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Abstract: This paper presents an innovative structural health monitoring (SHM) platform in 

terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of 

smartphones has provided an opportunity to create low-cost sensor networks for SHM. 

Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, 

valuable but heterogeneous data. Previously, the authors have investigated the reliability of 

smartphone accelerometers for vibration-based SHM. This paper takes a step further to 

integrate mobile sensing and web-based computing for a prospective crowdsourcing-based 

SHM platform. An iOS application was developed to enable citizens to measure structural 

vibration and upload the data to a server with smartphones. A web-based platform was 

developed to collect and process the data automatically and store the processed data, such as 

modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile 

and web-based platforms were tested to collect the low-amplitude ambient vibration data of 

a bridge structure. Possible sources of uncertainties related to citizens were investigated, 

including the phone location, coupling conditions, and sampling duration. The field test 

results showed that the vibration data acquired by smartphones operated by citizens without 

expertise are useful for identifying structural modal properties with high accuracy. This 

platform can be further developed into an automated, smart, sustainable, cost-free system for 

long-term monitoring of structural integrity of spatially distributed urban infrastructure. 

Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it 

offers hybrid solutions to transitional crowdsourcing parameters. 
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1. Introduction 

Structural health monitoring has attracted significant attention as the computational and technological 

environment matures. Vibration-based SHM has been explored for damage detection, model updating, 

performance assessment, and reliability estimation of civil engineering structures such as buildings and 

bridges (e.g., [1–7]), bringing new solutions to cope with aging and deteriorating urban infrastructure. 

Besides, the exponential growth of internet and smartphones has brought novel solutions to civil and 

earthquake engineering problems with citizen engagement [8–11]. Likewise, the widespread use of 

smartphones has produced a new potential source for vibration monitoring of civil infrastructure.  

State-of-the-art smartphone technology takes advantage of multiple embedded sensors to maximize the 

user experience and device productivity. Moreover, its advanced communication and networking 

capabilities enable the users to connect with each other or the web. A number of studies have discussed 

the possibility of using smartphones and citizen collaboration for SHM purposes [12–14]. 

Crowdsourcing has become popular over the last few years [15–21]. By definition, crowdsourcing is 

a collaborative problem-solving process with help from the community and volunteer participation, 

leading to a new understanding to Von Hippel’s user-oriented innovation concept [22]. In particular, with 

the rise of civic participation in a variety of platforms, innovative organizations have initiated new projects 

to make use of crowdsourcing as a low-cost or no-cost labor. Successful examples include commercial 

entrepreneurships such as Amazon’s Mechanical Turk, InnoCentive or nonprofit organizations such as 

Wikipedia. For instance, software engineering platforms use crowdsourcing as an access to technological 

progress [23–29]. Moreover, a wide range of research areas have benefitted from sourcing the crowd for 

environmental [30,31], geospatial [32–34], seismicity [35], and finally SHM studies [36]. In spite of the 

advantages offered by crowdsourcing, the data quality and accuracy need to be validated [37,38]. Likewise, 

machine learning methods might be utilized to detect false vibration measurements such as falling or 

defected phones and discard the flawed data accordingly [39]. 

These advancements have inspired the authors to develop a novel crowdsourcing-based Citizen Sensor 

System for SHM, which utilizes smartphone-embedded sensors for measuring structural vibration and 

defining sensor locations. In their previous study, the authors investigated the performance of smartphone 

accelerometers through a number of laboratory and field tests on civil engineering structures, and 

confirmed the usefulness of these sensors [40]. As a further step, this study aims at developing a novel 

crowdsourcing platform, which enables citizens to use their smartphones to measure structural vibration, 

transmit the data to an online server and process the data into a database automatically. The crowd 

incentives can be established through contests and rewards [41,42]. For example, the best identification 

results or participation above a certain sampling number could be rewarded to increase citizen 

encouragement. Another possibility is to utilize gamification strategies to convert the identification 

problem into an entertainment medium [43,44]. What is more, because the modal identification results 

may reveal post-event structural damage due to extreme events or aging, integrity and safety of urban 
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infrastructure itself is a fundamental incentive that can mobilize people for crowdsourcing-based SHM. 

Pedestrians for bridges and occupants for office and residential buildings can be the target group for 

citizen sensors. 

The proposed system includes a multilayered structure integrating mobile sensing and web platforms. 

An iOS (iPhone Operating System) smartphone application provides citizens with a tool for measuring 

structural vibration and submitting data wirelessly to a central server. The web-based server receives the 

citizen submissions, processes the vibration data and stores the processed data such as the identified 

modal properties (frequencies, damping ratios and mode shapes) as well as the vibration time history 

data. In this study, a crowdsourcing review is conducted to effectively formulate citizen experience and 

contribution. The platform developed in this study is then tested through field measurements on a bridge 

structure. A number of low-amplitude ambient vibration measurements with varied phone locations and 

coupling conditions are made to evaluate sources of uncertainties associated with citizen participation. 

Short-term individual data are collected to generate large-sized data and are averaged to compensate 

short measurement duration which is uncommon for SHM under ambient vibration. The results show 

that a smartphone-based system can produce valuable SHM information even with uncertainties 

associated with the citizen participation. What is more, integration with the web server enables modal 

identification in an online and automated manner. 

This study lays a technical foundation for crowdsourcing-based, citizen-engaged SHM applications. 

Therefore, the case presented in this paper is a small-scale crowdsourcing problem discussing the  

issues related to citizen participation. The progress of Citizen Sensors for SHM will lead to a unique 

crowdsourcing example, because of its transitional descriptions due to the existing taxonomies. In other 

words, the presented platform will be the initial stage of a complex system which utilizes crowd 

participation, mobile sensing, and web services in a hybrid framework.  

2. Multilayered Computer Platform 

The goal of the computer platform developed in this study is to connect citizens with their smartphone 

sensors and a web-based server. The platform has a multilayered structure including the user, 

communication, and server layers, while each layer can be designed, implemented, and tested independently. 

The user-side platform is based on the mobile devices used by the citizen participants. A smartphone 

application is developed to enable citizens to collect data with the smartphone-embedded sensors and 

transmit sensor data. Data transmission between the citizens and the server uses an existing cellular 

network or Wi-Fi and will not be discussed in this paper. 

The server-side platform receives, processes, and stores the measured vibration time-history data and 

processed results. The documents regarding system architecture scheme, requirements analysis can be 

found in [45]. Similarly, collaboration diagrams describing architectural design, class diagrams 

describing database design can be found in [46]. What is more, the software components and database 

tables are provided in [47]. Figure 1 shows the integrated, multilayered platform and its components. 

Details regarding user-side and server-side platforms are discussed within the following subsections. 
  



Sensors 2015, 15 14594 

 

 

 

Figure 1. Integration scheme of system platforms. 

2.1. User-Side Sensing and Acquisition 

An iOS application named Citizen Sensors for SHM was developed as part of this study to enable 

citizens to measure vibration with their iPhone-embedded accelerometers and to submit the data to the 

server on Internet via a cellular network or WiFi connected to the Internet,. Xcode Version 6.1.1 is used 

for coding the application. Objective-C is used to develop the header and implementation files of the 

application. Cocoa Touch is the user interface framework which provides a wide set of classes for 

application development. The iOS application development is logically divided into three categories 

such as model-view-controller (MVC). With this approach, it is possible to build the computational 

background, design a user layout and connect these separate aspects with modular principles. In other 

words, MVC separates the application components in a modular way. In MVC approach, “Model” is 

involved in application data and methods, whereas “View” provides the user with interaction widgets. 

The third component, “Controller”, isolates the other two components from each other, controls the 

connection between them and updates both components based on received actions from “View” and data 

from “Model” [48]. 

In order to provide users with a simple interface, a single view application is chosen as the project 

template. The interface building element storyboard is utilized to set up interface objects, header 

(ViewController.h) and implementation (ViewController.h) file scripts are developed after interface 

objects and scripts are connected via the assistant editor. Basically, four interface objects are introduced 

to show the application status, activation button, acceleration time history column and the gateway to 

the server. Being generated by predefined object types such as UILabel, UIButton, UITextView, and 

UIWebView, these objects are introduced to the model via outlets and actions to display smartphone sensor 

data and receive user commands. Once the user touches the activation button object, the application 

requests acceleration data from the phone’s accelerometers at a sampling rate (such as 100 Hz, which is 

sampling frequency’s upper limit for old generation iOS devices [49]). This means that the application 

is capable of identifying modal frequencies up to Nyquist frequency, 50 Hz, which is equal to the half 

of sampling frequency. The acquired data are accumulated in a temporary variable and transferred to the 

acceleration time history column once the button is repressed. The user simply logs in and uploads the 
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acceleration time history data to the server via the web view object. Figure 2 shows three screenshots of 

the iOS application interface, which enables the users to interact with the smartphone sensors and the 

server. The application Citizen Sensors for SHM is currently available at the iTunes Store [50]. Further 

sources regarding the iOS application development can be found in [51,52]. This application is developed 

for iOS, and can be extended to different mobile operating systems such as Android, Windows Mobile, 

and Blackberry 10 in the future, provided that smartphone models have embedded accelerometers. 

 

Figure 2. User login, recording, and submission screenshots, respectively. 

2.2. Server-Side Processing and Database 

The web-based server-side platform receives the acceleration time history data measured by the citizens 

at a structure, processes the data to identify the modal properties of the structure (such as the modal 

frequencies) which are correlated with the structural health conditions as shown in previous studies, and 

stores the results as well as the raw data. An administrator may be granted with an online access to the data 

in the server. A number of computer languages are used to build the platform. PHP (formerly Personal 

Home Page, recently PHP: Hypertext Preprocessor) is used as the main scripting language throughout 

webpage development process. The database is constructed with MySQL (SQL: Structured Query 

Language), and automatically updated by MySQL codes embedded in PHP scripts. In order to produce a 

web interface with a user friendly design, HTML (HyperText Markup Language) and CSS (Cascading 

Style Sheets) scripts are developed. A web platform was built on a server hosted by a commercial  

web-hosting service and is accessible online [53].  

The system is designed to provide an online SHM environment which is capable of being used by 

multiple users and multiple structures at the same time. The system receives the acceleration time history 

from the users, conducts discrete Fourier transform (DFT) analysis, determines peak frequency and 

stores the input and the output data with the submission details such as measurement date, record 

number, and user identification number. Figure 3 summarizes the digital signal processing applications 
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implemented in server-side to apply band-pass filter to the acquired raw data and compute the natural 

frequency based on the DFT results [54]. 

 

Figure 3. Digital signal processing operations applied on the server-side. 

The web users are divided into two categories, citizens and administrators. Citizen accounts are 

created, managed and given access to records by the administrator and do not have permission  

to modify database except vibration data submission. Other than that, citizens have access to view  

the information related to their account. A new account is created with an automatically generated 

identification number. Similarly, once the platform is ready to be used at massive scales, citizens will be 

provided with randomly generated passwords. In other words, the platform will not store any personal 

information until privacy, anonymity, and security issues are comprehensively dealt with. Furthermore, 

volunteers will be offered to opt-out to avoid violation of privacy. Administrators can activate or deactivate 

citizen accounts, have access to the data provided by citizens such as analysis results or vibration time 

history records either for a specific structure or multiple structures. This ability provides the potential to 

develop a further relationship between long-term monitoring records and reveal correlations between 

common environment-induced parameters (e.g., wind, temperature changes, earthquakes) to generate 

big data. However, because the proposed platform has recently been initiated, big data analytics is a long 

term goal and is not addressed in this paper. 

The web platform is built on PHP scripts referencing each other according to the submission or 

monitoring process. The hierarchical script reference order for a user starts with the index as the first 

step, login as the second step, view of user’s own monitoring results and previously submitted data, or 

addition of new data as the third and the last step. Viewing one’s own monitoring results on landmark 

structures (e.g., Eiffel Tower, Golden Gate Bridge) can be one of the incentives that motivate citizens to 

participate as crowdsourcers. The administrator account has the same hierarchy except its access is 

extended to the entire database, and can delete or assign new user accounts. Further details regarding 

PHP-MySQL integrated web development are referred to [55]. Figure 4 is an example of the interface 

showing the overall measurement results at a specific structure, including the record number, measurement 

date and the structure’s natural frequency in Hz identified from the vibration measured at the structure. 
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Figure 4. Screenshot from the web interface showing the SHM results page. 

3. Crowdsourcing 

Another important component of Citizen Sensors for SHM is citizens, therefore utilizing citizens’ 

enthusiasm for problem solving is crucial. In other words, crowdsourcing, basically collaborating with 

citizens, has an important role in system performance as well as the computer platform. For the purpose 

of understanding current crowdsourcing methodologies, a number of different approaches are evaluated. 

Howe was the first to diagnose upcoming low-cost labor and production model for the industry, 

society and more [15]. Crowdsourcing, as a problem solving paradigm, was one of the actors replacing 

conventional, static, individual approaches with a novel, online, distributed model [16]. Like, the Internet, 

open source, and others, crowdsourcing—a virtual community—was one of the collaboration models 

identified by Albors et al. [17], and it was able to “create value for the general public [18]” even without 

a profit incentive.  

Stemming from multiple theoretical foundations such as value chain, auction, motivation crowding, 

organizational learning, cognitive evaluation, transaction cost, strategic management, innovation and 

game theory [19], a mutual agreement regarding crowdsourcing definition still has not been established. 

Albors et al [17] presented a taxonomy which classifies collaboration alternatives according to social 

and information connectivity. Schenk and Guittard [20] distinguished crowdsourcing from related concepts 

such as open innovation, user innovation and open source software, classified different crowdsourcing 

practices, and discussed a number of opportunities and threats. Eventually, Estelles-Arolas and 

Gonzalez-Ladron-de-Guevara collected 32 different definitions, investigated their commonly-agreed 

aspects, and came up with a comprehensive definition based on the trend of existing studies [21]: 

“Crowdsourcing is a type of participative online activity in which an individual, an 

institution, or company proposes to a group of individuals of varying knowledge, homogeneity 

and number, via a flexible open call, the voluntary undertaking of a task. The undertaking of 

the task, of variable complexity and modularity, and in which the crowd should participate 

bringing their work, money, knowledge and/or experience, always entails mutual benefit. 
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The user will receive the satisfaction of a given type of need, be it economic, social recognition, 

self-esteem, or the development of individual skills, while the crowdsourcer will obtain and 

utilize to their advantage what the user has brought to the venture, whose form will depend 

on the type of activity undertaken.”  

Based on the preexisting crowdsourcing definitions and classifications, the authors attempted to 

develop an SHM-oriented crowdsourcing model to receive smartphone sensor data via citizen contribution. 

A crowdsourcing model can be prepared by setting the proper actors and their corresponding actions. A 

robust classification defines crowdsourcing actors as “the crowd”, “the initiator”, and “the process” [21]. 

“The crowd” element is defined by (1) “who forms it”, (2) “what it has to do”, and (3) “what it gets in 

return” [21]. Similarly “the initiator” description must reveal (1) “who it is”, and (2) “what it gets in  

return” [21]. Finally, “the process” refers to “the type of process, the type of call, and the medium used” [21]. 

Likewise, crowdsourcing actors can be distributed into three groups: individuals as crowd participants, 

beneficiary company/institute, and the platform connecting individuals and beneficiaries [20]. 

Crowdsourcing tasks can be divided into three groups: “cognitive dimension”, “nature of incentives” 

and “benefits of crowdsourcing” [20]. What is more, based on the individual value’s importance with 

respect to the community, crowdsourcing can be either “integration-based” or “selection-based” [20]. 

Similarly, crowdsourcing dimensions can be described by agents such as “provider”, “mode”, 

“ownership”, and “motivation and incentive” [19]. In addition, crowdsourcing can be divided into 

elements such as “components”, “processes”, and “actions” [19]. Finally, the future crowdsourcing 

problem will evolve due to different perspectives such as “participant”, “organization”, and “system” [19].  

Based on these foundations, the authors formulated the proposed crowdsourcing model with three 

actors [21], groups [20], or perspectives [19]: citizens, administrators, and web platform. Citizens herein 

are described as people who are motivated to take measurements of structures (such as buildings and 

bridges) and submit the data with their smartphones. Likewise, administrators’ motivation is to collect the 

best available vibration data and maximize structural system identification efficiency and accuracy. 

Finally, the process will involve mobile sensing, submission, server acquisition, digital signal processing, 

and database storage. The proposed system can be constructed on a combination of “integration-based” 

and “selection-based” crowdsourcing, since every participant is likely to have a different contribution 

accuracy, yet compose a strong, integrated platform when combined together [19–21]. 

In order to apply these crowdsourcing concepts to citizen-engaged smartphone-based structural health 

monitoring, a number of uncertainties causing variation in measurement results must be studied. 

Basically, these can be divided into (1) user-related; (2) hardware-related; and (3) structure-related 

uncertainties. User-related uncertainties can stem from a variety of different issues including users’ 

understanding of the crowdsourcing problem and platform, third-party accessories attached to their 

smartphones, and the time and quality of their measurement. Hardware-related uncertainties are  

mainly due to the model/performance of the sensors and CPU’s embedded in the users’ smartphones.  

Structure-related uncertainties can be caused by different vibration loading patterns including ambient 

vibration, operational vibration and extreme events (such as earthquakes). Considering these uncertainties, 

the authors specified crowdsourcing parameters including the vibration loading type, the smartphone 

model, the phone-structure coupling, the phone position, and measurement duration. 
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Finally, to provide the connection between citizen sensors and crowdsourcing, it is essential to 

understand the potential of smartphone sensors, with an emphasis on participatory sensing and mobile 

crowdsourcing aspects. For this purpose, a taxonomy discussing mobile crowdsourcing applications is 

taken as a reference, which defines a crowdsourcing solution in terms of its web-extension, involvement, 

data wisdom, contribution quality, incentives, human skill, sensors, and location [56]. The mobile 

crowdsourcing taxonomy characteristics are discussed from a citizen-engaged SHM perspective below: 

3.1. Sensors 

Smartphone sensors may not only serve crowdsourcing-based SHM with sole vibration data, but also 

enable citizens to obtain “smarter” measurements. For example, orientation errors due to smartphone 

placement can be corrected instantaneously by utilizing smartphone gyroscope. GPS and magnetometer 

data provides the server with the measurement location and direction that can be used to match the phone 

position with the structure and avoid submissions from false locations. Server-side workload can be 

reduced, and signal processing speed can be extensively increased by using smartphone processors as 

components of a distributed computing platform. If applicable, structural nodes can be assigned 

information features (e.g., barcodes, matrix codes) and can be automatically detected by smartphone 

cameras. Nearby excitation sources such as vehicles can be detected with the microphones, and their effects 

can be classified accordingly. If the environment is rich in participants, the devices can be synchronized 

with Bluetooth or Wi-Fi connection, and simultaneous data can be gathered from multiple channels. 

3.2. Data Wisdom, Contribution Quality, and Web-Extension 

Combining the mobile features [50] with the web server [53], it is possible to improve the 

crowdsourcing value by converting individual submissions into collective data as a means of data 

wisdom. In particular, averaging collective Fourier spectra will improve the individual results by 

discarding the noise. Thanks to a central platform with a structured database, heterogeneous and 

homogeneous vibration data can be organized, mined and structural features can be extracted even if the 

datasets involve high complexity. 

3.3. Human Skill and Incentives 

The way crowdsourcing-based SHM receives contributions is a mixture of labor and visual human skills 

which is ideally reduced as platform improvement progresses. These skills (adjusting device’s position, 

coupling conditions, sampling duration etc.) can be improved with motivation sources or educational tools 

(e.g., demos, instructions, user manuals). There is a wide variety of incentives that can be utilized such 

as receiving awards or safety (monetary, service), gamification (entertainment), and social responsibility 

(ethical). For example, the identification problem can be gamified such that the most accurate citizen 

submission can be rewarded. Likewise, a threshold can be set, and the citizens who have significant 

contribution can be acknowledged and honored. The platform can be linked to social media for advertisement 

and can attract those attention who are likely to participate in a novel crowdsourcing platform. 
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3.4. Involvement 

By nature, crowdsourcing-based SHM involves many challenges due to its complicated structure.  

The quality of the vibration data depends on citizen’s intuition as well as the sensor quality. With the 

help of proper participatory sensing and mobile crowdsourcing strategies, though, citizen-induced error 

can be minimized. At this stage, Citizen Sensors for SHM resembles a hybrid crowdsourcing platform 

with participatory and opportunistic components. In other words, the participatory aspect is characterized 

by the smartphone user’s skills, whereas the opportunistic aspect basically relies on computer and sensor 

properties. Using all of the hardware and software capabilities to the best extent, the mobile 

crowdsourcing problem can partially be reduced from participatory to opportunistic, which differs from 

classical crowdsourcing approaches by taking advantage of mobile crowdsourcing tools [56].  

To summarize, the crowdsourcing-based SHM presented in this study is already capable of using 

accelerometers, can be provided with further sensor and location services, and has the web extension, 

which are some of the mobile crowdsourcing fundamentals. As the platform is improved with the new 

sensors, computational tools, and services, the majority of the human skills will be replaced with sensor 

data. Moreover, many different incentives can be created depending on society’s and urban 

infrastructures’ needs. In addition, the platform presents a unique crowdsourcing solution in the way it 

combines participatory and opportunistic involvement, individual and collective data wisdom, 

heterogeneous and homogeneous contributions in a transitive manner. Table 1 presents the prospective 

Citizen Sensors for SHM (CS4SHM)’s characteristics with the taxonomy and the examples provided  

by [56]. 

Table 1. Mobile crowdsourcing taxonomy, examples, and crowdsourcing-based SHM [56]. 

Application Web Involvement Data Contribution Incentives Skill Sensors Location 

Gigwalk.com Yes Participatory Individual Heterogeneous Monetary Labor Camera Yes 

CityExplorer No Participatory Collective Homogeneous Entertainment Visual Camera Yes 

PotHole No Opportunistic Collective Homogeneous Ethical Non Vibration Yes 

CS4SHM Yes Both Both Both Multiple Multiple Multiple Yes 

4. Case Study: Monitoring of a Pedestrian Link Bridge  

Field measurements are conducted in order to evaluate the capability of the Citizen Sensor system 

developed in this study. The purpose of these tests is to evaluate the integrated SHM system with firsthand 

experience. Moreover, the system is tested to see if it can produce valuable modal identification results for 

SHM purposes. In other words, accuracy of modal identification is important for SHM, since they are 

highly correlated with structural integrity. Finally, the citizen-induced uncertainties such as coupling, 

positioning, and duration are studied. Therefore, implementation of the proposed platforms is tested on 

a pedestrian bridge structure which is widely accessible by citizens. 

The structure is an 11-m single span steel arch bridge, which serves as a passage between two multistory 

buildings. Because bridge flexibility is expected to be higher than adjacent reinforced concrete 

multistory buildings, dynamic effects due to these adjacent structures are not considered. Figure 5 shows 

the inner and outer views of the bridge structure, dimensions, and sensor layout for reference measurements. 
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Figure 5. Inner and outer views, dimensions, and sensor layout of the pedestrian link bridge. 

The bridge is instrumented with six high-quality reference piezoelectric accelerometers of model 

393B04 PCB Piezotronics. The reference accelerometers are fixed via double-sided adhesive tape. The 

data is transmitted through cable connection, and acquired by a data acquisition system (National 

Instruments SCXI-1531) synchronously at a sampling rate of 100 Hz. The measurements are sequentially 

conducted at nighttime, to minimize passenger-induced vibrations and obstructions in the test procedure. 

In other words, the ambient vibration is dominated by low-amplitude environmental effects such as wind, 

rather than walking-induced structural input. Then, the Frequency Domain Decomposition (FDD) 

method is used to conduct modal identification and obtain modal frequencies and mode shapes as the 

reference. Afterwards, a number of tests with changing coupling conditions and sensor locations are 

conducted to compare smartphone measurements with reference measurements and evaluate smartphone 

sensor behavior under different citizen-induced conditions. 

4.1. Measurement, Data Processing and Modal Identification 

In order to determine modal characteristics of the bridge structure, high-quality, synchronous, 

multichannel vibration data is acquired and processed as the reference. The accelerometers are oriented 

in the vertical direction, and are equally spaced spanning the longitudinal direction, as shown in Figure 5. 

Therefore, acceleration time histories at six different locations are obtained under ambient vibration and 

processed with FDD method to determine modal frequencies and mode shapes in vertical direction. By 

discretizing multi-channel vibration data in the frequency domain, arrays of spectral values are generated 

for each discrete frequency step. Singular value decomposition of these matrices will result in eigenvalues 

and eigenvectors, which corresponds to the singular values and modal displacements as a function of 

frequency. These functions are used to determine the modal frequencies and mode shapes. For brevity, 

the first three modes in vertical direction are considered, whereas lateral, longitudinal and torsional, and 

higher modes are not discussed. Further details regarding FDD method can be found in [57]. 

Figure 6 shows the singular value spectra obtained from FDD analysis. It is observed that the second 

and the third modes dominate the vibration characteristics, and spectral value due to first mode is 

relatively small. Accordingly, the first, second and third modal frequencies are identified as 8.46, 18.95, 

and 29.67 Hz, respectively. The mode shapes corresponding to the first, second and third modes are 
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presented in Figure 6. According to these mode shapes, modal displacements due to the first, second, 

and third mode are maximized at Node 4, Node 3, and Node 2, respectively.  

 

Figure 6. 1st, 2nd, and 3rd modal frequencies (8.46, 18.95, 29.67 Hz) and mode shapes from 

FDD by reference accelerometers. 

4.2. Uncertainties Associated with Citizen Participation 

After the system’s dynamic characteristics are determined with the advanced reference system 

identification tools, smartphone measurements are taken to compare their performance with the reference 

results. Based on the crowdsourcing discussions presented in Section 3, a number of tests are conducted 

to characterize smartphone performance under changing user-related conditions. These conditions 

include different coupling conditions, as well as location effects. These parameters are evaluated for 

different smartphone generations such as Smartphone 1, Smartphone 2, and Smartphone 3 which 

corresponds to iPhone 3GS, iPhone 5, and iPhone 6, respectively. In keeping with the crowdsourcing 

discussions in Section 3, a number of principles are developed to maximize citizen engagement. These 

principles characterize the uncertainties and challenges of a potential crowdsourcing-based SHM 

methodology such as: 

(1) Smartphone location and orientation might change according to smartphone users’ initiative. 

(2) Smartphone coupling conditions might vary according to external accessories or  

surrounding material.  

(3) Measurement duration can extensively vary according to the users’ motivation.  

(4) Users should not be subjected to additional charges for data submission and therefore are allowed 

to prefer different communication platforms to submit data (wireless, cellular, etc.). 

Considering these principles, a number of regulations are made to decrease the level of uncertainty. 

For instance, for this structure, unless external mounting instrumentation is used, the only convenient 

device orientation is the z-direction, with the phone’s rear side facing the bridge deck surface. Therefore, 
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other device orientation effects are not considered as influential parameters. For modes other than the 

vertical ones, the mobile application allows users to adjust the sensing direction. Moreover, to allow user 

benefit from smartphone communication capabilities in the preferred way, one can either submit data 

right after acquisition or keep the time history as a text file until preferred communication tools are 

available. What is more, citizens are not expected to spend a long time on the bridge; instead, they stop 

by for a limited amount of time, not more than a few minutes. Therefore, data submissions are received 

in small data packages and every one-minute data is presented as a sample. The strategy to take 

advantage of crowdsourcing presented herein is to keep citizen comfort high and receive large numbers 

of samples from a large-sized community, rather than being dominated by few users. Eventually, the 

monitoring results will rely on the society as a whole rather than a small number of individuals. 

In order to implement these principles into the developed platform, a number of different tests  

are conducted to evaluate these crowdsourcing effects on sensing performance. Table 2 presents the 

parameters of six different tests which vary in measurement location and coupling conditions. Test 1, 

Test 2, Test 3, and Test 4 compare smartphone sensor performance under different coupling conditions, 

whereas Test 3, Test 5, and Test 6 observe the difference between different sensor locations. Therefore, 

in Test 1, Test 2, Test 3, and Test 4, smartphones are either attached to the bridge floor with  

double-sided adhesive tapes, or set free to move with or without a smartphone case, or contained in a bag. 

Test 3, Test 5, and Test 6 keep the coupling conditions constant while sensor location is different such 

as midspan, one-third span, and one-sixth span. 

Table 2. Field measurement with different sensor locations and coupling conditions. 

Test No Time (min) Sensor Location Coupling Conditions 

1 40 Mid-span Adhesive Taped 
2 40 Mid-span Free to Move–With Case 
3 40 Mid-span Free to Move–No Case 
4 40 Mid-span Free to Move–In Bag 
5 40 One-third Span Free to Move–No Case 
6 40 One-sixth Span Free to Move–No Case 

As mentioned before, to maintain citizen patience and motivation throughout measurements, duration 

of a sample is set equal to one minute. This is contradictory with the conventional ambient vibration 

measurement practice, because long-duration measurements are more reliable for removing random 

noise. While the measurement duration of each citizen is relatively short (i.e., one minute), a significant 

number of submissions from many citizens are expected to achieve reliable measurement results.  

In this study, it is observed that most of the smartphones measured the bridge’s ambient vibration 

reasonably well. Figure 7 shows the time history and Fourier spectra of two samples obtained during Test 3 

and Test 6. According to Figure 7, similar to the reference modal identification results, dominant peaks are 

located at 20 and 30 Hz whereas the first modal peak is less significant around 8.5 Hz. According to the 

time histories and Fourier spectra, it is seen that vibration signal amplitudes change according to the 

smartphone generation. For instance, it is seen that the reference sensor has the lowest amplitude, whereas 

amplitude increases as the smartphone model gets older. Likewise, it can be observed that Smartphone 1 

measurements have very high amplitudes in the time domain, and high spectral values in the frequency 

domain. These coincide with the relatively low sensor quality of Smartphone 1 discussed in [40] and the 
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measurements are corrupted due to high level of noise. In other words, there is a correlation between the 

measured amplitudes and the sensitivity levels of accelerometers which are 18, 1, and 0.24 mg/digit for 

Smartphone 1, Smartphone 2, and Smartphone 3, respectively. Detailed information for Smartphone 1, 

Smartphone 2, and Smartphone 3 sensors can be found from the datasheets of the accelerometers LIS331DL 

(ST Microelectronics), LIS331DLH (ST Microelectronics), and BMA280 (Bosch Sensortec), respectively. 

Another way to observe noise effects is that the Fourier spectra of Smartphone 1 are extremely  

broad-band, which resembles a typical white noise spectra and does not reflect structural vibration 

characteristics. Looking at the newer smartphone generations, Smartphone 2 and Smartphone 3, the 

smartphone signal amplitude is greatly reduced as the noise level reduces and the structural peaks 

become more significant as the smartphone generation gets younger. A similar pattern can be observed 

by evaluating the Arias intensity of acceleration signals which is a measure of signal energy [11,58] and 

is correlated with the area under the vibration signal.  

 

Figure 7. Acceleration time histories and Fourier spectra samples from Test 3 and Test 6. 

A long measurement duration (several minutes) is desired to measure low-amplitude ambient 

vibration of a real structure, in order to average out random noise. When engaging a large number of 

citizens to do the measurement, however, even a short measurement duration from each citizen might 

be sufficient, as long as the total duration of measurement is sufficiently long. This study tested this by 

collecting and averaging 40 individual samples as in Figure 7. Averaged Fourier spectra curves are 
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obtained with no overlapping between samples. Each one-minute sample is transformed into the 

frequency domain with a frequency resolution equal to 0.0167 Hz. An overall dataset corresponds to  

40 samples and a total duration of 40 min, because the samples are processed with no overlapping. Figure 8 

shows the averaged spectral curves obtained from different tests. Compared with the spectra obtained 

from a single sample, it is observed that noise level is significantly reduced, and peaks representing 

modal frequencies are much more significant. 

Comparing averaged spectra of different tests, it is observed that Test 1, Test 2, Test 3, and Test 4 

spectra have the same characteristics, whereas there is a significant reduction in 1st and 2nd modal 

frequency peaks in Test 5 and Test 6. This reveals that the proposed coupling conditions did not have a 

significant effect on spectral values since Test 1–4 has the same location at mid-span. The difference in 

Test 5 and Test 6 is due to the location difference between tests. For instance, Test 3 and Test 4 location 

corresponds to the location of one-third and one-sixth span unlike other tests.  

 

Figure 8. Fourier spectra from the average of 40 samples for Test 1–6. 

To summarize overall modal identification performance, the peak frequency values obtained from a 

large number of samples are plotted in Figure 9. It can be observed that Smartphone 2 and Smartphone 3 

modal identification results match reference measurements with a significant accuracy, whereas 

Smartphone 1 results do not provide any modal information as they are masked by the high noise level. 

Moreover, the results of Test 1, Test 2, Test 3, and Test 4 show that Smartphone modal identification 

results are accurate even under challenging coupling conditions (i.e., free to move, with case, in bag). 

Likewise, modal identification results obtained from different locations still reflect structural 

characteristics, but the quality may change according to the modal displacement of the measurement 

location. For instance, peaks obtained from Test 5 identify the second mode to a better extent, whereas 

third mode is more significant on Test 6 results. The reason is that second and third modal displacement 

is maximized at testing locations, which are Node 5 and Node 6, respectively. Finally, collecting all 
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samples together, looking at Figure 9, the second and third modal frequencies are identified occasionally, 

whereas the first mode is identified in a small number of samples. 

 

Figure 9. Identified frequencies obtained from different samples. 

In Figure 10, Arias intensity values are plotted to observe the energy difference between reference 

and smartphone sensors. The overall figure shows that there is a great difference between intensity  

levels obtained by Smartphone 1 and others. As explained before, the high level of noise results in 

overestimation of energy in measurements, especially under low intensity ambient vibrations [11,40]. 

Therefore, Smartphone 1 intensity is not demonstrated in Test 1–6 results to increase the graph resolution. 

According to the intensity values obtained from different tests, it is observed that the new generation 

Smartphone 3 performs better than Smartphone 2 due to the increased sensor sensitivity level. However, 

both results are considerably accurate as a means of modal identification under ambient vibration. 

Table 3 summarizes the performance of smartphone sensors in terms of identified modal frequencies. 

The performance difference between different tests was insignificant and therefore not presented as 

individual results. The modal frequencies obtained from each averaged spectra are compared with FDD 
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results, and error values are presented. The results show that Smartphone 1 is incapable of identifying 

modal frequencies. In contrast, new generation smartphones achieve highly accurate results such as 

1.30%, 1.06%, and 1.05% for Smartphone 2; 0.71%, 0.79%, and 0.81% for Smartphone 3. 

 

Figure 10. Arias intensities obtained from different samples. 

Table 3. Identified modal frequencies. 

Sensor f1averaged Error (%) f2averaged Error (%) f3averaged Error (%) 
Reference 8.48 0.24 18.97 0.11 29.68 0.04 

Smartphone 3 8.40 0.71 18.80 0.79 29.43 0.81 
Smartphone 2 8.57 1.30 19.15 1.06 29.98 1.05 
Smartphone 1 - - - - - - 

Table 4 shows mean and standard deviation values obtained from each test with 40-sample sets in 

terms of peak vertical acceleration (PVA) and Arias intensity. According to these results, it is seen that 

PVA and Arias intensity increases for older generation smartphones. For instance, the PVA value for 
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reference sensors is close to 0.0038 g whereas Smartphone 1, Smartphone 2, and Smartphone 3 values range 

around 0.0045, 0.0066, and 0.0294 g, respectively. Similarly, Arias intensity values are approximately 0.006, 

0.013, 0.029, and 0.75 mm/s for reference, Smartphone 1, Smartphone 2, and Smartphone 3, respectively. 

As indicated previously, such difference is likely to stem from the sensitivity level of each sensor. For 

example, compared with other sensors, low quality Smartphone 1 accelerometer’s amplitudes are 

extremely higher in terms of PVA and Arias intensity. The PVA and Arias intensity difference between 

different generations show that smartphone performance, in terms of amplitude, varies significantly 

according to the smartphone model unlike frequency domain performance. What is more, it is observed 

that the intensity level is not subjected to change throughout different samples, which means, smartphone 

sensors’ performance is stable over time. 

Table 4. Peak vertical acceleration (PVA), Arias intensity mean and standard deviation values. 

Test No Sensor PVAμ (g) PVAσ (g) AIμ (mm/s) AIσ (mm/s) 

1 

Reference 0.0041 0.0030 0.0061 0.0010 
Smartphone 3 0.0044 0.0004 0.0133 0.0007 
Smartphone 2 0.0064 0.0005 0.0293 0.0010 
Smartphone 1 0.0278 0.0017 0.7455 0.0202 

2 

Reference 0.0036 0.0032 0.0060 0.0013 
Smartphone 3 0.0046 0.0010 0.0134 0.0011 
Smartphone 2 0.0067 0.0006 0.0297 0.0012 
Smartphone 1 0.0286 0.0022 0.7718 0.0218 

3 

Reference 0.0031 0.0008 0.0063 0.0007 
Smartphone 3 0.0044 0.0007 0.0131 0.0007 
Smartphone 2 0.0065 0.0006 0.0292 0.0010 
Smartphone 1 0.0289 0.0022 0.7710 0.0206 

4 

Reference 0.0031 0.0009 0.0061 0.0005 
Smartphone 3 0.0045 0.0006 0.0136 0.0006 
Smartphone 2 0.0068 0.0007 0.0299 0.0006 
Smartphone 1 0.0297 0.0020 0.7952 0.0210 

5 

Reference 0.0042 0.0048 0.0061 0.0053 
Smartphone 3 0.0044 0.0013 0.0125 0.0014 
Smartphone 2 0.0067 0.0009 0.0290 0.0014 
Smartphone 1 0.0308 0.0032 0.7560 0.0622 

6 

Reference 0.0049 0.0046 0.0069 0.0030 
Smartphone 3 0.0047 0.0007 0.0136 0.0014 
Smartphone 2 0.0065 0.0005 0.0296 0.0010 
Smartphone 1 0.0307 0.0023 0.7737 0.0487 

Finally, after investigating the citizen-induced parameters, student volunteers are assigned to  

test the crowdsourcing-based SHM platform. 135 samples are received, automatically processed, and 

the identification results are inserted into the web database. Figure 11 shows the distribution of 

crowdsourcing-based submission results compared with the results obtained from Tests 1–6. The 

distribution results show that there is a higher dispersion in crowdsourced identified frequencies, yet there 

is a similar trend with the Test 1–6 results which are conducted in a relatively controlled environment. 
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Moreover, it can be observed that the crowdsourcing-based results tend to identify the 1st mode more 

often, whereas Test 1–6 results are concentrated on the 2nd and the 3rd modes. 

 

Figure 11. Modal identification results from Test 1–6 and crowdsourcing. 

In SHM practice, the dynamic load patterns might also have an effect on identification results.  

Test 1–6 are conducted under ambient vibration, which can be considered an output-only problem. On 

the contrary, operational loads such as pedestrian-induced or vehicle-induced vibrations might have 

dominant frequencies which will influence the identification results. For example, when a pedestrian 

walks on a bridge, the bridge is subjected to a harmonic vibration of approximately 1.6–2.4 Hz [59]. 

Therefore, pedestrian-induced vibrations tend to excite the modes which are close to 1.6–2.4 Hz. To reveal 

this effect, measurements are obtained under walking-induced vibration, and presented in Figure 12. 

Accordingly, it is seen that the 1st modal frequency, which is the closest frequency to pedestrian-induced 

frequencies, is significantly excited. This might explain why uncontrolled crowd dataset is dominated 

by Mode 1, whereas ambient vibration datasets frequently identify Mode 2 and Mode 3. 

 

Figure 12. Acceleration time histories and Fourier spectra samples from pedestrian-induced vibrations. 

To summarize, the field measurement results show that the modal identification of the bridge structure 

can be conducted efficiently by the developed platform integrating citizens, new generation smartphones, 

and web-based server capabilities. In particular, as citizens continue providing more samples, the 

identification results will become more reliable and will provide useful information for big data generation. 

Using this platform, an online, remote, automated, secure and long-term monitoring system can be 

established and tested on multiple structures. 
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5. Conclusions 

This study develops a novel SHM platform based on citizen crowdsourcing and smartphone sensors. 

The platform not only provides citizens with the necessary tools to measure and submit structural 

vibration using their smartphones, but also automatically processes the citizen-submitted data at a server 

to identify structural modal parameters (such as natural frequencies) useful for long-term structural 

health monitoring. A mobile application called Citizen Sensors for SHM was developed for measuring 

structural vibration with the smartphone-embedded accelerometers and submitting the data to the server.  

A web-based software package was developed for receiving and processing the citizen submission data 

on the server. Finally, the integrated system was evaluated on a real bridge structure using different 

smartphone generations under varying coupling and location conditions. High-fidelity accelerometers are 

also used as reference sensors. Low-amplitude ambient vibration of the bridge was measured by both the 

reference and smartphone sensors. The structural modal properties were identified and compared.  

The performance of the proposed platform and the test results can be summarized as follows: 

(1) The developed platform is novel in the way it utilizes ubiquitous smartphones, crowdsourcing 

and citizen engagement as means of vibration-based SHM. It lays a foundation for a future 

citizen-centered cyber-physical sensor system for monitoring the integrity and safety of  

spatially-distributed urban infrastructure. 

(2) Crowdsourcing-based SHM is a unique participatory sensing example in the way it synthesizes 

distinctive crowdsourcing parameters such as participatory and opportunistic involvement, 

multiple incentives, individual and collective data wisdom, and heterogeneous and homogeneous 

contribution with a hybrid human-sensor framework. 

(3) Considering different generations of smartphone models, new generation smartphones provide 

better performance for vibration measurement. Time history data, Fourier spectra, and Arias 

intensity results show that as the phone generation gets younger, accuracy and sensitivity gets 

closer to the high quality reference measurements. In contrast, the oldest generation, Smartphone 1, 

is subjected to a high noise level which can mask structure’s dynamic characteristics in vibration 

signals. Although amplitude performance changes significantly according to the smartphone 

generation, modal identification results obtained from new generation smartphones have extremely 

small errors ranging around 1%, whereas the oldest generation, Smartphone 1, is incapable of 

identifying modal frequencies. 

(4) The results show that the presented phone-structure coupling conditions did not affect monitoring 

performance significantly. On the other hand, such observation is likely to change as the 

vibration level gets higher than ambient vibration. Therefore, coupling effects under operational 

or extreme environmental vibrations can be different, and should be investigated in the future. 

(5) Sensor location has an important effect on identification results, since modal displacements vary 

according to the measurement location. For instance, data submissions from one-sixth span identify 

the 3rd mode frequently, whereas the 2nd mode is dominant for other submission locations.  

(6) Collecting a large number of small-sized vibration data submissions and averaging their frequency 

spectra can generate a useful database for crowdsourcing-based modal identification and monitoring 

purposes. This will enables the setup of a reliable large-sized database by small contributions 
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from each citizen. In other words, retrieval of ubiquitous vibration data from smartphones 

enables identification of modal frequencies accurately without excessive citizen effort.  

(7) The web platform provides secure but online, automated, remote, and widely accessible media 

for vibration data and modal identification results. What is more, the mobile platform provides 

users with the opportunity to choose the preferred communication tools, which means users can 

submit the data either instantaneously or when preferred communication tools are available.  

(8) The proposed methodology is cost-effective and sustainable since the sensor instrumentation and 

maintenance is provided spontaneously by smartphone users. If the crowdsourcing model is 

improved, and the mobile application is distributed among the community, it can become an 

innovative source for long-term SHM applications. 

Based on the conclusions drawn from this study, a long-term monitoring study will be initialized which 

only relies on smartphone data rather than high-quality reference sensing platforms. The smartphone 

application developed herein will be distributed throughout the community and strategies for citizen 

encouragement will be developed. Moreover, the applicability of the proposed system will be investigated 

for different structures. Improvement of the multilayered platform with further tests, and validation of the 

system with citizen participation will be a novel contribution to the smart cities concept. Eventually, as the 

database size increases exponentially in the long term and the application is extended to new structures, a big 

data model will be introduced to effectively handle the extensive data variety, velocity and volume. 
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