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Abstract: In this paper, we present an inertial sensor-based touch and shake metaphor for 

expressive control of a 3D virtual avatar in a virtual environment. An intuitive six  

degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control 

input device with a sensor fusion algorithm. The algorithm enables user hand motions to be 

tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based 

complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic 

time-warping is developed for efficient recognition of dynamic hand gestures with real-time 

automatic hand gesture segmentation. Our approach enables the recognition of gestures and 

estimates gesture variations for continuous interaction. We demonstrate the gesture 

expressivity using an interactive flexible gesture mapping interface for authoring and 

controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This 

synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in 

the motion database using hand gesture sequences from a single inertial motion sensor. 

Keywords: inertial sensors; gestural interfaces; expressive control; gesture recognition; 

gesture variations; interactive systems; touch and shake; virtual avatar 
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1. Introduction 

Rapid developments in computing technology and recent advances in user interfaces have replaced 

the conventional interaction tools such as keyboard and mouse. In daily life, the use of human gestures 

to communicate and control interactive applications such as computer games and humanoid interfaces 

in virtual environments is increasing. Gestural interfaces enable users to naturally interact with the virtual 

environment. Designing a dynamic gesture interface system to recognize a user’s actions and 

corresponding reaction from the application in real time is a challenging task. Gestures are meaningful 

body motions, and can include static or dynamic physical movements of the fingers, hands, face, or body 

for interaction with the environment. 

Gestural interfaces are currently being developed for applications such as virtual reality, sign 

language, and remote control using different motion tracking and gesture recognition techniques [1]. 

The use of different imaging and tracking devices are required to recognize the gestures. A user interface 

based on the conventional keyboard and mouse is not suitable for interactive and dynamic environments; 

rather, devices that sense a user’s body must be used. Many researchers have developed gesture 

recognition techniques using vision-based methods [2]. 

In [3], the authors present a motion-capture-based performance animation system that maps detailed 

user motion to a virtual avatar; an optical motion capture system is described in [4]. However,  

motion-capture-based methods require significant user set-up time. They are limited by the capture 

environment and lighting conditions, and their cost makes them impractical for personal use. Gesture 

recognition can be used in entertainment and serious games to control avatars or interact with virtual 

worlds. Low-cost motion-capture depth sensor devices, such as Microsoft’s Kinect, are widely used for 

body movement recognition [5]. In [6], a Kinect was used to capture depth images for American Sign 

Language (ASL) detection. In [7], both depth and color information from a Kinect were used to detect 

hand and gesture recognitions. The Leap Motion Controller [8] hand-motion sensing device also employs 

a depth camera to track user hand movements in a constrained environment. Moreover, vision-based 

sensors suffer from occlusion problems. These vision-based techniques are limited to wearability and have 

prohibitive computational costs, are sensitive to lighting conditions, and require a large workspace. 

Inertial-sensor-based gesture recognition has been successfully used in mobile and pervasive 

computing [9–12]. Interaction devices such as the Nintendo Wii [13] and Sony Motion Controller have 

been widely used in computer games, and allow interaction with the game by employing a user’s natural 

motions, such as moving the device, hand, or full body. This approach is appealing because it is  

cost-effective and low power, and can easily provide intuitive expressions through the linear and angular 

acceleration generated by hand motions. 

In [14], the authors describe the use of accelerometers to search for matched motion from a motion 

database. In [15], a small number of inertial motion sensors are used as a performance animation 

interface that tracks human motion to identify identical motion from a database and reconstruct character 

animation. These approaches focus on finding an example of the input motion in a database. The fusion 

of microelectromechanical systems (MEMS)-based inertial sensors and low-resolution vision sensors 

has been used for 2D human gesture tracking and recognition using an extended Kalman filter [16]. 

Existing gesture interface techniques are cumbersome and lack control over the expressive 

movements of user motion. Gesture data are collected through observations of the human body using 
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sensors; the received sensor data are used to train the model for different activities. These trained models 

are subsequently used to predict the activities of new gestures. Such interface systems lack dynamic 

control, and are ineffective in mapping the user intentions. Therefore, interactive applications such as 

games and virtual worlds would benefit greatly from dynamic control and adaptive methods. 

Recognition of user gestures is important in gesture-based interaction techniques. Many gesture 

recognition methods exist for 3D spatial gestures, such as hidden Markov models (HMMs), support 

vector machines (SVMs), and dynamic-time-warping (DTW). In [17,18], HMM-based approaches were 

shown to be effective at increasing the recognition rate of inertial sensing-based gesture recognition. 

However, HMM classifiers are expensive on account of their computational complexity; moreover, they 

require more than one training sample to efficiently train the model and obtain better recognition rates. 

The DTW algorithm measures similarity and computes the distance between two signals that may 

vary in terms of time or speed. DTW is effective even when only one training dataset is available. 

Furthermore, it is easy to execute, computationally efficient, and more accurate for time series data than 

other statistical gesture recognition methods. Many researchers have demonstrated the effectiveness of 

the DTW algorithm [19–21]. For example, [22] applied DTW for the recognition of musical gestures, 

and [23] employed DTW for personalized gesture recognition. Trajectory-based gesture recognition for 

Arabic numerals has also applied DTW [16]. 

An expressive control interface system that enables users to author and control a 3D virtual avatar 

and its motion is needed. The present research is motivated by this need for an intelligent, dynamic, and 

user-intuitive gesture interface system with expressive control that uses gesture variation for continuous 

interaction. Our goal is to provide an interactive control interface that will enable users to expressively 

author and control the 3D virtual avatar motion in real time, allowing users intended motion features to 

be perceived. 

We herein present an interactive gesture-based control interface for authoring and controlling  

a 3D virtual avatar and its motion by tracking user dynamic hand gestures with a single  

six-degrees-of-freedom (6DOF) wireless inertial motion sensor. It is not easy to author and control a  

high-dimensional 3D virtual avatar using a single inertial motion sensor. To overcome the dimensionality 

problem and the lack of sensor inputs, we consider data-driven motion synthesis using a small human 

motion database to author a high-dimensional virtual avatar. In this paper, we show that the stylistic 

variations of 3D avatar motions can be quickly and easily generated from a single example of motion data 

and user-specified dynamic gestures using a single inertial motion sensor. 

Statistical methods for controlling character animation have been used by many researchers. For 

instance, a method that uses a dynamic Bayesian network to model spatiotemporal variations of human 

motion has been developed [24,25]. The authors of [26] used a statistical dynamic model of motion capture 

data to generate animation. The above methods are heavily dependent on the motion modeling topology, 

initialization, and latent variation parameters. To handle stylistic variations, these latent variable models 

must be manually adapted. In [27], principal component analysis (PCA) is used to decompose sets of 

motion data; PCA coefficients are then used to synthesize new motions with different styles. 

We adopt a data-driven motion synthesis method. Specifically, a statistical approach that uses 

independent component analysis (ICA) is employed as a motion decomposition method for the analysis 

and synthesis of stylistic avatar motion. The idea of using ICA to extract meaningful motion features 
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from motion data was proposed by [28]. In [29], styles were separated from motion data using ICA to 

decompose a single motion into linear combinations of independent components. 

Our approach uses a distinct method of generating stylistic motions from a single motion example. 

The proposed expressive control of a 3D virtual avatar employs a dynamic gesture interface using a 

DTW-based recognition technique to control avatar motion with user hand gestures. This technique 

generates various styles of avatar motion with spatial and temporal variations from a single motion 

example by decomposing the avatar motion data and dynamic gesture data into linear combinations of 

independent components. 

The remainder of this paper is organized as follows: Section 2 provides an overview of our system 

interface. The inertial motion sensor is presented in Section 3. In Section 4, the implementation of an 

appropriate dynamic gestural interface is explained. Gesture-to-motion mapping with expressive motion 

synthesis is described in Section 5, and experimental results are discussed in Section 6. Section 7 concludes 

our paper with suggestions for future work. 

2. System Overview 

Our system uses a single inertial motion sensor with a dynamic gesture-based interactive control 

interface to author and control avatar actions according to user intentions. From user-generated gesture 

data, a DTW-based dynamic gesture mapping interface extracts the significant motion components from 

example motion data, and an expressive motion synthesis module modifies these motion components with 

the extracted features and components from the user hand gesture. This enables the synthesis of new 

stylistic motion and variations that effectively convey the user intentions in real time. Figure 1 illustrates 

the overall process of our dynamic gesture-based expressive control interface system. 

 

Figure 1. Dynamic gesture-based expressive control interface system. 
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3. Inertial Motion Sensor 

3.1. Wireless Motion Controller 

To enable effective 3D motion tracking, we employ commercial solid-state MEMS inertial sensors in 

a custom-made wireless motion sensor system using tri-axis magnetic, angular rate, and gravity (MARG) 

measurements. A sensor fusion algorithm then enables the user’s hand to be tracked with 6DOF in 3D 

space. It is well known that inertial sensor measurements contain a significant amount of noise. If the 

measurements are not carefully obtained, this can result in inaccurate sensor fusion output. We 

programmed our wireless motion sensor system with sophisticated automatic calibration algorithms and 

a quaternion complementary filter sensor fusion algorithm [30]. This filter computes quaternions relative 

to the direction of gravity and the Earth’s magnetic field. 

In this section, we use a notation system of leading superscripts and subscripts, similar to the system 

used in [31], to denote the relative frame of orientations and vectors. For example, ݍ௧  describes the 
quaternion of sensor body frame ܾ relative to Earth frame ݁ at time ݐ, and ܣ௦௧  is an estimated vector 

described in frame 	ܾ. The ⊗ operator denotes a quaternion product. 

 

Figure 2. Wireless motion sensor system. 

The wireless motion sensor system shown in Figure 2 incorporates a tri-axis gyroscope, tri-axis 

accelerometer, and tri-axis magnetometer (9-axis MEMS sensor MPU-9150, InvenSense, San Jose, CA, 

USA). These have selectable ranges of up to ±2000º/s, ±8 g, and ±1200 μT, respectively. The gyroscope 
measures angular rates	߱௫, ߱௬, and ߱௭ about the x, y, and z axes of the sensor body frame; the accelerometer 

measures accelerations	ܽ௫, ܽ௬, and ܽ௭; and the magnetometer measures magnetic fields 	݉௫, ݉௬, and ݉௭. 

A digital thermometer is included to compensate for time-varying temperature biases in the MEMS 

sensors. The sensors, along with buttons, status LEDs, and a Bluetooth transceiver, are connected to a 

microcontroller for collecting, controlling, and processing data. The motion data are acquired and 

processed at 100 Hz. 
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3.2. Quaternion Complementary Filter 

Sensor fusion attitude and heading reference system (AHRS) algorithms compute the 3D attitude 

from a gyroscope. These algorithms use additional reference measurements from an accelerometer and 

a magnetometer to compensate for drift. A complementary filter uses the gyroscope data to compute the 

quaternion rotation. To compensate for the drift in the quaternion rotation, a gravity vector of the 

accelerometer is used along the x and y axes; a heading vector of the magnetometer is used for z-axis 

drift. Additionally, a complementary filter incorporates a magnetic distortion compensation technique 

to correct for nearby sources, such as metal structures or power supply busses. This filter has a 
proportional and integral (PI) controller with two tuning parameters (proportional gain ܭ and integral 

gain ܭ), which are used to tune the algorithm. A block diagram of this filter is shown in Figure 3. 

 

Figure 3. Complementary filter block diagram. 

3.2.1. Quaternion Computation 

If the angular rates in radians per second are arranged into a vector, as shown in Equation (1), then 

the quaternion derivative describing the rate of change of the Earth frame relative to the sensor body 

frame at time t can be calculated as shown in Equation (2) [32]. Equation (3) describes how to compute 

the attitude quaternion at time t by numerically integrating the expression in Equation (2). In  

Equation (3), Δt is the sampling period, ݍ௧ିଵ  is the previous attitude quaternion, and 	ݍଵ, ,ଶݍ  ସݍ	  and	ଷ,ݍ

represent elements of the quaternion: ߱௧ = ൣ0 ߱௫ ߱௬ ߱௭൧ (1)ݍ௧∗ = 12 ௧ିଵݍ ⊗ ߱ ௧ (2)ݍ௧ = ଵݍ] ଶݍ ଷݍ [ସݍ = ௧ିଵݍ + ௧∗ݍ ݐ߂ (3)
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3.2.2. Estimation Block 

The normalized magnetic field measurements can be arranged into a vector, as shown in Equation (4). 

This vector is incorporated into the estimation block, along with the previous attitude quaternion ݍ௧ିଵ , to 

estimate the direction of gravity and the magnetic field. Equations (5) and (6) are used to compensate for 

magnetic distortions; they are represented by a red box in the block diagram, and ݍ௧ିଵ∗ 	 represents the 

conjugate of the quaternion at time 	ݐ − 1. Equations (7) and (8) estimate the direction of the gravity and 

magnetic field vectors, respectively: ܯ௧ = ൣ0 ݉௫ ݉௬ ݉௭൧ (4)ܪ௧ = ൣ0	ℎ௫ ℎ௬ ℎ௭൧ = ௧ିଵݍ ⊗ ܯ ௧ ⊗ ௧ିଵ∗ݍ ௧ܤ(5)  = ൣ0	ܾ௫ ܾ௬ ܾ௭൧ = [0 ටℎ௫ଶ + ℎ௬ଶ 0 ℎ௭] (6)

௦௧,௧ܩ =  ௫௬௭ ൩ =  ସݍଶݍ)2 − ଶݍଵݍ)ଷ)2ݍଵݍ + ଵଶݍ(ସݍଷݍ − ଶଶݍ − ଷଶݍ + ସଶ (7)ݍ

௦௧,௧ܯ = 	ݓ௫ݓ௬ݓ௭ ൩ = 2ܾ௫(0.5 − ଷଶݍ − (ସଶݍ + 2ܾ௭(ݍଶݍସ − ଷݍଶݍ)ଷ)2ܾ௫ݍଵݍ − (ସݍଵݍ + 2ܾ௭(ݍଵݍଶ + ଷݍଵݍ)ସ)2ܾ௫ݍଷݍ + (ସݍଶݍ + 2ܾ௭(0.5 − ଶଶݍ − ଷଶ) (8)ݍ

3.2.3. Error Block 

The error block computes the total error, which is the sum of gravity and the magnetic field error 

vectors, by incorporating the normalized acceleration and magnetic field measurements along with the 

results of Equations (7) and (8). Further inspection of Equation (9) reveals that the error is the  

cross-product between the estimated and measured quantities of gravity and the magnetic field: 

ܧ = 	݁௫݁௬݁௭ ൩ = ൫ܽ௬௭ − ܽ௭௬൯ + (݉௬ݓ௭ − ݉௭ݓ௬)(ܽ௭௫ − ܽ௫௭) + (݉௭ݓ௫ − ݉௫ݓ௭)൫ܽ௫௬ − ܽ௬௫൯ + (݉௫ݓ௬ − ݉௬ݓ௫) (9)

3.2.4. Proportional Integral Controller 

The PI controller in the block diagram is the heart of the algorithm; it provides two tuning parameters, 
proportional gain ܭ and integral gain 	ܭ. ܭ determines how quickly the algorithm output converges to 

the accelerometer and magnetometer measurements. In other words, ܭ enables us to tune the degree to 

which the sensors are trusted; a low value denotes greater trust of the gyroscope; e.g., ܭ = 0  

indicates that the accelerometer and magnetometer data will be ignored; ܭ = 0.5 is suitable in most cases. ܭ	  corrects for gyroscope bias; we assume ܭ = 0 , because calibrated data is supplied to the filter.  

Equation (10) outputs the adjustment that will be sent to the correction block. The angular velocity at time 	ݐ, ߱௧, is corrected using this adjustment: 
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௧ܷ = ܭ݁௫ + ݁௬ܭ݆௫ܭ + ݁௭ܭ݆௬ܭ + ܭ ௭݆  ݓℎ݁݁ݎ		ܬ௧ = ݆௫݆௬݆௭ = ቄ ௧ିଵܬ + ܧ ∗ ݐ߂ ܭ > 00  ݁ݏ݅ݓݎℎ݁ݐ

(10)

4. Dynamic Gesture Interface 

Real-time hand gesture recognition using an inertial sensor is a challenging task, because the gestures 

performed by different individuals can vary dramatically. We are especially interested in free-space hand 

motion gestures. A hand gesture involves symbolic and continuous data. Hand gesture motions are 

primarily used for natural and continuous interactions among people. These gestures reflect emotional 

states, and can be intentionally manipulated or constrained. The constrained, symbolic, and qualitative 

nature of hand gestures can be an advantage for a dynamic gesture interface system. 

 

Figure 4. Hand gesture segmentation and recognition. 

Existing gesture recognition techniques identify the gesture being performed from the motion sensor 

data. Our goal is to not only recognize the particular gesture being performed, but also to recognize how 

that gesture is being performed. The present approach assesses the gesture expressivity from variations 

in the gesture performance, and uses these variations to design an interactive avatar control application. 

We employ two techniques to develop expressive interaction, namely gesture tracking and gesture 

recognition. A DTW-based algorithm is used to estimate the gesture variations as well as to perform 

real-time gesture recognition. Figure 4 depicts a block diagram of our gesture segmentation and 

recognition process. 

4.1. Hand Gesture Tracking and Segmentation 

MARG sensor signals generated from a wireless motion sensor by hand movements are transmitted to a 

PC via a Bluetooth transceiver. The measured signals always contain noise and errors from both the sensor 

and involuntary user movements. To eliminate the noise and errors, we apply a preprocessing procedure to 
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the acquired signals. This procedure uses signal calibration to reduce sensitivity and offset errors from the 

raw signals, and removes high-frequency noise from the calibrated signals via low-pass filtering. 

The acceleration data contain motion-induced acceleration and gravity components. The gravity 

component is handled as noise, and is thus removed, because it does not depend on user motion. To 

compensate for gravity, we use the direction of gravity estimated from the quaternion complementary 

filter by Equation (7). 

The quaternion ݍ, which represents the orientation of the sensor frame, is used to transform the 

sensor-coordinated acceleration into an Earth coordinate using the quaternion operator given by 

Equation (11). After obtaining the acceleration from the Earth coordinate system, the gravitational 

acceleration ܩ is subtracted from the acceleration to obtain motion-induced acceleration, as shown in 

Equation (12): ܽ = (ݐ)ݍ ⊗ ܽ௦ ⊗ (ݐ)݈݁ܿܿܽ(11) (ݐ)∗ݍ = ܽ(ݐ) − (12) ܩ

Each gesture can be considered as an ordered sequence of segments. We employ a computational 

method to automatically segment an expressive gesture into a sequence of symbols. This simplifies the 

gesture recognition process. Segmentation enables the early recognition of gestures and the estimation 

of gesture variations with respect to a learned reference template. For our inertial sensor-based hand 

gestures, the accelerometer and gyroscope data from the motion sensors are processed and segmented 

for improved recognition efficiency. This also allows gesture variation features to be extracted from each 

gesture action in real time. 

We employ user hand-motion constraints for gesture segmentation, as this is simple and effective  

for real-time use. The magnitude of linear acceleration and angular rate data from the user hand motions  

are calculated by Equations (13) and (14) for the segmentation of gesture actions into candidate  

gesture templates: ݃ܽܯ݈݁ܿܿܣ = ට݈ܽܿܿ݁௫ଶ + ݈ܽܿܿ݁௬ଶ + ݈ܽܿܿ݁௭ଶ (13)

݃ܽܯݎݕܩ = ට݃ݎݕ௫ଶ + ௬ଶݎݕ݃ + ௭ଶ (14)ݎݕ݃

Using a threshold-based detection method, we segment the performed gestures into candidate gesture 

templates. We use a small constant, such as 0.2 G for the acceleration threshold, to detect the occurrence 

of segmentation. In the evaluations, using only an acceleration threshold led to unexpected gesture 

segmentations; therefore, we employ a temporal threshold with the acceleration threshold. Segments that 

occur within the same temporal threshold are assumed to be the same segments, and are thus combined. 

Similarly, for the gyro threshold, a small constant such as 20°/s determines whether segmentation has 

occurred. In our evaluations, gyro-based segmentation produced no unexpected effects. From this, we 

can conclude that gyro-based segmentation is more accurate than acceleration-based segmentation. 

Our gesture segmentation process uses both acceleration and gyro-based calculations; the  

high-accuracy gyro-based segmentation validates the gesture segments made using acceleration-based 

detection, as shown in Figure 5. The segments simplify the process of gesture classification, and the  
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real-time use of hand motion constraints for segmentation reduces the unwanted segmentation of gesture 

data compared to sliding window and other approaches for the online segmentation of time series data. 

The quaternion output from the motion sensor is transformed into equivalent Euler sequences of 

rotation angles. This output is used as gesture feature parameters, which are combined with the 

accelerometer and gyroscope data to efficiently track and classify gestures in a meaningful and intuitive 

way. The distance estimation of orientation data is more efficient and enables better discrimination 

among similar gestures patterns. 

 

Figure 5. Acceleration and gyro-based gesture segmentation. 

4.2. Hand Gesture Recognition Based on DTW 

The inertial motion sensor input device is equipped with buttons for users to start and stop gestures. 

Users begin a gesture by pressing the button, and complete the gesture by releasing it. Each hand gesture 

training sample is collected in XML file format and stored in a template database for gesture recognition. 

We implement a multidimensional real-time gesture recognition algorithm using DTW. During the 

gesture training process, a template and threshold value for each class of gestures is computed. In the 

real-time recognition stage, the DTW algorithm measures the similarity between the input and the 

templates. The input can either be accepted as a member of the class to which it has the minimum 

normalized total warping distance, or if the similarity measurement does not match the threshold value, 

rejected as belonging to none of the classes. 

A gesture template can be computed by recording a single or N training example(s) for each class of 

gestures that must be recognized. The template gesture for each class of gestures can be found from the 

recorded training examples by computing the distance between each of the N training examples. The 

training example in the given class, which has the minimum normalized total warping distance when 

compared against the N–1 training examples, is recognized as the template gesture for that class. The 

classification threshold value for each template gesture is calculated by taking the average total normalized 

warping distance between the template and the other N − 1 training examples for that gesture. 

Using a classification threshold for each template gesture overcomes the problem of false positives 

during the recognition stage, as unknown time series input is classified as a null class if no match is found 
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in the gesture database. If a new gesture class is added to an existing gesture in the database, or if an 

existing gesture is removed, the gesture model does not need to be retrained. Instead, we need only train a 

new template and threshold value for the new gesture, which thereby reduces the training time. 

Once the DTW algorithm has been trained, an unknown multidimensional time-series input gesture 

can be classified by calculating the normalized total warping distance between the input and each of the 

gesture templates in the database. The input gesture is then classified according to the template class 

corresponding to the minimum normalized total warping distance. 

The DTW process is described as follows. If 	ܺ and ܻ are two time-series gesture sequences with 

different lengths, where 	ܺ = ,ଵݔ} ,ଶݔ … ܻ	and	}ݔ = ,ଵݕ} ,ଶݕ …  ,ܦ	 }, a cumulative distance matrixݕ

which represents a mapping and alignment between ܺ(݅)  and ܻ(݆) , is constructed to measure the 

similarity between sequences ܺ and 	ܻ. Subsequently, a warping path ܹ = ,ଶݓ,ଵݓ}  } comprisedݓ…

of the local cumulative distances ܦ(݅, ݆) is calculated. The length of the warping path is: ݉ܽݔ(݊,݉) ≤ ܲ < ݊ +݉ (15)

and the ݇th element of the warping path is given by: ݓ = ,ݔ) ) (16)ݕ

To improve the efficiency of DTW, we constrain the warping path so that the maximum allowed 

warping path cannot drift too far from the diagonal. Controlling the size of the warping window speeds 

up the DTW computation. The constraints placed on the warping path are as follows. The warping path 

must start at the beginning of each time series, i.e., at ݓଵ = (1,1), and end at ݓ = (݊,݉). This ensures 

that every index of both time series is used in the warping path. The warping path must be continuous; 

i.e., if ݓ = (݅, ݆), then ݓାଵ must equal either (݅, ݆),(݅ + 1, ݆), (݅, ݆ + 1), or (݅ + 1, ݆ + 1). The warping 

path must exhibit monotonic behaviour; i.e., the warping path cannot move backwards. The optimal 

warping path that minimizes the normalized total warping distance is given by: 

݀(ܹ) = ݉݅݊ 1ܲ݀(ݓ
ୀଵ , ೕ) (17)ݓ

where ݀(ݓ,  . The minimum optimal total warping path can be effectively found using dynamicݓ	 ೕ) is the Euclidean distance between point ݅ in time-series ܺ and point ݆ in time-series ܻ, is given byݓ

programming through the cumulative distance ܦ(݅, ݆) given by: ܦ(݅, ݆) = ݀൫ݔ, ൯ݕ + min{ܦ(݅ − 1, ݆), ,݅)ܦ ݆ − 1), ݅)ܦ − 1, ݆ − 1)}	 (18)

The ܹܶܦ(ܺ, ܻ) between the two time-series sequences is then calculated by finding the minimum 

normalized total warping distance between ܺ and ܻ. This is defined as: 

,ܺ)ܹܶܦ ܻ) = 1ܲ݀(ݓ
ୀଵ , ೕ) (19)ݓ

Figure 6 shows the recorded freehand affordance mimic gesture patterns for different kicking and 

punching styles from the 6DOF wireless motion sensor. We use the term “mimic” to represent the 

animation action that the virtual avatar is going to perform. The gesture training templates used to mimic 

kicking and punching actions are generated as shown in Figure 6a–f. The user begins the gesture by 
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pressing the start button on the wireless motion sensor, and then freely and continuously moves his/her 

hand in 3D space. 

 

Figure 6. Mimic gesture patterns for kicking and punching actions. 

Users can make gesture segments to encode context and sub-context features of the gesture actions 

by pausing his/her hand motion for a fraction of a second, and then moving again until the gesture is 

completed. The completion of a gesture is signified by releasing the button on the wireless motion sensor. 

The proposed DTW-based recognition algorithm enables early recognition of gestures and estimates 

gesture variations of a live gesture according to the learned templates. 

5. Expressive Motion Synthesis 

Applications such as computer games and serious games use 3D gesture recognition for character 

animation, either to control avatars or interact with virtual worlds. In these applications, a small number 
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of motion clips are used to play avatar animations. These clips are repeatedly played back whenever the 

instance of the given action is recognized through the interaction of user gestures. However, users often 

find that the animation is monotonous and unrealistic. Current animation systems lack the ability to 

recognize the user’s intentions and interactively produce an appropriate reaction by the system. 

Motion graph and motion synthesis techniques [33] typically synthesize actions by combining motion 

segments from a database, or adjust motion through statistical modeling and cannot synthesize variations 

in motion. However, users sometimes require a motion with a style and variation that is not in the 

database. We aim to produce a dynamic and interactive interface technique for authoring and controlling 

avatar motion. Our expressive motion synthesis approach facilitates the interactive control of virtual 

avatar behaviors in virtual worlds. Figure 7 illustrates our expressive motion synthesis process using the 

dynamic gesture mapping interface. 

 

Figure 7. Expressive motion synthesis. 

5.1. Gesture-Motion Mapping 

Human motion is generally continuous and smooth. For proper character animation, the bones and joints 

must follow a logical hierarchy. Each joint has one or more DOFs that define its possible range of motion. 

Specifying values for these DOFs results in a particular body pose; changing these values over time results 

in movement. Human motion data comprise a high-dimensional time series. The hierarchy structure of 

each frame can be represented as root positions and joint orientations. Motion is defined as a continuous 

function of frame indexes to poses of the avatar skeleton. This can be written as: ݉(ݐ) = ,(ݐ)} ,(ݐ)ଵݍ … , (20) {(ݐ)ݍ

where ݐ is the frame index,  denotes the position of the root joint, and ݍ  is the joint orientation. 

Our gesture-based interactive avatar control application system uses a 3D human model from the 

Rocketbox Libraries with a hierarchical structure for character animation. We used 18 important joints 

from the avatar skeleton to control expressive movement. A small database of example movements for 

this system was obtained from conventional key-frame techniques and freely available motion capture 

databases, such as the Carnegie Mellon University (CMU) motion capture database. The motion data are 

resampled and simplified to the skeleton structure of a 3D virtual avatar. 
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Figure 8. Avatar control using dynamic gesture mapping. 

Our system supports both individual and group control of avatar joints using the inertial motion sensor 

in real time, like an avatar puppetry system [34]. However, our dynamic gesture mapping interface 

enables users to seamlessly control the avatar motion with their hand gestures. The avatar joints are 

controlled in groups based on the skeleton hierarchy, such as right leg, left leg, right arm, left arm, and 

torso-head, or individually. This reduces the complexity of motion synthesis, and simplifies the 

interaction. This system gives users the freedom to control the avatar joints of their choice, depending 

on the context of motion. 

Our system tracks user hand gestures. A dynamic interface maps the gestures to the corresponding 

joint parameters of the 3D virtual avatar to control and synthesize a new style of expressive avatar 

motion. The gesture-motion mapping technique employs an embodied interaction with the mimic gesture 

patterns for each type of avatar action. The mimic gesture action templates are embedded in significant 

and specific joint parameters of the avatar body, i.e., those that most effectively convey each desired 

motion, and provide control over expressive characteristics of avatar movement depending on the 

context and sub-context of the gesture. These joints are encoded as candidate joints for the control of 

avatar motion in real time using hand gestures, as shown in Figure 8. User hand gestures are transferred 

to the avatar joint parameters by mapping the extracted features from the inertial motion sensor data. 

5.2. Components and Features Extraction 

Style can be regarded as a subtle variation of basic motion. The style and content of a motion are 

independent and can be separated. We assume that the motion data are generated from a few dimensional 

feature vectors, and that these features are statistically independent. The motion data can be represented 

as a time-series vector or a set of samples of random variables. By decomposing the joint angle data of 

full-body motion that has been fitted to a hierarchical skeleton, we parameterize the motion into 

independent joint components. Similarly, the hand gesture data are decomposed to obtain dynamic 

gesture components. 
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We use ICA to extract the motion components from significant candidate joints and decompose user 

hand gestures into independent components. PCA is used as a form of preprocessing to determine the 

dimensionality of the motion features. This simplifies the gesture-to-motion mapping procedure, and 

reduces the computational complexity. We used Euler angles, representing the rotation of the candidate 

joints provided in the motion capture data, as well as orientation data from the hand gestures in the form 

of Euler angles, for ICA decomposition to obtain corresponding motion components. 

The process of extracting independent components using ICA can be described as follows. Given 

input motion data ݉(ݐ) , we apply ICA to compute the independent component ܿ(ݐ)  and the 

corresponding mixing matrix ܣ as: ݉(ݐ) = (21) (ݐ)ܿܣ

We employ FastICA [35] algorithm to decompose the motion data into independent components. 

Before applying the ICA algorithm, the motion data undergoes two preprocessing steps. First, the data 

are centered around their statistical mean. Then, the centered data are whitened using PCA. Whitening 

linearly transforms the data into a set of uncorrelated components. The number of principle components 

determines the number of independent components. Related details are provided in [36]. The complete 

ICA model can be expressed as: ݉(ݐ) = {݉}ܧ + (22) (ݐ)ܿܣܲ

where ܧ{݉} is the mean of the input data and ܲ is the PCA matrix used for whitening. 

The dynamic gesture mapping interface selects an example motion from the motion database by 

classifying each input gesture. To extract motion components from high-dimensional example motion 

data, we use the encoded information of each gesture action, such as context, sub-context, and candidate 

joints. The DTW-based gesture recognition algorithm classifies the performed gesture, and extracts 

variation features from the recognized reference. The real-time estimation of dynamic gesture variations 

at a given instant enables the real-time expressive modulation of multiple joint parameters. The extracted 

variation features represent changes in speed, duration, and orientation. These gesture variations are used 

to expressively control the avatar motion in real time. 

5.3. Style Synthesis 

ICA is applied to the candidate joints independently specified by the mapping relationship between 

the user gesture action and the example motion to extract motion components. The extracted significant 

joint motion components are combined with extracted dynamic gesture components from the hand 

gesture data to synthesize new, realistic avatar motions in the ICA domain. Our system extracts 

independent components from each body part specified by the user gesture-motion mapping, which 

provides users with fine control of mixing components from the hand gesture motion and produces a 

rich variety of styles and variations for each body part. 

Several mathematical operations can be used to edit motion components by using gesture components 

to generate a new style of avatar motion sequences. The motion editing operations used in our system 

enable users to control the candidate joints for specific key frames, or for continuous control over a period 

of time. The user-specified dynamic gesture components from hand gestures are mapped to the joint 
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motion components of the example motion, such that fine details are preserved and blended over time to 

achieve a new style of motion. This editing operation is mathematically expressed as: ݉ᇱ(ݐ) = {݉}ܧ + (ݐ)ܿ)ଵ(ܣܲ) − ܿଵ(ݐ)) + (ݐ)ଵܿଵ(ܣܲ)ߙ + (1 − (23) (ݐ)ଶܿଶ(ܣܲ)(ߙ

where ݉′(ݐ) is the edited motion, ܧ{݉} is the mean of the input motion data, ܿ(ݐ) is its independent 

component, and 	ܿଵ(ݐ) is the selected joint independent component with mixing matrix (ܲܣ)ଵ. ܿଶ(ݐ) is 

the independent component of the hand gesture motion and (ܲܣ)ଶ is its mixing matrix. ߙ is a blending 

parameter for controlling the editing process. Similarly, other editing operations such as adding,  

tuning, and transferring components can be used to obtain interesting results depending on the  

motion requirements. 

After manipulation, the motion data is post-processed to correct statistical artifacts in the edited 

motion by preserving the joint angles from the original data; avatar motion is reconstructed by adding 

the motion data removed prior to motion decomposition. We impose a predefined orientation limit and 

DOF for each joint to prevent unnatural joint motions. The synthesis of styles in the ICA domain has 

several limitations. This method is more effective for cyclic motions than acyclic motions, because it is 

easier to align cyclic motions than arbitrary ones. However, if we properly perform the decomposition 

to obtain cyclic aspects from arbitrary motions, we can produce effective results. 

6. Experimental Results 

Our interactive avatar control application uses the dynamic gesture interface system. Interaction with 

the application involves performing a gesture to generate a specific style of avatar motion. It additionally 

involves the continuous manipulation of that stylistic avatar motion by extracting meaningful variations 

from the gesture execution. Gesture actions are similar but not exact; variations are primarily due to 

differences among individuals. Our dynamic gesture interface extracts the intention of a gesture, and 

generates the user-desired results in avatar motions with fine control of avatar joint parameters. 

We demonstrated our dynamic gesture-based interactive control interface system using the motion 

example of kicking and punching with the mimic gesture patterns. Our system software was programmed 

in C#, and uses the Unity3D game engine to render the 3D virtual avatar. The system was run on a PC 

with 16 GB of memory and an Intel Core i7 with a 3.40 GHz CPU. 

6.1. Style Variations in Avatar Motion 

Figure 9 shows three styles of kicking motion generated using the gesture patterns provided for each 

style of motion. All three motion styles Figure 9b–d were generated using a single example motion 

(Figure 9a), and mimic hand gesture patterns in Figure 6a–c for the kicking motions. For kicking  

style 1 (angry) and style 2 (friendly), we selected the right leg part and both the right and left forearm 

joints as candidate joints for extracting corresponding motion components from the input motion data. 

For kicking style 3 (frustrated), we selected the head in addition to the style 1 and 2 candidate joints. 
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Figure 9. Kicking motions of avatar. 

 

Figure 10. Punching motions of avatar. 

A rich set of new motion styles can be synthesized depending on user gesture-motion mapping 

relationships. The avatar’s motion trajectory changes according to the user’s gesture-motion mapping 
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relationship, which alters the style of the motion. Figure 10 shows different styles of the punching motion 

generated using the gesture patterns provided for each style of motion. All three motion styles in Figure 

10b–d were generated using the single example motion in Figure 10a, and mimic the hand gesture 

patterns of Figure 6d–f for the punching motions. 

Figure 11 shows the modulated and reconstructed motion curves of the RightUpLeg and LeftArm 

joints for each kicking and punching style of motion, synthesized from the example motion. The style 

of motion was modulated by deforming the joint motion trajectories with hand gesture data. From a 

single example motion, we created an adequate variety of interesting motions in the avatar using a 

combination of ICA-based analysis and DTW-based gesture recognition for gesture-motion mapping. 

 

Figure 11. Motion curves of RightUpLeg and LeftArm joints. 



Sensors 2015, 15 14453 

 

 

6.2. Spatial and Temporal Variations in Motion 

The proposed system produces rich and continuous variations for each style of avatar motion in time and 

space. Hence, our system increases the reusability and flexibility of motion data. Similar gesture patterns can 

generate an unlimited number of motion variations depending on user-supplied components and variation 

features provided through gesture execution. Figure 12 shows the spatial-temporal variations of the kicking 

motion obtained for each style by mapping hand gesture variation features to avatar motion parameters. These 

parameters were then continuously modulated depending on how the gesture was performed. 

The inter-class gestures show how we perceived each style of motion; the intra-class variability 

demonstrates our dynamic way of producing the same motion. Users can make new styles and variations 

in avatar motion by selecting a new group of joints with new gesture patterns. They can then create a 

new combination of gestures and a new motion class. Thus, our system enables users to introduce new 

motions to meet their specific requirements. 

 

Figure 12. Spatial and temporal variations in kicking motions of avatar. 
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6.3. Evaluation and User Study 

We performed a gesture recognition experiment to test and evaluate the efficiency of the inertial 

motion sensor for the hand gesture patterns shown in Figure 6. Table 1 presents the confusion matrix 

table for the target gestures. Columns represent recognized gestures, and rows denote the actual input 

gestures. An average accurate recognition rate of 97.6% was achieved using the DTW algorithm. The 

combination of acceleration and orientation data as feature parameters, with segmentation of the gesture 

action into candidate gesture templates for gesture recognition, enables users to produce affordance 

gesture input. 

Table 1. Confusion matrix of target gestures. 

 Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5 Gesture 6
Gesture 1 0.97 0 0 0 0 0.03 
Gesture 2 0 0.99 0 0 0.01 0 
Gesture 3 0 0 0.97 0.03 0 0 
Gesture 4 0 0 0.02 0.98 0 0 
Gesture 5 0.01 0 0 0 0.99 0 
Gesture 6 0.04 0 0 0 0 0.96 

The system was tested by several users who had minimal or no experience with 3D animation. We 

asked participants to test the system by providing instructions for mimic hand gesture actions for a 

kicking motion to generate stylistic kicking motions for an avatar. The users successfully produced the 

stylistic kicking motions of the avatar at interactive speeds in approximately 4–5 min. 

The results show that our dynamic gesture interface provides continuous and rich interaction. The 

gesture-based interaction technique gives the sense of engagement and playful behavior for controlling 

avatar motion. Synthesis of expressive avatar motions can be spontaneously generated and varied. This 

enables even novice users to quickly and easily control and synthesize realistic avatar animation at 

interactive speeds. The generated avatar motions are realistic and perceptually valid; moreover, they can 

be effectively conveyed and expressed in interactive applications, such as virtual worlds, computer 

games, humanoid interfaces, and other virtual environments. 

7. Conclusions 

In this paper, we presented a dynamic gesture-based interactive interface system for authoring and 

controlling the motion of a 3D virtual avatar using a single inertial motion sensor. The proposed touch and 

shake metaphor extracts meaningful information from user hand motions. A DTW-based  

gesture-motion mapping interface, and the expressive synthesis of new stylistic motions by mapping 

dynamic gestures using an ICA-based decomposition method, enables users to change the style and 

behavior of avatar motions from a single example motion, which increases the reusability and flexibility 

of the motion database. The real-time estimation of dynamic gesture variations enables users to 

spontaneously and expressively control avatar motion with variations. This method is suitable for 

interactive applications, such as computer games and non-verbal communication via virtual avatars. The 
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system’s combination of gesture recognition with gesture variation tracking allows effective control and 

continuous interaction with a virtual environment. 

In future work, we will further develop and enhance our interface method for authoring and 

controlling an avatar and its motion. Our future work will also enhance the variety of personalized hand 

gestures and improve the recognition rate. Further, we plan to test the intuitiveness and naturalness of 

the system by incorporating wide variety of hand gestures with more avatar example motions through 

usability evaluations. Exploring different ways of tracking user hand motions, and combining our 

interface with other hand motion sensing devices, is one possible approach for future work. The proposed 

gesture-based interaction technique could also be examined in other natural interactive applications such 

as sign language and hand writing recognition. 
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