that gyro-based segmentation is more accurate than acceleration-based segmentation.

Our gesture segmentation process uses both acceleration and gyro-based calculations; the

high-accuracy gyro-based segmentation validates the gesture segments made using acceleration-based

detection, as shown in Figure 5. The segments simplify the process of gesture classification, and the

Sensors 2015, 15 14444

real-time use of hand motion constraints for segmentation reduces the unwanted segmentation of gesture

data compared to sliding window and other approaches for the online segmentation of time series data.

The quaternion output from the motion sensor is transformed into equivalent Euler sequences of

rotation angles. This output is used as gesture feature parameters, which are combined with the

accelerometer and gyroscope data to efficiently track and classify gestures in a meaningful and intuitive

way. The distance estimation of orientation data is more efficient and enables better discrimination

among similar gestures patterns.

Figure 5. Acceleration and gyro-based gesture segmentation.

4.2. Hand Gesture Recognition Based on DTW

The inertial motion sensor input device is equipped with buttons for users to start and stop gestures.

Users begin a gesture by pressing the button, and complete the gesture by releasing it. Each hand gesture

training sample is collected in XML file format and stored in a template database for gesture recognition.

We implement a multidimensional real-time gesture recognition algorithm using DTW. During the

gesture training process, a template and threshold value for each class of gestures is computed. In the

real-time recognition stage, the DTW algorithm measures the similarity between the input and the

templates. The input can either be accepted as a member of the class to which it has the minimum

normalized total warping distance, or if the similarity measurement does not match the threshold value,

rejected as belonging to none of the classes.

A gesture template can be computed by recording a single or N training example(s) for each class of

gestures that must be recognized. The template gesture for each class of gestures can be found from the

recorded training examples by computing the distance between each of the N training examples. The

training example in the given class, which has the minimum normalized total warping distance when

compared against the N–1 training examples, is recognized as the template gesture for that class. The

classification threshold value for each template gesture is calculated by taking the average total normalized

warping distance between the template and the other N − 1 training examples for that gesture.

Using a classification threshold for each template gesture overcomes the problem of false positives

during the recognition stage, as unknown time series input is classified as a null class if no match is found

Sensors 2015, 15 14445

in the gesture database. If a new gesture class is added to an existing gesture in the database, or if an

existing gesture is removed, the gesture model does not need to be retrained. Instead, we need only train a

new template and threshold value for the new gesture, which thereby reduces the training time.

Once the DTW algorithm has been trained, an unknown multidimensional time-series input gesture

can be classified by calculating the normalized total warping distance between the input and each of the

gesture templates in the database. The input gesture is then classified according to the template class

corresponding to the minimum normalized total warping distance.

The DTW process is described as follows. If 	ܺ and ܻ are two time-series gesture sequences with

different lengths, where 	ܺ = ,ଵݔ} ,ଶݔ … ܻ	and	}ݔ = ,ଵݕ} ,ଶݕ … ,ܦ	 }, a cumulative distance matrixݕ

which represents a mapping and alignment between ܺ(݅) and ܻ(݆) , is constructed to measure the

similarity between sequences ܺ and 	ܻ. Subsequently, a warping path ܹ = ,ଶݓ,ଵݓ} } comprisedݓ…

of the local cumulative distances ܦ(݅, ݆) is calculated. The length of the warping path is: ݉ܽݔ(݊,݉) ≤ ܲ < ݊ +݉ (15)

and the ݇th element of the warping path is given by: ݓ = ,ݔ)) (16)ݕ

To improve the efficiency of DTW, we constrain the warping path so that the maximum allowed

warping path cannot drift too far from the diagonal. Controlling the size of the warping window speeds

up the DTW computation. The constraints placed on the warping path are as follows. The warping path

must start at the beginning of each time series, i.e., at ݓଵ = (1,1), and end at ݓ = (݊,݉). This ensures

that every index of both time series is used in the warping path. The warping path must be continuous;

i.e., if ݓ = (݅, ݆), then ݓାଵ must equal either (݅, ݆),(݅ + 1, ݆), (݅, ݆ + 1), or (݅ + 1, ݆ + 1). The warping

path must exhibit monotonic behaviour; i.e., the warping path cannot move backwards. The optimal

warping path that minimizes the normalized total warping distance is given by:

݀(ܹ) = ݉݅݊ 1ܲ݀(ݓ
ୀଵ , ೕ) (17)ݓ

where ݀(ݓ, . The minimum optimal total warping path can be effectively found using dynamicݓ	 ೕ) is the Euclidean distance between point ݅ in time-series ܺ and point ݆ in time-series ܻ, is given byݓ

programming through the cumulative distance ܦ(݅, ݆) given by: ܦ(݅, ݆) = ݀൫ݔ, ൯ݕ + min{ܦ(݅ − 1, ݆), ,݅)ܦ ݆ − 1), ݅)ܦ − 1, ݆ − 1)}	 (18)

The ܹܶܦ(ܺ, ܻ) between the two time-series sequences is then calculated by finding the minimum

normalized total warping distance between ܺ and ܻ. This is defined as:

,ܺ)ܹܶܦ ܻ) = 1ܲ݀(ݓ
ୀଵ , ೕ) (19)ݓ

Figure 6 shows the recorded freehand affordance mimic gesture patterns for different kicking and

punching styles from the 6DOF wireless motion sensor. We use the term “mimic” to represent the

animation action that the virtual avatar is going to perform. The gesture training templates used to mimic

kicking and punching actions are generated as shown in Figure 6a–f. The user begins the gesture by

Sensors 2015, 15 14446

pressing the start button on the wireless motion sensor, and then freely and continuously moves his/her

hand in 3D space.

Figure 6. Mimic gesture patterns for kicking and punching actions.

Users can make gesture segments to encode context and sub-context features of the gesture actions

by pausing his/her hand motion for a fraction of a second, and then moving again until the gesture is

completed. The completion of a gesture is signified by releasing the button on the wireless motion sensor.

The proposed DTW-based recognition algorithm enables early recognition of gestures and estimates

gesture variations of a live gesture according to the learned templates.

5. Expressive Motion Synthesis

Applications such as computer games and serious games use 3D gesture recognition for character

animation, either to control avatars or interact with virtual worlds. In these applications, a small number

Sensors 2015, 15 14447

of motion clips are used to play avatar animations. These clips are repeatedly played back whenever the

instance of the given action is recognized through the interaction of user gestures. However, users often

find that the animation is monotonous and unrealistic. Current animation systems lack the ability to

recognize the user’s intentions and interactively produce an appropriate reaction by the system.

Motion graph and motion synthesis techniques [33] typically synthesize actions by combining motion

segments from a database, or adjust motion through statistical modeling and cannot synthesize variations

in motion. However, users sometimes require a motion with a style and variation that is not in the

database. We aim to produce a dynamic and interactive interface technique for authoring and controlling

avatar motion. Our expressive motion synthesis approach facilitates the interactive control of virtual

avatar behaviors in virtual worlds. Figure 7 illustrates our expressive motion synthesis process using the

dynamic gesture mapping interface.

Figure 7. Expressive motion synthesis.

5.1. Gesture-Motion Mapping

Human motion is generally continuous and smooth. For proper character animation, the bones and joints

must follow a logical hierarchy. Each joint has one or more DOFs that define its possible range of motion.

Specifying values for these DOFs results in a particular body pose; changing these values over time results

in movement. Human motion data comprise a high-dimensional time series. The hierarchy structure of

each frame can be represented as root positions and joint orientations. Motion is defined as a continuous

function of frame indexes to poses of the avatar skeleton. This can be written as: ݉(ݐ) = ,(ݐ)} ,(ݐ)ଵݍ … , (20) {(ݐ)ݍ

where ݐ is the frame index, denotes the position of the root joint, and ݍ is the joint orientation.

Our gesture-based interactive avatar control application system uses a 3D human model from the

Rocketbox Libraries with a hierarchical structure for character animation. We used 18 important joints

from the avatar skeleton to control expressive movement. A small database of example movements for

this system was obtained from conventional key-frame techniques and freely available motion capture

databases, such as the Carnegie Mellon University (CMU) motion capture database. The motion data are

resampled and simplified to the skeleton structure of a 3D virtual avatar.

Sensors 2015, 15 14448

Figure 8. Avatar control using dynamic gesture mapping.

Our system supports both individual and group control of avatar joints using the inertial motion sensor

in real time, like an avatar puppetry system [34]. However, our dynamic gesture mapping interface

enables users to seamlessly control the avatar motion with their hand gestures. The avatar joints are

controlled in groups based on the skeleton hierarchy, such as right leg, left leg, right arm, left arm, and

torso-head, or individually. This reduces the complexity of motion synthesis, and simplifies the

interaction. This system gives users the freedom to control the avatar joints of their choice, depending

on the context of motion.

Our system tracks user hand gestures. A dynamic interface maps the gestures to the corresponding

joint parameters of the 3D virtual avatar to control and synthesize a new style of expressive avatar

motion. The gesture-motion mapping technique employs an embodied interaction with the mimic gesture

patterns for each type of avatar action. The mimic gesture action templates are embedded in significant

and specific joint parameters of the avatar body, i.e., those that most effectively convey each desired

motion, and provide control over expressive characteristics of avatar movement depending on the

context and sub-context of the gesture. These joints are encoded as candidate joints for the control of

avatar motion in real time using hand gestures, as shown in Figure 8. User hand gestures are transferred

to the avatar joint parameters by mapping the extracted features from the inertial motion sensor data.

5.2. Components and Features Extraction

Style can be regarded as a subtle variation of basic motion. The style and content of a motion are

independent and can be separated. We assume that the motion data are generated from a few dimensional

feature vectors, and that these features are statistically independent. The motion data can be represented

as a time-series vector or a set of samples of random variables. By decomposing the joint angle data of

full-body motion that has been fitted to a hierarchical skeleton, we parameterize the motion into

independent joint components. Similarly, the hand gesture data are decomposed to obtain dynamic

gesture components.

Sensors 2015, 15 14449

We use ICA to extract the motion components from significant candidate joints and decompose user

hand gestures into independent components. PCA is used as a form of preprocessing to determine the

dimensionality of the motion features. This simplifies the gesture-to-motion mapping procedure, and

reduces the computational complexity. We used Euler angles, representing the rotation of the candidate

joints provided in the motion capture data, as well as orientation data from the hand gestures in the form

of Euler angles, for ICA decomposition to obtain corresponding motion components.

The process of extracting independent components using ICA can be described as follows. Given

input motion data ݉(ݐ) , we apply ICA to compute the independent component ܿ(ݐ) and the

corresponding mixing matrix ܣ as: ݉(ݐ) = (21) (ݐ)ܿܣ

We employ FastICA [35] algorithm to decompose the motion data into independent components.

Before applying the ICA algorithm, the motion data undergoes two preprocessing steps. First, the data

are centered around their statistical mean. Then, the centered data are whitened using PCA. Whitening

linearly transforms the data into a set of uncorrelated components. The number of principle components

determines the number of independent components. Related details are provided in [36]. The complete

ICA model can be expressed as: ݉(ݐ) = {݉}ܧ + (22) (ݐ)ܿܣܲ

where ܧ{݉} is the mean of the input data and ܲ is the PCA matrix used for whitening.

The dynamic gesture mapping interface selects an example motion from the motion database by

classifying each input gesture. To extract motion components from high-dimensional example motion

data, we use the encoded information of each gesture action, such as context, sub-context, and candidate

joints. The DTW-based gesture recognition algorithm classifies the performed gesture, and extracts

variation features from the recognized reference. The real-time estimation of dynamic gesture variations

at a given instant enables the real-time expressive modulation of multiple joint parameters. The extracted

variation features represent changes in speed, duration, and orientation. These gesture variations are used

to expressively control the avatar motion in real time.

5.3. Style Synthesis

ICA is applied to the candidate joints independently specified by the mapping relationship between

the user gesture action and the example motion to extract motion components. The extracted significant

joint motion components are combined with extracted dynamic gesture components from the hand

gesture data to synthesize new, realistic avatar motions in the ICA domain. Our system extracts

independent components from each body part specified by the user gesture-motion mapping, which

provides users with fine control of mixing components from the hand gesture motion and produces a

rich variety of styles and variations for each body part.

Several mathematical operations can be used to edit motion components by using gesture components

to generate a new style of avatar motion sequences. The motion editing operations used in our system

enable users to control the candidate joints for specific key frames, or for continuous control over a period

of time. The user-specified dynamic gesture components from hand gestures are mapped to the joint

Sensors 2015, 15 14450

motion components of the example motion, such that fine details are preserved and blended over time to

achieve a new style of motion. This editing operation is mathematically expressed as: ݉ᇱ(ݐ) = {݉}ܧ + (ݐ)ܿ)ଵ(ܣܲ) − ܿଵ(ݐ)) + (ݐ)ଵܿଵ(ܣܲ)ߙ + (1 − (23) (ݐ)ଶܿଶ(ܣܲ)(ߙ

where ݉′(ݐ) is the edited motion, ܧ{݉} is the mean of the input motion data, ܿ(ݐ) is its independent

component, and 	ܿଵ(ݐ) is the selected joint independent component with mixing matrix (ܲܣ)ଵ. ܿଶ(ݐ) is

the independent component of the hand gesture motion and (ܲܣ)ଶ is its mixing matrix. ߙ is a blending

parameter for controlling the editing process. Similarly, other editing operations such as adding,

tuning, and transferring components can be used to obtain interesting results depending on the

motion requirements.

After manipulation, the motion data is post-processed to correct statistical artifacts in the edited

motion by preserving the joint angles from the original data; avatar motion is reconstructed by adding

the motion data removed prior to motion decomposition. We impose a predefined orientation limit and

DOF for each joint to prevent unnatural joint motions. The synthesis of styles in the ICA domain has

several limitations. This method is more effective for cyclic motions than acyclic motions, because it is

easier to align cyclic motions than arbitrary ones. However, if we properly perform the decomposition

to obtain cyclic aspects from arbitrary motions, we can produce effective results.

6. Experimental Results

Our interactive avatar control application uses the dynamic gesture interface system. Interaction with

the application involves performing a gesture to generate a specific style of avatar motion. It additionally

involves the continuous manipulation of that stylistic avatar motion by extracting meaningful variations

from the gesture execution. Gesture actions are similar but not exact; variations are primarily due to

differences among individuals. Our dynamic gesture interface extracts the intention of a gesture, and

generates the user-desired results in avatar motions with fine control of avatar joint parameters.

We demonstrated our dynamic gesture-based interactive control interface system using the motion

example of kicking and punching with the mimic gesture patterns. Our system software was programmed

in C#, and uses the Unity3D game engine to render the 3D virtual avatar. The system was run on a PC

with 16 GB of memory and an Intel Core i7 with a 3.40 GHz CPU.

6.1. Style Variations in Avatar Motion

Figure 9 shows three styles of kicking motion generated using the gesture patterns provided for each

style of motion. All three motion styles Figure 9b–d were generated using a single example motion

(Figure 9a), and mimic hand gesture patterns in Figure 6a–c for the kicking motions. For kicking

style 1 (angry) and style 2 (friendly), we selected the right leg part and both the right and left forearm

joints as candidate joints for extracting corresponding motion components from the input motion data.

For kicking style 3 (frustrated), we selected the head in addition to the style 1 and 2 candidate joints.

Sensors 2015, 15 14451

Figure 9. Kicking motions of avatar.

Figure 10. Punching motions of avatar.

A rich set of new motion styles can be synthesized depending on user gesture-motion mapping

relationships. The avatar’s motion trajectory changes according to the user’s gesture-motion mapping

Sensors 2015, 15 14452

relationship, which alters the style of the motion. Figure 10 shows different styles of the punching motion

generated using the gesture patterns provided for each style of motion. All three motion styles in Figure

10b–d were generated using the single example motion in Figure 10a, and mimic the hand gesture

patterns of Figure 6d–f for the punching motions.

Figure 11 shows the modulated and reconstructed motion curves of the RightUpLeg and LeftArm

joints for each kicking and punching style of motion, synthesized from the example motion. The style

of motion was modulated by deforming the joint motion trajectories with hand gesture data. From a

single example motion, we created an adequate variety of interesting motions in the avatar using a

combination of ICA-based analysis and DTW-based gesture recognition for gesture-motion mapping.

Figure 11. Motion curves of RightUpLeg and LeftArm joints.

Sensors 2015, 15 14453

6.2. Spatial and Temporal Variations in Motion

The proposed system produces rich and continuous variations for each style of avatar motion in time and

space. Hence, our system increases the reusability and flexibility of motion data. Similar gesture patterns can

generate an unlimited number of motion variations depending on user-supplied components and variation

features provided through gesture execution. Figure 12 shows the spatial-temporal variations of the kicking

motion obtained for each style by mapping hand gesture variation features to avatar motion parameters. These

parameters were then continuously modulated depending on how the gesture was performed.

The inter-class gestures show how we perceived each style of motion; the intra-class variability

demonstrates our dynamic way of producing the same motion. Users can make new styles and variations

in avatar motion by selecting a new group of joints with new gesture patterns. They can then create a

new combination of gestures and a new motion class. Thus, our system enables users to introduce new

motions to meet their specific requirements.

Figure 12. Spatial and temporal variations in kicking motions of avatar.

Sensors 2015, 15 14454

6.3. Evaluation and User Study

We performed a gesture recognition experiment to test and evaluate the efficiency of the inertial

motion sensor for the hand gesture patterns shown in Figure 6. Table 1 presents the confusion matrix

table for the target gestures. Columns represent recognized gestures, and rows denote the actual input

gestures. An average accurate recognition rate of 97.6% was achieved using the DTW algorithm. The

combination of acceleration and orientation data as feature parameters, with segmentation of the gesture

action into candidate gesture templates for gesture recognition, enables users to produce affordance

gesture input.

Table 1. Confusion matrix of target gestures.

 Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5 Gesture 6
Gesture 1 0.97 0 0 0 0 0.03
Gesture 2 0 0.99 0 0 0.01 0
Gesture 3 0 0 0.97 0.03 0 0
Gesture 4 0 0 0.02 0.98 0 0
Gesture 5 0.01 0 0 0 0.99 0
Gesture 6 0.04 0 0 0 0 0.96

The system was tested by several users who had minimal or no experience with 3D animation. We

asked participants to test the system by providing instructions for mimic hand gesture actions for a

kicking motion to generate stylistic kicking motions for an avatar. The users successfully produced the

stylistic kicking motions of the avatar at interactive speeds in approximately 4–5 min.

The results show that our dynamic gesture interface provides continuous and rich interaction. The

gesture-based interaction technique gives the sense of engagement and playful behavior for controlling

avatar motion. Synthesis of expressive avatar motions can be spontaneously generated and varied. This

enables even novice users to quickly and easily control and synthesize realistic avatar animation at

interactive speeds. The generated avatar motions are realistic and perceptually valid; moreover, they can

be effectively conveyed and expressed in interactive applications, such as virtual worlds, computer

games, humanoid interfaces, and other virtual environments.

7. Conclusions

In this paper, we presented a dynamic gesture-based interactive interface system for authoring and

controlling the motion of a 3D virtual avatar using a single inertial motion sensor. The proposed touch and

shake metaphor extracts meaningful information from user hand motions. A DTW-based

gesture-motion mapping interface, and the expressive synthesis of new stylistic motions by mapping

dynamic gestures using an ICA-based decomposition method, enables users to change the style and

behavior of avatar motions from a single example motion, which increases the reusability and flexibility

of the motion database. The real-time estimation of dynamic gesture variations enables users to

spontaneously and expressively control avatar motion with variations. This method is suitable for

interactive applications, such as computer games and non-verbal communication via virtual avatars. The

Sensors 2015, 15 14455

system’s combination of gesture recognition with gesture variation tracking allows effective control and

continuous interaction with a virtual environment.

In future work, we will further develop and enhance our interface method for authoring and

controlling an avatar and its motion. Our future work will also enhance the variety of personalized hand

gestures and improve the recognition rate. Further, we plan to test the intuitiveness and naturalness of

the system by incorporating wide variety of hand gestures with more avatar example motions through

usability evaluations. Exploring different ways of tracking user hand motions, and combining our

interface with other hand motion sensing devices, is one possible approach for future work. The proposed

gesture-based interaction technique could also be examined in other natural interactive applications such

as sign language and hand writing recognition.

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research

Foundation of Korea funded by the Ministry of Education (grant number NRF-2012R1A1A2006919)

and Commercializations Promotion Agency for R & D Outcomes—Grant funded by the Ministry of

Science, ICT and Future Planning—2013A000019.

Author Contributions

Shashidhar Patil developed and implemented the algorithms for the dynamic gesture-based interactive

interface for expressive control of 3D virtual avatar and expressive motion synthesis experiments for

stylistic variations in avatar motions. Harinadha Reddy Chintalapalli was in charge of developing the

wireless motion sensor. Dubeom Kim was responsible for avatar modeling and conducted the user study,

and Youngho Chai guided the research direction and supervised the entire research process. All authors

made substantial contributions to the writing and revision of the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Mitra, S.; Acharya, T. Gesture recognition: A survey. IEEE Trans. Syst. Man Cybern. Part C 2007,

37, 311–324.

2. Wu, Y.; Huang, T.S. Vision-based gesture recognition: A review. Lect. Notes Artif. Int. 1999, 1739,

103–115.

3. Shin, H.J.; Lee, J.; Shin, S.Y.; Gleicher, M. Computer puppetry: An importance-based approach.

ACM Trans. Graph. 2001, 20, 67–94.

4. Ishigaki, S.; White, T.; Zordan, V.B.; Liu, C.K. Performance-based control interface for character

animation. ACM Trans. Graph. 2009, 28, 61.

5. Chen, C.; Liu, K.; Kehtarnavaz, N. Real-time human action recognition based on depth motion

maps. J. Real-Time Image Process. 2013, doi:10.1007/s11554-013-0370-1.

Sensors 2015, 15 14456

6. Keskin, C.; Kıraç, F.; Kara, Y.E.; Akarun, L. Real time hand pose estimation using depth sensors.

In Consumer Depth Cameras for Computer Vision; Springer: Berlin, Germany, 2013; pp. 119–137.

7. Ren, Z.; Meng, J.; Yuan, J.; Zhang, Z. Robust hand gesture recognition with kinect sensor.

In Proceedings of the 19th ACM international conference on Multimedia, New York, NY, USA,

28 November–1 December 2011; pp. 759–760.

8. Vikram, S.; Li, L.; Russell, S. Handwriting and gestures in the air, recognizing on the fly. In

Proceedings of the CHI, Paris, France, 27 April–2 May2013; p. 21.

9. Benbasat, A.Y.; Paradiso, J.A. An inertial measurement framework for gesture recognition and

applications. In Gesture and Sign Language in Human-Computer Interaction; Springer: Berlin,

Germany, 2002; pp. 9–20.

10. Junker, H.; Amft, O.; Lukowicz, P.; Troster, G. Gesture spotting with body-worn inertial sensors to

detect user activities. Pattern Recogn. 2008, 41, 2010–2024.

11. Zhang, Z.; Wu, Z.; Chen, J.; Wu, J.K. Ubiquitous human body motion capture using micro-sensors.

In Proceedings of the IEEE International Conference on Pervasive Computing and Communications,

Galveston, TX, USA, 9–13 March 2009; pp. 1–5.

12. Xu, R.Z.; Zhou, S.L.; Li, W.J. MEMS accelerometer based nonspecific-user hand gesture

recognition. IEEE Sens. J. 2012, 12, 1166–1173.

13. Lee, J.C. Hacking the nintendo Wii remote. IEEE Pervas. Comput. 2008, 7, 39–45.

14. Slyper, R.; Hodgins, J.K. Action capture with accelerometers. In Proceedings of the 2008 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, Dublin, Ireland, 7–9 June 2008;

pp. 193–199.

15. Liu, H.; Wei, X.; Chai, J.; Ha, I.; Rhee, T. Realtime human motion control with a small number of

inertial sensors. In Proceedings of the Symposium on Interactive 3D Graphics and Games,

San Francisco, CA, USA, 18–20 February 2011; pp. 133–140.

16. Zhou, S.L.; Fei, F.; Zhang, G.L.; Mai, J.D.; Liu, Y.H.; Liou, J.Y.J.; Li, W.J. 2D Human gesture

tracking and recognition by the fusion of MEMS inertial and vision sensors. IEEE Sens. J. 2014,

14, 1160–1170.

17. Kallio, S.; Kela, J.; Korpipaa, P.; Mantyjarvi, J. User independent gesture interaction for small

handheld devices. Int. J. Pattern Recogn. 2006, 20, 505–524.

18. Kim, S.; Park, G.; Yim, S.; Choi, S.; Choi, S. Gesture-recognizing hand-held interface with

vibrotactile feedback for 3D interaction. IEEE Trans. Consum. Electron. 2009, 55, 1169–1177.

19. Akl, A.; Feng, C.; Valaee, S. A novel accelerometer-based gesture recognition system. IEEE Trans.

Signal Process. 2011, 59, 6197–6205.

20. Heloir, A.; Courty, N.; Gibet, S.; Multon, F. Temporal alignment of communicative gesture

sequences. Comput. Animat. Virtual World 2006, 17, 347–357.

21. Ko, M.H.; West, G.; Venkatesh, S.; Kumar, M. Using dynamic time warping for online temporal

fusion in multisensor systems. Inform. Fusion 2008, 9, 370–388.

22. Merrill, D.; Paradiso, J.A. Personalization, expressivity, and learnability of an implicit mapping

strategy for physical interfaces. In Proceedings of the CHI Conference on Human Factors in

Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 2152–2161.

23. Liu, J.Y.; Zhong, L.; Wickramasuriya, J.; Vasudevan, V. uWave: Accelerometer-based

personalized gesture recognition and its applications. Pervasive Mob. Comput. 2009, 5, 657–675.

Sensors 2015, 15 14457

24. Lau, M.; Bar-Joseph, Z.; Kuffner, J. Modeling spatial and temporal variation in motion data.

ACM Trans Graph. 2009, 28, 171.

25. Ma, W.; Xia, S.; Hodgins, J.K.; Yang, X.; Li, C.; Wang, Z. Modeling style and variation in human

motion. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, Madrid, Spain, 2–4 July 2010; pp. 21–30.

26. Chai, J.X.; Hodgins, J.K. Constraint-based motion optimization using a statistical dynamic model.

ACM Trans. Graph. 2007, 26. 8.

27. Urtasun, R.; Glardon, P.; Boulic, R.; Thalmann, D.; Fua, P. Style-based motion synthesis.

Comput. Graph. Forum 2004, 23, 799–812.

28. Mori, H.; Hoshino, J.I. Independent component analysis and synthesis of human motion.

In Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), Orlando, FL, USA, 13–17 May 2002.

29. Shapiro, A.; Cao, Y.; Faloutsos, P. Style components. In Proceedings of the Graphics Interface

2006, Toronto, ON, Canada, 7–9 June 2006; pp. 33–39.

30. Chintalapalli, H.R.; Patil, S.; Nam, S.; Park, S.; Chai, Y.H. 6DOF wireless tracking wand using

MARG and vision sensor fusion. Int. J. Distrib. Sens. Netw. 2014, 2014. doi:10.1155/2014/864768.

31. Madgwick, S.O.; Harrison, A.J.; Vaidyanathan, R. Estimation of IMU and MARG orientation using

a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on

Rehabilitation Robotics (ICORR), Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7.

32. Marins, J.L.; Yun, X.; Bachmann, E.R.; McGhee, R.B.; Zyda, M.J. An extended Kalman filter for

quaternion-based orientation estimation using MARG sensors. In Proceedings of the 2001 IEEE/RSJ

international conference on intelligent robots and systems, Maui, HI, USA, 29 October–3 November

2001; pp. 2003–2011.

33. Pejsa, T.; Pandzic, I.S. State of the art in example-based motion synthesis for virtual characters in

interactive applications. Comput. Graph. Forum 2010, 29, 202–226.

34. Shiratori, T.; Mahler, M.; Trezevant, W.; Hodgins, J.K. Expressing animated performances through

puppeteering. In Proceedings of the 2013 IEEE Symposium on 3D User Interfaces (3DUI), Orlando,

FL, USA, 16–17 March 2013; pp. 59–66.

35. Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis.

IEEE Trans. Neural Netw. 1999, 10, 626–634.

36. Hyvarinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw.

2000, 13, 411–430.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

