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Abstract: Optimization problems relating to wireless sensor network planning, design,
deployment and operation often give rise to multi-objective optimization formulations where
multiple desirable objectives compete with each other and the decision maker has to select
one of the tradeoff solutions. These multiple objectives may or may not conflict with each
other. Keeping in view the nature of the application, the sensing scenario and input/output
of the problem, the type of optimization problem changes. To address different nature of
optimization problems relating to wireless sensor network design, deployment, operation,
planing and placement, there exist a plethora of optimization solution types. We review
and analyze different desirable objectives to show whether they conflict with each other,
support each other or they are design dependent. We also present a generic multi-objective
optimization problem relating to wireless sensor network which consists of input variables,
required output, objectives and constraints. A list of constraints is also presented to give an
overview of different constraints which are considered while formulating the optimization
problems in wireless sensor networks. Keeping in view the multi facet coverage of this
article relating to multi-objective optimization, this will open up new avenues of research in
the area of multi-objective optimization relating to wireless sensor networks.
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1. Introduction

Optimization plays a key role in wireless sensor networks. The optimization in WSNs can be broadly
categorized into single and multi-objective optimization problem. In single objective optimization,
the main aim of the optimizer is to minimize or maximize one objective under various constraints.
Where as, in multi-objective optimization multiple objectives are simultaneously optimized. Most
of the real-world problems involve multiple objectives, where all objectives need to be optimized
simultaneously. This condition makes the multi-objective optimization (MOO) a challenging task and
undoubtedly a very hot topic of research for theorists and engineers [1–6]. Usually, the problem
formulation is done as an initial phase, where the desired scenarios are formulated as multi-objective
optimization problems, and are solved by using different algorithms. The multiple objectives may
or may not be conflicting, but in most of the cases, the objectives conflict with each other [7–10].
Therefore, it is very less probable to find a global optimal solution, contrary to the problems of the
single objective optimization [11]. In MOO there exists multiple optimal solutions, and the decision
maker has to choose the best among them, depending on the priorities of the objectives to be achieved.
Depending upon the preference of the multiple objectives, the optimization problem can be tackled
using various techniques [12]. The most commonly used approach is to combine multiple objectives
to one figure of merit by assigning different weights to different objectives and then perform single
objective optimization algorithm. Weights can be assigned to multiple conflicting objectives through
direct assignment, eigenvector method, entropy method and minimal information method, etc. Few other
commonly used multi-objective handling techniques are Min-Max, Pareto, Ranking, Goals, Preference,
Gene, Sub-population, Lexicographic, Phenotype sharing function and Fuzzy [13].

WSNs have been widely adopted for monitoring purpose, e.g., to monitor the environment, habitat,
greenhouse, climate, water networks [14], and personal health [15]. Similarly, WSNs have been proven
a great tool for automation, e.g., home automation [16] and industrial automation [17,18] etc., are few
promising applications of WSNs. WSNs are composed for tiny nodes, where the nodes sense data from
the environment and pass the data to the central processing unit. The nodes are usually equipped with
low power, low energy and very little memory [19,20]. Due to the limited on-board resources, the
designing, deployment and the operations of WSNs become challenging, while simultaneously providing
the quality of service requirements [21,22]. Researchers have proposed and adopted various techniques
in order to utilize the resource constrained WSNs efficiently [23–27]. For example, [26] has proposed
a multi-objective hybrid optimization algorithm to solve the coverage and connectivity problem and
to enhance the performance of the WSNs in terms of network life time, by joining a multi-objective
on-demand algorithm employing Genetic Algorithm (GA) and a local on line algorithm. In [27],
the authors have used a formulation of data aggregation problem as a mixed integer linear optimization
problem, by minimizing the total power, considering the co-channel interference constraints.
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Abundant literature is available where MOO has been used to solve different optimization problems
relating to WSNs. This article presents an updated review of the MOO techniques being used to solve
different problems relating to design, operation, deployment, placement, planning and management
of WSNs. The paper provides an insight into varying degree of preferences for different conflicting
objectives. Therefore, it can provide means to configure WSNs for different tradeoffs between various
performance parameters depending upon the application environment of the WSN.

Highlights of the previous surveys/reviews on the topic are shown in Table 1. It can be inferred
that the existing surveys do not encompass the subject completely. For example in [23] the authors
have focussed the problem of node placement and surveyed different solution techniques to enhance
the performance of the WSNs. The authors categorized the existing literature into dynamic and static
node placement strategies. They argued that neither of the two techniques in isolation can provide the
desired result. Therefore, they suggested to use a mix of static and dynamic schemes. Particle swarm
optimization (PSO) techniques have been reviewed in [24] for the optimal deployment, node localization,
clustering and data aggregation in wireless sensor networks (WSNs). The authors investigated PSO
based techniques with respect to their suitability for WSNs and suggested how to tailor them according
to the peculiar characteristics of sensor nodes. In [25], the authors have categorized various WSNs
applications and reviewed different energy conservation schemes specifically, their impact on the
overall performance of the specific application. They also surveyed some existing techniques based
on evolutionary algorithm to achieve various trade-offs between multiple conflicting requirements for
prolonging the lifetime of the WSNs.

Metaheuristic algorithms are getting popular due to their better performance in terms of convergence
to the optimality and avoidance from being trapped in local optima [28]. A review is presented in [29]
which elaborates application of metaheuristic algorithms to solve multi-objective optimization problems
relating to data clustering in wireless sensor networks. The paper elaborates some nomenclature to
highlight the aspects of clustering and depicts some important challenges to implement the technique.
Biologically inspired computing for the optimization of WSNs have been reviewed in [30]. The authors
have shown how the metaphoric relationship can be developed between the two systems namely,
biological and non-biological. They have also shown the three stage process of ensembles design
for an artificial system inspired from biological system. Therefore, the aforementioned surveys are
either objective function specific or they are centered about some specific algorithms to tackle the
problems relating to multi-objective optimization in WSNs. Multi-objective deployment of wireless
sensor nodes has been surveyed in [31] to achieve pareto optimal front while considering multiple
conflicting objectives namely, coverage, energy efficiency, lifetime and the number of sensors.

For the sake of completeness and clarity we have included some surveys relating to different
multi-objective optimization algorithms and their general application in various fields. For example [2]
presents an overview of methods and theory of evolutionary multi-objective optimization. Specifically,
the tutorial presents basic principles of multi-objective optimization and evolutionary algorithms, and
various algorithmic concepts namely, fitness assignment, diversity assurances and eliticism. The tutorial
also elaborates performance of multi-objective evolutionary algorithms and highlights some issues
relating to its simplified implementation. A survey of evolutionary multi-objective algorithms applied to
different engineering application is provided in [3]. The authors have classified different algorithms into
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three different categories, namely the mehtods with a priori articulation of preferences, methods with
posteriori articulation of preferences and methods with no articulation of preferences. A comprehensive
survey of evolutionary based multi-objective optimization techniques is presented in [6] in a way to
motivate the implementation of various techniques in the emerging technological fields. The paper
elaborates each technique while focusing the relative advantages and disadvantages and the feasibility of
implementation in specific application. The existing surveys [1–6,12,13,23–25,29–37] do not encompass
the subject completely.

Table 1. Existing reviews/surveys relating to multi-objective optimization in wireless
sensor networks.

Ref.
Review Type Optimization Algorithms

Technology Specific Objective Specific Generic EA Heuristic Other

[1]
√

[2]
√

[3]
√

[4]
√

[5]
√

[6]
√

[12]
√

[13]
√

[23]
√ √ √

[24]
√ √

[25]
√ √ √

[29]
√ √ √

[30]
√ √ √

[31]
√ √ √

[32]
√

[33]
√

[34]
√

[35]
√ √

[36]
√

[37]
√

This article reviews the recent work published on multi-objective optimization algorithms applied
to wireless sensor networks to achieve various trade-offs among different conflicting objectives.
The existing work in this research area has been classified with respect to different network types,
different applications, different solution types and different conflicting objectives. We also summarize
different objectives used to formulate the multi-objective optimization problem, i.e., maximization of
coverage, minimization of packet error rate, maximization of network life, maximization of energy
efficiency, minimization of cost, minimization of delay and maximization of throughput. We analyze
the relationship between different objectives in the multi-objective formulations and present some
widely used simulation tools. As an example of MOO problem, we also present a general resource
allocation problem in sensor network which consists of inputs, outputs, constraints and objectives.
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Paper Organization

The paper is organized as follows: Section 2, presents a generic resource allocation problem in
WSNs and Section 3 depicts classification and formulation of optimization objectives. A pictorial
view of the relationship between desirable objectives is presented in Section 4 and solution approaches
are classified in Section 6. In Section 5, different constraints considered while formulating MOO
problems in WSNs are elaborated and Section 7, highlights existing trends of research community with
respect to the research focussed on different multi-objective optimization techniques, with respect to
the research focussed on different optimization formulations, with respect to the research focussed on
different optimization objectives and the research emanating from different geographical areas of the
world. Finally, Section 8 concludes the paper by reflecting some open challenges.

2. Generic Multi-Objective Optimization Problem in Wireless Sensor Networks

The generic multi-objective optimization problem consists of four segments: (1) inputs; (2) required
output; (3) objectives; and (4) constraints. Figure 1 shows different possibilities for each part of the
problem. In the generic resource allocation problem, the input parameters/decision variables are set
by the network operators or the regulatory authorities. For example, selection of transmit frequency is
influenced by the surrounding radio frequency environment and the regulatory rules. The selection of
frequency can affect the transmission range of the sensors and ultimately many important performance
parameters namely, coverage, bit error rate and delay. Increasing or decreasing the transmit power
can significantly impact many desirable objectives namely, maximizing energy efficiency, link quality,
network life time, reliability, coverage, cost and packet error rate. In [38], the authors have proposed an
optimization formulation to maintain sensing coverage by keeping a minimum number of active sensor
nodes and a small amount of energy consumption in wireless sensor network. Energy consumption
has been considered in [39] by simultaneously satisfying delay and reliability through a multiobjecitve
optimization algorithm. Total energy and residual energy of the nodes can also affect many performance
indicators for example, coverage, throughput, network life time and packet error rate. A multi-objective
formulation has been used in [40] to achieve a tradeoff solution between energy consumption and packet
error rate. Location and density of the sensors determine the overall cost and the network performance
in terms of observability, coverage, transmission range, reliability and energy consumption. Practical
optimization problems relating to wireless sensor networks are constrained by many factors namely,
network connectivity, interference, quality of service, transmit energy, coverage, topology, density, cost,
latency, reliability and delay. These constrained optimization problems are expected to precipitate in
optimal location of sensors, optimal number of sensors, optimal scheduling, optimal transmit power,
optimal coverage, optimal throughput, optimal delay, optimal cost, optimal packet error rate, fairness
and reliability. Nature of multi-objective optimization problem will change in accordance with certain
input parameters, required objective function to optimize and the constraints imposed by the specific
area of sensor network deployment.
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Figure 1. Generic multi-objective optimization problem in wireless sensor networks.

3. Classification of Optimization Objectives

In general, many real world design problems relating to engineering are inherently characterized by
the presence of multiple objectives which conflict with each other [12]. Similarly, various practical
scenarios relating to efficient sensor network design, operation, placement, layout, planning and
management give rise to multi-objective optimization formulations. In this section we elaborate the
relevant work against each aspect of multi-objective optimization relating to WSNs as shown in Figure 2.

Figure 2. Classification of optimization objectives.



Sensors 2015, 15 17578

3.1. Multi-Objective Optimization Focussed on Design Related Problems in WSNs

The design of WSNs is a relatively intricate task with significant influence on various performance
parameters namely, quality, cost and efficiency of real life sensor applications. One of the design
goals is to maximize the lifetime of the sensor network in a way that sensors effectively monitor the
region of interest and communicate the observed information to the central processing station. [41].
A multi-objective optimization approach has been proposed in [42] for the modular design architecture
of QoS aware routing protocol to ensure the homogeneous depletion rate of energy. A scheme for
the minimization of energy consumption has been proposed in [43] by treating the design problem
of beam pattern optimization as a multi-objective formulation. Mathematical formulations of some
commonly used design related objectives have been depicted in Table 2. In the following we elaborate
multi-objective optimization in sensor network related to various design problems.

Table 2. Design related objectives in wireless sensor networks.

Ref. Objectives Equation Details

[38] Energy consumption,
transmission radius,
coverage area

Aarea(N ′)

As

1−
|N ′|
|N |

−
∑n

i=1 r
2
i

Aarea

(1)

Multi-objective function.Objective 1 is the coverage
rate of sensor set N ′.Objective 2 is financial cost of
the sensor set N ′ and Objective 3 is coverage energy
consumption of the sensor set N ′. As represents the
total size of target area; Aarea represents the
monitoring size of the sensor set N ′; r2i represents
the sensing radius of node ni.

[42] Customized QoS
services for each
traffic category

maximize
dist(i, s)− dist(j, s)

dist(i, s)
,
eres(j)

einit
(2)

Where dist(a, b) denotes geometric distance between
nodes a and b; eres(j) denotes the residual energy
level of the neighbor nodes j of i; einit denotes the
initial energy level.

[45] Energy consumption,
system lifetime,
coverage

min f1(Pt, T,N) =
1

η

N∑
i=1

(Pti + αci)Ti

min f2(Pt, T,N) = |τ∗ − τsys|

min f3(N) = 1− ϑc
min f4(N) = N

(3)

Multi-objective function. Objective 1: Optimization
of energy consumption. Objective 2: optimization of
system lifetime. Objective 3: coverage optimization
problem. Objective 4: Optimization of the
participating number of satellites. Pti and Ti denotes
optimal transmission power and transmission duration
of node i, respectively; αci represents the equivalent
circuit power consumption; N represents number of
active satellite sensing nodes at any given time
instant; η represents the efficiency of the power
amplifier; τ∗ represents desired system lifetime;
τsys represents , the system lifetime of a cluster
networked system; ϑc represents the coverage.

[49] Energy consumption
and spectrum
sensing performance

minF (X) =
(
CT , Qf , (−Qd)

)T (4)

Where X = (µ, λ1, λ2), where λ1 and λ2 are
censoring thresholds, and µ represents the probability
that a node is turned off; CT denotes the average
energy consumption of the entire cognitive radio;
QD denotes the global probability of spectrum
sensing; Qf denotes global probability of false alarm;
T denotes samples during one sampling process.

[50] Coverage preservation
and energy conservation

maximize F (x) = (f1(x), ......, fn(x))T (5)

Where x is the decision variable vector. In general,
f1, . . . , fn are in conflict with each other, and then
finding the optimum can be interpreted as finding a
good trade-off between all f1, . . . , fn of F .
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Table 2. Cont.

Ref. Objectives Equation Details

[135] Energy efficiency,
packet error rate,
average delay

maximize Φ.µ (6)
Where µ denotes the optimal weights vector;
Φ denotes the real time vector.

[136] Optimum structure of
heat exchanger max : I =

1000R2

∆P
(7)

The internal diameter of three tubes set as
optimization variable and these variable are
Dtube1,Dtube2 and Dtube3. Its unit is millimeters.

[137] Minimum energy
consumption, uniform
battery power depletion,
and minimum delay

minimize F (x) = (F1(x), ......, Fn(x))T ) (8)

Where Fi(x) is an objective function, for 1 ≤ i ≤ n;
wi denotes a weight selected by a network designer to
reflect the relative importance of the objective
function; ci denotes a coefficient that not only scales
Fi(x) but also helps produce a
one-dimensional function.

[138] Maximizing the network
lifetime subject to
QoS constraints max Bsosd (℘)

max Lb
i

(9)

Multi-objective function. Objective 1 maximizes the
residual energy of the selected nodes. Objective 2
maximizes the residual energy of the forwarding set.
Bsosd represents end-to-end path battery cost;
℘ represents the set of paths between the nodes;
Lb
i represents local battery cost for each node.

3.1.1. Network Lifetime

Network lifetime is very critical parameter related to sensor network performance and has been
tackled at various levels namely, design, operation and deployment. For example in [44], a stochastic
multi-objective algorithm for WSNs has been proposed to maximize the aggregate utility and to extend
the lifetime of the network. Space-based applications of wireless sensor networks are considered in [45],
where authors have proposed a multi-objective formulation to address the problems of maximization of
lifetime, minimization of energy consumption and maximization of the coverage. In [46], authors have
formulated a multi-utility function to represent various performance metrics of the WSN and then jointly
optimized the utility function and the lifetime maximization. A multi-objective routing protocol design
has been proposed in [47,48] to maximize the lifetime while considering other conflicting objectives
like, minimization of energy consumption, minimization of delay and secure routing.

3.1.2. Energy Conservation

Wireless sensor nodes are inherently energy constrained devices. Furthermore, most of the times
these devices are deployed in hard to reach areas where recharge or replacement of batteries is not
possible. Therefore, energy conservation through efficient utilization of available energy helps to prolong
the operation of the network. Maximization of energy conservation is one of the desirable objectives
which has been addressed in various articles, for example in [49], a multi-objective evolutionary
algorithm has been proposed to jointly optimize two conflicting objectives namely, maximization of
energy conservation and maximizing the accuracy of spectrum sensing. Coverage performance and the
energy conservation have been jointly optimized in [50] by formulating a multi-objective optimization
problem and using evolutionary algorithm based decomposition approach. The authors showed that
their algorithm performed better than the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [50].
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Design of routing algorithm has been proposed in [51–53] to optimize various conflicting objectives
including energy conservation, packet delivery ratio, jitter, delay and robustness. The solution for energy
conservation has also been searched in optimal cluster formation, for example in [54], a multi-objective
optimization technique has been proposed to maximize energy conservation and to minimize the delay
in data collection process.

3.1.3. Coverage Efficiency

Coverage efficiency or coverage maximization is one of the key issues of sensor network deployment
which is affected by other desirable objectives which may or may not conflict. Various multi-objective
formulations have been proposed in the literature to maximize the coverage while considering other
desirable objectives at the same time. For example in [55], the authors have proposed a hybrid
multi-objective optimization technique for the design of wireless sensor networks to maximize the
coverage and to minimize the energy consumption. Maximization of coverage, minimization of active
sensor nodes and energy consumption have been simultaneously optimized in [56] by suggesting a
multi-objective optimization technique. Simultaneous optimization of the coverage efficiency and energy
consumption is one of the key design problems. In [57], the authors have proposed a solution inspired
from the nature called, multi-objective evolutionary algorithm based on decomposition to simultaneously
optimize the coverage control and energy consumption. A hybrid routing protocol design has been
proposed in [58] by using a multi-objective optimization approach to improve the coverage efficiency
and to reduce the energy consumption.

3.1.4. Clustering

Multi-objective optimization based clustering schemes are being preferred over the single objective
optimization based clustering techniques. Multi-objective optimization facilitates to consider multiple
optimization criteria while formulating the clustering as an optimization problem. For example in [59],
an automatic clustering technique is proposed which is based on the hybrid evolutionary algorithm
immunized PSO. A multi-objective optimization based clustering algorithm has been proposed in [60]
which simultaneously optimizes network life time, energy consumption, dead sensor nodes and delivery
of total data packets to the base station. The authors argued that the proposed clustering algorithm based
on particle swarm optimization gave better results as compared to the other existing methods.

3.1.5. Throughput

Maximization of throughput is the critical issue in the design of energy constrained wireless sensor
networks. Throughput optimization of energy sharing wireless sensor networks has been proposed
in [61] for the design of energy sharing technique by using ultra-capacitor based energy harvesting
system. Solar power sensor network design approach has been proposed in [62] to maximize the
throughput in order to better utilize the solar power and to ensure fairness for all nodes across the
network. The design of a cloud-integrated sensor network architecture has been proposed in [63] by
using a multi-objective optimization algorithm to maximize the throughput and minimize the bandwidth
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and energy consumption. The design of efficient spectrum sensing and power allocation techniques have
been proposed in [64] to maximize the throughput and minimize the interference.

3.1.6. Reliability

A reliable and complete knowledge of some event of interest is mandatory for taking the desired
decision. For example up-to-date and accurate information of current plant state is essential for plant
monitoring, control and real time optimization. The accuracy and provision of different estimates of
various parameters largely depend on the sensor network deployed in the plant. In [65], optimal design
of wireless sensor networks for chemical plants is discussed using stochastic optimization technique for
selecting the type, number and location of the nodes to achieve the required accuracy. A multi-objective
optimization technique has been used in [66] to design an optimal routing protocol for maximizing the
reliability, performance and efficiency.

The design of quality of service routing protocol is proposed in [67] which can accommodate different
types of data traffic. The proposed routing protocol used multi-objective optimization to simultaneously
optimize latency, reliability, residual energy in sensor nodes and transmission power between the nodes.

3.1.7. Accuracy

In the process industry, wireless sensor networks are deployed to obtain accurate measurements
of different process variables at different sampling rates. For example, in chemical and biochemical
processes, temperature and pressure are measured more frequently whereas, molecular weight and
concentration are measured less frequently. In [68], the authors have proposed a multi-objective
algorithm to obtain a trade-off between the quality of measurement and the cost of the measurement.
A trade-off between the two conflicting objectives of maximization of measurement accuracy and
minimization of energy consumption has been achieved by using a lossy compression technique in [69].
The proposed design technique facilitates the node to transmit less amount of data after compression and
hence can save energy during transmission. The design of intermittent fault detection in sensor nodes
has been proposed in [70]. A trade-off has been obtained between the accuracy of fault detection and the
detection latency by using a multi-objective optimization technique in there.

3.1.8. Monitoring

Monitoring and identification of moving objects and differentiation between normal and abnormal
events/states for the purpose of surveillance are popular applications of wireless sensor networks [71,72].
For example, the design of intelligent transportation system using sensor network has been proposed
in [73] to detect the regions with vulnerable or dangerous drivers. A multi-objective sensor network
model has been proposed in [74] for water sensor network design to monitor the water distribution
system of municipalities. The proposed model focused on minimizing the volume of water from
potential contamination, minimizing the expected time of detection and maximizing the probability of
contamination detection. Monitoring of oceanic turbulence is the key to take preemptive measures for
the safe transportation of mass and energy in the ocean and for the safety of the inhabitants along the
costal cities [75]. Airfoil shear probes are the instruments to monitor and measure the turbulence in the
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ocean. A multi-objective optimization algorithm has been proposed in [76] to obtain the critical design
parameters of the probe so as to enhance its sensitivity.

3.1.9. Fabrication

Multi-objective optimization formulation has been used in designing various parameters during
fabrication of biosensor to increase the detection sensitivity. In [77], a design guide for extremely
sensitive photonic crystal biosensor has been proposed. The scheme facilitates the selection of grating
pitch and duty based on the constraints of lithography and measurement system. Photonic sensors
have the potential to replace the traditional electrical sensors due to their peculiar properties namely,
small size and weight, enhanced sensitivity and immunity from electromagnetic interference [78].
A multi-objective optimization scheme has been proposed in [79] to design a wavelength division
multiplexing fiber Bragg grating sensor network to simultaneously minimize the bandwidth of the optical
source and the overlapping spectra.

3.2. Multi-Objective Optimization Focussed on Operation Related Problems in WSNs

There are lot of multi-objective optimization schemes which have been proposed for the optimal
operation of wireless sensor networks. Table 3 shows some mathematical formulations of operation
related objectives in WSNs. In this subsection, we classify the operation related activities into coverage
efficiency, target tracking, energy consumption, monitoring, network life time, reliability and throughput.
Multi-objective optimization related to aforementioned categories of the operational activities have been
discussed in the following.

Table 3. Operation related objectives in wireless sensor networks.

Ref. Objectives Equation Details

[85] Maximizing the
coverage rate,
minimizing the
percentage of active
sensor nodes, and
minimizing the
unbalanced
energy consumption

F1 = 1−
b
∑
x′∈X

∑
y′∈Y cgrid(X ′, Y ′)
G

F2 =
max(Ei)−min(Ei)

max(Ei)

F3 =
∑
j∈NC

Statusj

F = argmin{F1, F2, F3}

(10)

Where G is total number of
grid; Ei is is the residual
energy of sensor i; NC is total
number of sensor in cluster;
Statusj represents the
scheduling status of node j.

[86] High network
coverage, effective
node utilization and
more residual energy min

n∑
i=1

γi

max ω(T )

min α× U(T ) + β × E(T )

(11)

γi is the decision variable;
ω(T ) represents the coverage
degree of sensor networks;
U(T ) represents node
utilization; E(T ) represents
the energy distribution of the
network; α is the node
utilization weighting
coefficient; β is the energy
balance weighting coefficient.
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Table 3. Cont.

Ref. Objectives Equation Details

[89] Minimization of the
number of selected
sensors and
minimization of the
information gap
between the
Fisher Information

min
α
{f1(α), f2(α), ........., fn(α)} (12)

Where α is the vector of
decision variable with
element αi.

[139] Minimum Spanning
Tree (MST)

min
xεX

f(x) = γ∆.a(x)+γχ.b(x)+γθ.c(x) (13)

a(x) is evaluation of delay
along path Tx; b(x)
represents the evaluation of
the co-channel Interference
along the path in Tx; c(c) is
the evaluation of the link
duration probability along the
path in Tx; γ∆ is end-to-end
delay weight; γχ is
co-channel Interference
weight; γθ represents link
duration probability weight.

[140] Maximizing the
coverage rate,
minimizing the
percentage of active
sensor nodes, and
minimizing the
unbalanced
energy consumption

min [f1(x), f2(x)]

max fA(x) =
As
A

min f1(x) = 1− fA(x)

min f2(x) = ω1ρ+ ω2Es

(14)

This is used for wireless
sensor networks
multi-objective coverage
control model. Where ω1 is
the energy consumption
weight, and ω2 is the energy
balance weight. As represents
the target area covered by the
active nodes; A is the target
region area; Es represents the
balance level of energy
consumption for the whole
network; ρ represents the
wireless sensor network
node utilization.
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Table 3. Cont.

Ref. Objectives Equation Details

[141] Maximize the total
throughput, minimize
the total
transmission power min

ε,ρι,ρs
F = w1(1− F1) + F2w2

F1 =

∑K
k=1 Ck∑K

k=1 C
max
k

F2 =
Eco2

ECO2
max

(15)

Normalize the first objective
between 0 and 1 and second
objective is to reduce the
carbon footprint. Ck
represents the channel
capacity of the kth user for
shared band; Cmaxk
represents upper bound of the
sum-rate capacity Ck; ECO2

is the CO2 emission; w1 and
w2 are used to create a joint
minimization (or
maximization) objective.

[142] Minimum
interrogation cycle,
maximum reader
utilization, and
energy efficiency min

{pc,si },{γ
c,s
i },S,W,E

S + ξ1(W + ξ2E) (16)

Three stage optimization to
single stage optimization
problem. ξ1 and ξ2 are
constants which depend on
the number of readers and the
maximum output power;
W represents the RFID
reader utilization; E
represents the RFID power
consumption; S denotes the
interrogation circle.

[143] To balance network
communication
ability and
energy efficiency

Q∗ = max
at

Qi,t+1(st, pt) (17)

Where Q∗ mean Q
optimal value.

[144] Operation

max
i=1

N∑
i=1

bi and min
i=1

N∑
i=1

pi (18)

Where i=1,2,3...,N ; bi is the
number of bits; pi is allocated
power per subcarrier.

3.2.1. Energy Conservation

Wireless sensor nodes need to increase their transmission power in order to increase signal to
noise ratio and to decrease the bit error rate. On the other hand, increase in transmission power will
compromise the energy conservation, minimization of interference and the life time of the network.
Therefore, multi-objective optimization algorithms are used to obtain trade offs involving energy
efficiency and other conflicting objectives. For example in [39], the authors investigated the effect
of various parameters of energy consumption in nanosensor networks and proposed a multi-objective
optimization formulation to achieve a balance between the energy consumption, delay and bit error rate.
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In [80], a multi-objective optimization algorithm has been proposed to maximize energy conservation
and lifetime of the network by using a data aggregation route algorithm. A trade-off has been obtained
between energy efficiency and end-to-end delay by using a multi-objective routing algorithm in [81].
A multi-objective optimization scheme has been used in [82] to simultaneously optimize the conflicting
objectives namely, energy conservation, lifetime and coverage. The authors have used a probabilistic
scheduling strategy to achieve a balance between the two conflicting objectives. A cross-layer
mutli-objective approach has been used in [83] to obtain a trade-off between energy efficiency and
packet loss.

3.2.2. Coverage Efficiency

When the sensor nodes are deployed randomly, the number of sensors is usually more than
necessary [84]. Therefore, it is not essential to operate all the nodes in active mode simultaneously.
A proper sensor scheduling scheme is required to keep some nodes in sleep state and others in the
active mode to help ensure coverage efficiency and energy conservation. A multi-objective optimization
formulation has been suggested in [85] to optimize the conflicting objectives of coverage efficiency, life
time and connectivity. The authors argued that the proposed algorithm could provide better coverage
with the same level of energy conservation as compared to the others. Maintaining efficient coverage
and prolonging the lifetime of wireless sensor networks is one of the important issues in WSNs. In [86],
a multi-objective optimization algorithm has been proposed to get optimal coverage efficiency and
prolonged network lifetime even in the presence of sensing errors. Pareto optimal solutions have been
achieved in [87,88] for finding the balance between coverage efficiency and the capacity of the network.

3.2.3. Target Tracking

Target tracking in the field of observation is one of the critical tasks performed by the wireless sensor
network. Minimization of number of selected sensors for efficient target tracking has been modeled as
multi-objective optimization problem in [89] which achieved a pareto optimal trade-off between the
number of selected sensors and the accuracy of estimation. A generalized unscented Kalman filter
tracking algorithm has been proposed in [90]. The proposed algorithm considered energy efficiency
and target tracking performance simultaneously by using a multi-objective optimization formulation.

3.2.4. Network Lifetime

For the prolonged operation of WSNs, efficient utilization of energy is one of the critical issues.
In [91], a strategy is proposed for the maximization of the lifetime of the network by using a
multi-objective clustering algorithm. To maximize the lifetime, the proposed algorithm controls the
energy depletion of cluster heads in a way to balance their load which results in prevention of faster
death of highly loaded cluster heads. A multi-objective optimization formulation has been proposed
in [92] which selects the cluster head to maximize the lifetime of the network. Transmission range of the
sensor node can affect the battery depletion and hence the lifetime of the network. In [93], an optimal
transmission range has been searched to maximize the lifetime of the network by using an ant based
heuristic algorithm.
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3.2.5. Monitoring

Wireless sensor networks are being used for monitoring and surveillance applications in various
practical scenarios including warehouse monitoring, cargo fleet monitoring, home monitoring,
human activity monitoring, health monitoring, industrial process monitoring and infrastructure
monitoring [94–96]. A multi-objective optimization strategy has been proposed in [97] for dynamic
monitoring of the bridge. The authors applied the proposed scheme on the dynamic monitoring of a
bridge in Quzhou, China. The experimental results complemented the ideal information acquired by
means of ANSYS simulation. A pervasive health monitoring system using body area sensor network
has been discussed in [98], where authors have suggested an optimal resource allocation technique for
sustainable power supply and guaranteeing the quality of service to support data streams. Accurate
localization of sensor nodes is critical in many applications namely, remote patient monitoring, people
and goods tracking, environment monitoring and wildlife habitat monitoring. In [99], a multi-objective
optimization algorithm has been suggested to accurately localize the sensor nodes so as to measure data
having more geographical relevance.

3.2.6. Others

In addition to the popular target areas of multi-objective optimization relating to solving different
operational tasks namely, coverage efficiency, network life time, target tracking and monitoring, there
are several other areas which have also been considered. For example in [100], the authors have
used multi-objective optimization formulation to control the green house environment by tuning the
parameters of proportional integral and derivative controller. A framework has been proposed in [101]
for such systems which collect potentially uncertain observations to be applied to various control actions
during each sampling instant. One of the important parts of the this framework consists of fuzzy discrete
event system model of sensor data collection so as to evaluate and fuse the sensor observations. The
suggested technique is applied to a mobile robot which is assigned a task to follow a predefined path
while avoiding any hurdle on the way.

3.3. Multi-Objective Optimization Focussed on Deployment Related Problems in WSNs

Wireless sensor network deployment problem encompasses the determination of positions for sensor
nodes in order to achieve intended coverage, connectivity and energy efficiency while keeping the
number of nodes as minimum as possible [102]. Optimal deployment of WSN guarantees sufficient
quality of service, increased network life time and minimum cost [24]. Table 4 depicts mathematical
formulations of some commonly used objectives related to deployment of wireless sensor network
nodes. In the following, different objectives related to optimal deployment of wireless sensor networks
are elaborated.
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Table 4. Deployment related objectives in wireless sensor networks.

Ref. Objectives Equation Details

[9] Arrangement to
maximize the
area of coverage,
minimize the
net energy
consumption,
maximize the
network lifetime,
and minimize the
number of deployed
sensor nodes

min Y = F (−→x ) =

∑
iεs

ei,
∑
jεD

NCjxHj

 (19)

ei represents the energy
consumed at each node;
N denotes number of
sensor nodes; NCj is a
non-coverage penalty
parameter; hj is variable to
indicate if demand point j
is not covered; D
represents set of
demand points.

[108] Maximize
connectivity
and minimize
energy
consumption of
the network

Emin = min [P1 + P2, ....Pj + .....PN ] (20)

For CjH = 0, sensor j is
disconnected. It means that
sensor CjH is not within
the scope of cover. Emin is
the minimum energy
consumption; Pj is the
transmission power level of
sensor j.

[111] Optimal sensing,
coverage and
network lifetime

Fcov =

[∑X
x′=0

∑Y
y′=0 g(x

′, y′)
]

(x× y)
Fnt = Timelast − Timefirst

Fmov =

N∑
i=1

√
(xi − x)2 + (yi − y)2

(21)

First objective function is
used for total sensing area,
second objective function
is used for network life and
third objective function is
used for moving cost of
sensor nodes.

[112] Coverage
and lifetime min z(x) = [z1(x), z2(x), ....., zM (x)] (22)

Vector function z
consisting of M objectives.

[128] Maximize
Coverage
and Lifetime

max
coverage

f1 =
Ui=1,....,N

A
Ai

max
lifetime

f2 =
Tfailure
Tmax

(23)

Ai is the area coved by ith

node; N is total number of
node and A is the area of
region of interest.
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Table 4. Cont.

Ref. Objectives Equation Details

[145] Maximum
coverage with
minimum energy
consumption

min Y = F (−→x ) =

∑
iεs

Ei,
∑
pεM

NCovp

 (24)

f1 is the net energy
consumed and 2nd
objective function is
maximize the area of
coverage. NCovp are
number of uncovered
points, which are used to
express coverage; Ei is the
energy consumed by each
node i; M is the total
number of monitoring
points; S is the set of
sensor nodes.

[146] Number,
position and
orientation

Fs =
Nss∑
i=0

(wsi × ϕi) (25)

Where Fs is fitness
function; NSS is maximum
number of available
sensors; wsi is weight
related to i simultaneously
illuminated sensors; ϕi is
total angular interval with i
illuminated sensors.

[147] Bit-Error-Rate
minimization,
system
throughput
maximization,
power
consumption
minimization

fmin_ber =

∑Nc
i=1 1−

log10(0.5)−log10(Pbei)
log10(0.5)−log10(10−12)

Nc

fmax_tp =

∑Nc
i=1

Li
Li+O+H .(1− Pbei)

Li+o.Rci.TDDi

Nc

(26)

First objective function for
bit-error-rate and 2nd
Object function for
throughput. Nc is number
of carriers; Lj is the size
transmission frame size in
bytes; O is physical layer
overhead; H is MAC and
IP layers overhead; Pbei is
the probability of bit error
rate; Rci is the coding rate;
TDD is percentage of
transmit time.

[148] Minimum
number of
sensor nodes
and provide
maximum
coverage and
connectivity

min F1 =

X×Y∑
i=1

di

min F2 =

X×Y∑
i=1

1− e−(Rc−Rs)

(27)

Rc is the communication
range of a node; Rs is
sensing range; di
represents the random
deployment of sensor
nodes; X and Y are the
coordinates of a
particular area.
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3.3.1. Coverage Efficiency

Optimal deployment of sensor network has been considered in the context of various preferences
namely, coverage efficiency, network life time, energy conservation, efficient monitoring and minimum
node density. In [103], the authors have tackled the problem of optimal deployment while considering
the conflicting objectives of maximizing the coverage efficiency and network life time simultaneously.
A PSO based multi-objective optimization formulation has been proposed in [104], which have
optimized the coverage efficiency and the energy consumption of ad hoc wireless sensor networks.
Maximization of coverage efficiency and minimization of cost through optimal sensor network
deployment has been addressed in [105], where authors have proposed a multi-objective optimization
technique based of PSO. Optimal deployment of heterogeneous WSN has been considered in [106]
to optimize the coverage, average number of hops and network reliability. Deployment of WSN for
smart grid communication has been addressed in [107] by optimizing coverage and end-to-end latency.
In [108], a technique for optimal deployment of sensor network has been proposed to optimize the
coverage efficiency and lifetime of the network.

3.3.2. Energy Conservation

Owing to the peculiarities of wireless sensor networks, energy conservation or energy efficiency is
one of the most critical objectives and has been tackled at various levels namely, design, operation
and deployment. Various deployment strategies have been proposed in the literature focusing on the
maximization of energy conservation. For example in [9], the authors have proposed an optimal
deployment scheme which considered minimization of net energy consumption along with other
objectives including maximizing the area of coverage, maximizing the network life time, and minimizing
the number of deployed sensor nodes. Energy conservation has been tackled in [109] through optimal
deployment of body sensor network for the objectives of minimizing energy consumption, minimizing
bandwidth and maximizing data yield. Deployment problem of relay node has been addressed
in [110], where authors have proposed a multi-objective optimization formulation to minimize energy
consumption and to maximize the coverage area.

3.3.3. Network Lifetime

There are several research work relating to the deployment of sensor network while considering
network lifetime along with other conflicting or non conflicting objectives. For example, optimal node
deployment has been investigated in [111] to maximize optimal sensing coverage and network lifetime
of wireless sensor networks. In [112], an optimal deployment of sensor network has been considered to
simultaneously maximize network lifetime and coverage.

3.3.4. Accuracy of Measurements

Accuracy of measurements from the sensing area is of paramount importance for extracting any
conclusion from the observed data. Efforts have been made towards acquiring accurate information
relating to the area or the phenomena under observation. For example, deployment of optimal sensor has
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been addressed in [113] by using a multi-objective optimization technique for simultaneous optimization
of the probability of a successful search and the probability of false search. In [114] a multi-objective
optimization algorithm has been suggested for optimal spectrum sensing in cognitive radio sensor
network by achieving a trade off between probabilities of detection and probabilities of false alarm.

3.4. Multi-Objective Optimization Focused on Placement Related Problems in WSNs

Wireless sensor network placement problem encompasses the determination of positions and
inter-node distance for sensor nodes in order to achieve intended coverage, connectivity and energy
efficiency while keeping the number of nodes as minimum as possible. Optimal placement of WSN
guarantees sufficient quality of service, increased network life time and minimum cost. In the following,
different objectives relating to optimal placement of wireless sensor networks have been discussed.

minimize λ (28)

min−→γ εΓ
[f1(γ)f2(γ)]

T (29)

where −→γ is a sensor placement problem,

fw1,w2(S, T ) = w1ctotal + w2ttotal

min
S,T

fw1,w2(S, T )
(30)

3.4.1. Node Density

Finding optimal sensor node density in the field of observation has significant influence on the quality
of observation and the cost of the network. Various multi-objective optimization algorithms have been
proposed in the literature to find the optimal node density along with considering other objectives that
may or may not conflict with it. For example, in [115], the authors have proposed a multi-objective
optimization algorithm to find the optimal quantity and location of sensor nodes for stay cable damage
identification of cable-stayed bridge under uncertainty. A multi-objective heuristic localization technique
for wireless sensor network has been proposed in [116] which is based on harmony search algorithm.
The proposed approach is focused on minimization of squared error between the estimated and measured
spacing between the nodes and the number of connectivity neighborhood constraints violated by the
candidate topology. In [117], a multi-objective optimization formulation has been used to maximize
the observations of the smart grid system while keeping the number of phasor measurement units as
minimum as possible. The authors also considered contingency constraints and optimal allocation of
these sensor devices on utility systems. Simultaneous minimization of the number of nodes and the
energy consumption for wireless sensor network has been addressed in [118] by using a multi-objective
optimization based on hybrid evolutionary algorithm. Optimal sensor network placement for the
observation of water distribution system has been addressed by [119], where authors have proposed
a multi-objective optimization algorithm to minimize the number of sensors and their optimal placement
to ensure a prescribed reliability level for the network.
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3.4.2. Coverage Efficiency

Optimal placement of sensor network has been considered in the context of various preferences
namely, coverage efficiency, network life time, energy conservation and minimum node density. In [120]
a multi-objective evolutionary algorithm has been proposed for solving optimal sensor placement
problem. The proposed approach has been used to maximize coverage, maximize desired connectivity
level and minimize energy cost. Optimal sensor node placement in the field of interest has been addressed
in [121], by utilizing a biologically inspired multi-objective optimization algorithm. The proposed
algorithm searched optimal placement of sensor network to maximize the coverage and connectivity
with minimum energy consumption. Simultaneous optimization of coverage efficiency and network life
time has been addressed in [122] through optimal deployment of sensor nodes.

3.4.3. Energy Conservation

Energy conservation is one of the critical issues due to the peculiar characteristics of the wireless
sensor networks. Therefore, it has been discussed at various levels namely, design, operation,
deployment and placement. A multi-objective optimization algorithm has been proposed in [123] to
find the optimal placement of sensor network while simultaneously optimizing energy consumption and
detection capability. Relay node placement problem in wireless sensor network has been addressed
in [124] by using a multi-objective optimization formulation to search a trade-off between the average
energy consumption and average coverage.

3.5. Multi-Objective Optimization Focussed on Layout Related Problems in WSNs

Layout of wireless sensor network deals with determining optimal location of sensor node in order
to maximize the coverage, minimize energy consumption and to prolong the life time of the network.
For example in [125], the authors have used a multi-objective optimization technique to solve the sensor
layout problem with the objective of minimizing energy consumption and the number of nodes while
considering the constraint of full coverage. Sensor layout problem has been addressed in [126] to
minimize the number of sensors used while maximizing the quality of information contained in the
measurement data for the identification of structural damage. A multi-objective optimization formulation
has been suggested in [127] for the optimal layout of wireless sensor network. The proposed approach
obtained a trade-off between maximization of the coverage and the life time of the network. Furthermore,
the authors also investigated the impact of sensing range and communication range on the optimal layout.
An energy efficient layout strategy has been proposed in [128] to maximize the coverage and life time of
the network by using a multi-objective particle swarm optimization algorithm.

f1(x) = Length(x)

f2(x) =Max
(
{E(xi)}f1(x)

i=1

) (31)
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Coverage = [Un
i=1R

2
Sensor(xi, yi)/Area]

Lifetime = min
i=1,..,n

(Tfailure,i)/Tmax
(32)

where E() is the function related to consumed energy.

3.6. Multi-Objective Optimization Focussed on Network Management Related Problems in WSNs

Performance of wireless sensor networks can be improved by dynamically managing the settings
of sensor network nodes. The sensor settings which can be manipulated namely, detection threshold,
sensor selection for fusion and specific fusion rule, can influence the measurements of the sensors.
To get the optimal settings of the sensor network parameters, various multi-objective optimization
techniques have been proposed in the literature, for example in [129], the authors have proposed an
optimal management strategy to find the appropriate settings of biometric sensors. In the proposed
approach, risk is modeled as a multi-objective optimization formulation with global false acceptance
rate and global false rejection rate as the two competing objectives. An optimal network management
methodology has been suggested in [130] through the use of an evolutionary multi-objective optimization
algorithm. The proposed management strategy is used to maximize the coverage area of the sensor field
and minimize the overlapping of the area being covered by the neighboring sensors.

3.7. Multi-Objective Optimization Focussed on Planning Related Problems in WSNs

Optimal planing of the sensor network is a fundamental issue, both from the effective observability
point of view and from the economic point of view [131,132]. Various attempts have been made to solve
the optimal planning problem of wireless sensor networks, for example in [133], the authors have used
a multi-objective optimization algorithm to find trade-off between hardware cost, coverage, link quality
and life time of wireless sensor networks. Radio frequency identification network planning has been
considered in [134] by using a multi-objective optimization algorithm to simultaneously optimize the
coverage of the radio frequency tag, load balance, economic efficiency and interference.

B(Ut) =
n∑
k=1

I(X,Zk) (33)

4. Relationship between Different Desirable Objectives

Most of the practical scenarios relating to wireless sensor networks are modeled as multi-objective
optimization formulations where multiple desirable objectives compete with each other and the decision
maker has to choose one of the tradeoff solutions. These multiple objectives may or may not conflict
with each other. Figure 3 elaborates the relationship between different desirable objectives. Different
objectives are connected together with lines having different pattern depending upon the relationship
between objectives. Red solid line connects the two objectives which have conflicting relationship,
for example, maximization of coverage conflicts with the packet error rate, delay, network/battery life
time and the overall cost of the system. Whereas, the line consisting of dashes and dots connects the
two objectives which have no direct relationship with each other rather they are design dependent for
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example, maximization of coverage has not direct relationship with the throughput, energy efficiency and
the QoS. The supporting relationship between the two objectives has been shown with line consisting of
dashes for example, maximization of network/battery life supports the maximization of energy efficiency
and minimization of the overall cost of the system. In the following, we discuss each objective separately
and its relation with other objectives.

Figure 3. Relation between desirable objectives in wireless sensor networks (WSNs), where
“N/B” = network/battery life; “QoS” = quality of service; “Cov” = coverage; “D” = delay;
“Cost” = total cost of the system; “T” = throughput of the system; “EE” = energy efficiency;
“PER” = packet error rate.

Coverage control or coverage maximization is one of the critical research issues in wireless sensor
networks and reflects the performance of the network in terms of monitoring a field of interest by properly
deploying the nodes [149,150]. Coverage and lifetime of the sensor network have been jointly optimized
in [86] by using a multi-objective optimization algorithm based on memetic algorithm. The sensor
node deployment problem has been considered in [145] to jointly optimize the two objectives namely,
maximum coverage and minimum energy consumption. Coverage, delay and energy consumption
are optimized by using multi-objective optimization algorithm in [151]. The authors argued that the
proposed probabilistic network model can achieve a comprehensive view of the trade-offs that result
from coverage, delay and energy. Multi-objective formulation has been used in [152] to optimize the
two conflicting objectives i.e., coverage and cost of WSNs. Like coverage, packet error rate is another
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performance parameter which also conflicts with other desirable objectives. For example in [147],
three conflicting objectives namely, packet error rate, energy consumption and throughput are being
considered. Packet error rate conflicts with the network/battery lifetime, as increasing the transmit
power can reduce the error rate which is desirable but at the same time it will deplete the battery power
more rapidly which is undesirable. Similarly, the other desirable objectives which conflict with the bit
error rate are delay, energy efficiency, cost and throughput. Whereas, coverage and QoS do not have
direct relationship with the error rate, rather these are design dependent. Maximization of throughput
is another desirable objective which conflicts with packet error rate, cost, energy efficiency, delay
and network/battery life. A multi-objective optimization framework for optimal resource allocation in
cognitive radio wireless sensor networks (CRSNs) is presented in [141] to jointly optimize the conflicting
objectives of maximization of throughput and minimization of total transmission power. In [143],
the authors have proposed a multi-objective optimization algorithm to achieve a balance between the
throughput and energy consumption of CRSNs. Minimization of end-to-end delay is desirable but
it conflicts other desirable objectives including minimization of packet error rate, maximization of
throughput, minimization of overall cost and QoS assurance. Whereas minimization of delay has
design dependent relationship with network/battery lifetime, coverage and energy efficiency. Trade-off
between end-to-end delay and energy conservation has been achieved in [153] by using heuristic
optimization approach, called variance minimizing greedy minimum energy consumption forwarding
protocol. A multi-objective optimization based routing scheme for wireless sensor networks has been
proposed in [154] to optimize end-to-end delay, reliability, jitter, interference and energy consumption.
QoS implementation is the desirable objective which conflicts with network/battery lifetime, delay and
the overall cost of the wireless sensor networks. For example in [138], the authors have proposed
a multi-objective routing strategy to find the trade-off between QoS and maximizing the network
lifetime. A QoS aware geographic opportunistic routing protocol has been proposed as a multi-objective
formulation to optimize QoS and end-to-end delay in wireless sensor networks [155].

In sensor network optimization formulations, maximization of network/battery lifetime is a desirable
objective which conflicts with maximization of coverage, maximization of throughput, minimization
of packet error rate and QoS. Whereas prolonging the lifetime is supported by energy efficiency and
cost minimization objectives. Network/battery lifetime has no direct relationship with the minimization
of delay. Energy optimized routing protocol based on clustering has been proposed in [156,157] to
maximize the network lifetime and maximize the coverage. The authors have used multi-objective
particle swarm optimization algorithm to find the trade-off between the two conflicting objectives.
A multi-objective routing protocol has been considered in [158,159] to simultaneously optimize the
two conflicting objectives namely, network lifetime and end-to-end delay. Maximization of energy
efficiency conflicts with the objective of maximization of throughput whereas it supports the objectives
of minimizing cost and maximizing the network/battery lifetime. For example, energy efficiency and
network lifetime have been jointly optimized in [160] by considering a multi-objective hybrid routing
algorithm for wireless sensor network. Whereas, energy efficiency is design dependent with respect to
packet error rate, QoS, coverage and end-to-end delay. Finally, the minimization of overall cost is the
ultimate objective of any network operator but it conflicts with many performance parameters of the
network for example QoS, coverage maximization, delay minimization, throughput maximization and
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packet error rate minimization. Whereas, it is supported by the objectives of network/battery lifetime
maximization and energy efficiency maximization. The problem of cost minimization and coverage
maximization has been formulated as multi-objective optimization of sensor node deployment in [161].
Similarly in [162], the conflicting objectives of cost minimization and delay minimization have been
jointly optimized by using a routing algorithms for hop count based forwarding in WSNs.

5. Constraints Employed While Formulating Optimization Problems in WSNs

In many practical problems, the input parameters can not be selected arbitrarily, rather they are
prescribed by some physical limitations. Different configuration of the input variables can lead to
different nature of optimization problem and can largely affect the output of the optimization. Figure 4
highlights various constraints which have been considered in the articles mentioned against each while
formulating the optimization problem.

• For example, the constraint of ensuring connectivity between different nodes of sensor network
has been considered in [85] while obtaining a trade-off between coverage rate, percentage of
active sensor nodes and unbalanced energy consumption. Connectivity and coverage constraints
have been considered in [134], where authors have used a multi-objective optimization to achieve
a trade-off between coverage, load balance, economic efficiency and interference. In [163],
the authors have used an evolutionary approach to minimize the cost of the network and maximize
the system reliability while considering the constraints of coverage and connectivity.
• Energy consumption is a critical parameter which influence the overall performance of wireless

sensor network and its effective lifetime. Therefore, abundant literature is available considering
power or energy consumption as their design objective or considering it as the constraint while
formulating the optimization problem. For example, in [164], a multi-objective optimization
technique has been discussed while considering the constraint of energy consumption to maximize
the prediction accuracy and minimize the latency. The constraint of energy consumption has also
been considered in [165] , where the authors have proposed a technique to maximize the the
coverage and efficiency of tracking the mobile targets.
• Some monitoring or measuring applications of wireless sensor networks require to provide with

real time sensing capability in order to facilitate protection of those persons who are at risk to
potentially harmful environments, including soldiers, first responders, and deep-sea and space
explorers [166]. Some bio medical sensors require low data rate, e.g., heartbeat, blood pressure
and electroencephalogram but the data may be delay sensitive and must be delivered to the main
processor with in some specified time limits. In [42], a multi-objective routing algorithm has been
proposed to ensure QoS for different traffic types while ensuring the delay constraints. Reliability
of information transmission, interference, QoS, radio resource, coverage, topology, transmission
range, number of hops, spatial density, cost and storage are few other constraints which have been
considered in numerous articles while formulating the multi-objective optimization problem for
the optimization of wireless networks.
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Figure 4. Constraints used to formulate optimization problems in WSNs.

6. Solution Types/Algorithms

A general optimization problem consists of input variables, outputs, constraints and objective
function. In most of the optimization problems relating to the wireless sensor networks, these
constituent parts can be combined with many different combinations giving rise to many different types
of optimization problems. Therefore, no single solution algorithm exists which can provide optimal
solution to different optimization problems related to wireless sensor network. Figure 5 shows the
general classification of solution types to solve different multi-objective optimization problems which
have been elaborated below.

6.1. Genetic Algorithms

Genetic Algorithms (GA) try to emulate natural evolution process by assigning a fitness value to each
competing solution of the problem and employing the principle of survival of the fittest. The landmark
work of [167], where genetic algorithm was successfully applied to design the sensor network which
precipitated the development of several other variations of GA-based techniques. For example in [168],
genetic algorithm has been proposed to solve the problem of optimal deployment of wireless sensor
network for maximization of the probability of successful search of a moving target in the sensing field.
Genetic algorithm has been used to solve the wireless sensor network deployment problem in [169] to
maximize the coverage, minimize the number of sensors deployed, maximize the mean weightage of the
sensors deployed and minimize the proximity of target to sensors. In [170], the authors have used genetic
algorithm to solve the multi-objective optimization formulation used to achieve optimal deployment of
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sensor nodes at the port of entry for inspecting the containers in order to detect the presence of illegal
cargo. Genetic algorithm based normal boundary intersection algorithm has been used in [113] to solve
a multi-objective optimization problem. The problem addressed the optimization of the sensor field
configuration for the detection of the moving target. A multi-objective optimization technique has been
proposed in [171] for the task scheduling in wireless sensor networks. The authors have suggested to
use the genetic algorithm to achieve a trade off between the makespan, efficiency of task performing and
lifetime of the network.

Figure 5. Different Types of Solution Algorithms.

6.2. Non Dominated Sorting Genetic Algorithm II

Inherently, multi-objective formulations do not result in a single solution which simultaneously
optimizes all objectives. Therefore, contrary to the single objective optimization, multi-objective
optimization gives a large number of alternative solutions located on or near the Pareto-optimal front.
Non dominated sorting algorithm II (NSGA II) has the ability to find multiple Pareto-optimal solutions
in one single run [172]. NSGA II has been opted by many researchers to solve various multi-objective
optimization formulations relating to different problems of wireless sensor network. For example
in [173], NSGA II has been used for the topology control. The authors argued that the Pareto-optimal
front can be achieved in order to obtain low power consumption, higher robust structure and lower
contention among the nodes. A compatible control algorithm has been proposed in [174] for greenhouse
environment by using NSGA II. The technique focuses on finding a trade-off between the minimum
energy consumption and higher control precision. In [175], the authors have used NSGA II to solve
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a multi-objective optimization problem relating to distributed detection in wireless sensor networks.
The proposed scheme was analyzed and the simulation results showed that significant energy savings
at the cost of slightly increasing the best achievable decision error probability. A multi-objective
optimization approach has been suggested in [148] for the optimal deployment of wireless sensor
networks. The authors have used NSGA II algorithm to solve the problem and verified the results
through simulation that their proposed scheme could maintain coverage and connectivity in the given
sensing area with relatively small number of sensors.

6.3. Particle Swarm Optimization Based Algorithms

Particle swarm optimization (PSO) was developed in 1995 [176] which was based on swarm behavior
such as fish and bird schooling in nature. Due to its peculiar structure, the intelligence does not reside
in the individuals rather it is distributed among a group of many individuals. PSO has gained immense
popularity in recent years and has been used in several research articles to solve different optimization
formulations. For example in [60], a multi-objective optimization formulation has been used to obtain
energy efficient clustering and routing algorithms for wireless sensor networks. The proposed algorithm
was based on particle swarm optimization approach to achieve a trade off between network life time,
energy consumption, dead sensor nodes and delivery of total data packets to the base station. In [91],
the authors have suggested to use a multi-tier clustering approach using cultural-based multi-objective
particle swarm optimization to maximize the life time of the wireless sensor networks. A cooperative
spectrum sensing technique in cognitive radio network has been proposed in [177] which exploited
multi-objective hybrid invasive weed optimization and particle swarm optimization. This soft decision
fusion technique was suggested to optimize the global decision threshold and weight coefficient vector
was assigned to each cognitive users to facilitate maximization of detection probability and minimization
of false alarm probability and overall probability of error at the same time. A dynamic sensor network
management technique using multi-objective particle swarm optimization has been proposed in [178].
The output of the algorithm was the selection of sensors, threshold of the individual sensor and optimal
decision fusion rule. A multi-objective optimization approach for sensor network management through
fitness function design has been suggested in [179], by using a particle swarm optimization. The authors
argued that the swarm can be designed to reduce run time for real-time applications as well as improving
the performance of the system. In [180], a multi-objective discrete particle swarm optimization for
multisensor image alignment has been proposed to obtain global best match points. The intermittent
fault detection in wireless sensor networks is formulated as a multi-objective optimization problem [181].
The problem is solved by using a PSO based algorithm to achieve a trade off between inter test interval
and maximum number of tests required to diagnose the node failure.

6.4. Evolution Based Algorithms

Evolution based multi-objective optimization algorithms use a population based approach in which
more than one solution participates in an iteration and evolves a new population of solutions in
each subsequent iteration [11]. These algorithms are easy to implement and do not require any
derivative information. Therefore, evolution based algorithms have a wide-spread applicability and
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have been extensively used to solve multi-objective optimization formulations relating to wireless sensor
networks. For example in [9], sensor node deployment problem has been formulated as a multi-objective
optimization problem. The authors suggested to use multi-objective evolutionary algorithm to find an
arrangement of sensor node to maximize the area of coverage, minimize the net energy consumption,
maximize the network life time and minimize the number of deployed nodes while maintaining the
desired connectivity level. An evolution based multi-objective optimization algorithm has been used
in [182] for guarding a central base from enemy attacks, searching out and destroying enemy units.
The authors analyzed the effectiveness of their proposed algorithm and argued that it can evolve to
complete the multi-objective task, each time with the loss of one sensor. Energy problems in traditional
sensor nodes can be solved by using energy harvesting micro electro-mechanical systems (EH-MEMS).
Multi-objective design optimization of EH-MEMS has been suggested in [183]. The authors used
evolutionary based algorithm to find the trade off between energy harvesting capability and the overall
volume of the device. An evolution based approach has been used in [184] to develop a multi-objective
optimization formulation for determining the optimal number of sensors, locating and setting their
orientation parameters in an amorphously generated 3-D terrain. This formulation has been used to
find a tradeoff between maximizing the observability of the region of interest, maximizing the stealth
of the sensors, and minimizing the cost of the sensors used. In [185], an evolution based algorithm has
been used to minimize energy consumption and to increase life time of wireless sensor networks based
on cooperative multiple input multiple output systems. A multi-objective optimization formulation based
on evolutionary algorithm has been used in [186] for maximizing coverage ratio, minimizing the number
of active sensors and maximizing network life time or diminishing energy consumption.

6.5. Bio-Inspired Heuristic Algorithms

Bio-inspired algorithms are now among the most widely used algorithms for optimization and
computational intelligence. In this subsection, we review some of the work using bio-inspired algorithms
to solve the multi-objective optimization formulations in order to address different issues relating to
wireless sensor networks. The sensor node placement problem has been modeled as a multi-objective
optimization problem in [145], where authors have used a bio-inspired algorithm to maximize the
coverage and minimize the energy consumption. A bio-inspired based algorithm has been used to solve
a multi-objective optimization problem in [93] by finding the optimal transmission range in order to
avoid energy hole problem in wireless sensor networks and to maximize the life time of the network.
A territorial predator scent marking algorithm has been used in [121] for the optimal placement of the
sensor nodes by simultaneously optimizing the coverage, connectivity and energy consumption.

6.6. Stochastic Algorithms

Most of the real-life problems relating to various fields require to have the optimization models and
computational solution algorithms that deal with the multi-objective nature and with the stochastic
behavior of the problem simultaneously [33]. For example in [162], a statistically assisted routing
algorithm for hop count based forwarding in wireless sensor networks has been proposed for the
minimization of cost and delay of the network. A stochastic algorithm has been proposed to solve a
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multi-objective optimization formulation for wireless sensor networks in [44] for maximizing aggregate
utility and prolonging the network lifetime. In [187], the authors have advocated to use the stochastic
optimization technique for simultaneously optimizing the squared error between the inter-node distances
and the number of connectivity constraints which are not satisfied. A stochastic algorithm has been used
in [188] to address the problem of tracking multiple people in a network of video sensors. The authors
have proposed a multi-objective optimization strategy by combining short term feature correspondences
across the sensors with long term feature dependency models. The overall objective of the algorithm was
to achieve simultaneous optimization of the local similarities between features along the track for each
person and the long term distribution of the features along that path.

6.7. Heuristic Algorithms

Heuristic algorithm is a solution approach which is based on trial-and-error to achieve reasonably
accurate solutions to a complex problem in a relatively practical time. Abundant literature is available
in which heuristic algorithms are used to solve the multi-objective optimization problems. For example
in [55], the authors have used greedy heuristic approach to solve a hybrid multi-objective optimization
for simultaneously optimizing the coverage and connectivity of wireless sensor networks. A noisy
optimization problem for neuronal signaling in medical sensor-actuator networks was formulated
in [189], where authors used heuristic algorithm to achieve a tradeoff between signaling latency
and signaling robustness. A heuristic algorithm has been proposed in [190] to solve multi-objective
optimization formulation for optimizing sensor queries. The authors have used the multi-objective
technique to minimize the response time of queries and energy consumption of the networks. A large
number of WSNs is usually deployed in the area under observation and each node has its own set
of configurations. Every configuration affects the quality of observation significantly. Therefore,
configuring the network with proper parameter is critical for the performance of the network. Since
the overall network configurations are huge, exhaustive search in the configuration space is not feasible.
In [191], authors used a heuristic multi-objective search method to find near optimal configurations.
A multi-objective optimization formulation has been used in [192] for dynamic spectrum allocation
in wireless sensor networks. The proposed technique has been solved by using heuristic algorithm
to obtained a trade off between maximizing fairness, maximizing spectrum utilization, reflecting the
priority among sensor data and avoiding unnecessary spectrum handoff. A heuristic algorithm has been
used in [193] to solve the problem of optimum design of a dual range force sensor for obtaining high
sensitivity, broad bandwidth and large measurement range. In [194], the authors have used an heuristic
algorithm to solve a multi-objective optimization approach for sensor arrangement in a complex indoor
environment. The optimal arrangement was achieved to maximize coverage rate, minimize interference
rate, and the number of sensors.

6.8. Metaheuristic Algorithms

Metaheuristic algorithms generally perform better than simple heuristics. Any metaheuristic
algorithm consists of two components, namely selection of the best solutions and randomization.
The selection of best ensures that the solutions will tend to converge to the optimality where as
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randomization helps avoid the solutions being trapped at the local optima [28]. Lot of literature is
available where authors have used metaheuristic algorithms to solve the multi-objective optimization
relating to wireless sensor networks. For example in [195], a metaheuristic algorithm has been
proposed to solve multi-objective optimization problem relating to multi-radio wireless mesh networks.
Metaheuristic algorithm has been used in [151] to solve a multi-objective optimization framework
for achieving optimal performance of wireless ad hoc networks in terms of reliability, delay and
energy spent. In [53], the authors used metaheuristic algorithm to solve a multi-objective optimization
framework for routing in wireless ad hoc networks. The algorithm achieved a trade off between
delay, robustness and energy consumption. Sensor network layout problem has been formulated as a
multi-objective optimization formulation in [125], where authors have suggested to use metaheuristic
algorithm to solve this problem.

6.9. Fuzzy Logic Based Algorithms

Fuzzy logic is a mathematical discipline developed to present human reasoning in rigorous
mathematical notation. Unlike classical reasoning where a proposition is either true or false, fuzzy
logic establishes approximate truth value of a proposition based on linguistic variables and inference
rules [196]. A common approach to deal with multi-objective optimization problems is to use weighted
sum based cost function which usually is not sufficient to reach the desired solution. Fuzzy logic uses a
fuzzy aggregation operator, namely the ordered weighted averaging [197] as an alternative to weighted
sum approach for dealing with the multi-objective cost function. Fuzzy random variables are used to
represent both fuzziness and the randomness of the objectives and constraints in routing optimization
model introduced in [154]. The proposed model was used to discover the optimal routes, which were
the tradeoff among the multiple objectives of delay, reliability, energy, latency, jitter, communication
interference and energy balance. The authors argued that the proposed method fully utilized the
advantages of Pareto optimal solution with the single run of the algorithm. In [159], the authors have
used a fuzzy logic based algorithm to solve a multi-objective routing problem to simultaneously optimize
lifetime and source to sink delay in wireless sensor network. A fuzzy based thermal management
strategy has been proposed in [198] to control the temperature of a 3-D stacked system integrating
cores, memories, sensors and radio frequency devices. The efficiency of the such a microprocessor
system-on-chips is affected by the temperature. The proposed algorithm used a fuzzy controller to
efficiently control the temperature without compromising the other performance parameters.

6.10. Differential Evolution Based Algorithms

Differential evolution is a solution algorithm to address multi-objective optimization problems. This
technique is based on trial-and-error approach for finding different tradeoffs while dealing with multiple
conflicting objectives. For example in [136], a differential evolution based clustering algorithm has been
proposed for wireless sensor networks to increase the lifetime of the network. The authors investigated
the proposed algorithm and found that its performance was better than the other existing protocols in
terms of network life, number of dead sensor nodes, energy consumption and convergence rate of the
algorithm. A multi-objective differential evolution algorithm has been used in [199] for the automatic
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clustering with application to micro-array data analysis. The authors compared the performance of
their proposed algorithm with other state of the art algorithms specially NSGA II and found that the
performance of their proposed scheme was better than others.

6.11. Memetic Algorithms

Memetic algorithms are computational intelligence structures which also exploit trial-and-error
strategy to find the Pareto optimal solution set. A multi-objective coverage optimization scheme based on
memetic algorithm has been proposed in [86] for the optimization of coverage. The authors argued that
the algorithm could achieve optimal deployment of network coverage while considering coverage degree,
node utilization, and node residual energy. A multi-objective memetic algorithm has been presented
in [64] for a joint spectrum sensing and power allocation problem in a multichannel, multi-user cognitive
wireless network. Efficient spectrum sensing and power allocation scheme was designed to maximize
the throughput of secondary users and minimize the interference to primary users in a cognitive sensor
network paradigm.

6.12. Miscellaneous Algorithms

In addition to the more commonly used algorithms as discussed in the preceding subsections, there are
many other algorithms which have been used to address different multi-objective optimization problems
relating to wireless sensor networks. For example in [8], a goal programming approach has been used
to solve a multi-objective optimization formulation for maximizing network life time and maximizing
the throughput for multimedia wireless sensor networks. In [27], Lagrangean relaxation technique has
been used to solve a multi-objective optimization based channel constrained data aggregation routing
algorithm in multi radio wireless sensor networks to minimize the total transmission. Lexicographic
optimization based on greedy approach has been used in [42] to customize the QoS services for each
traffic category in body wireless sensor networks. Game theoretic approach has been proposed in [200] to
address a multi-objective optimization formulation for maximizing the success ratio of key management
service and minimizing the nodes’s cost of security and energy. In [201], fast Lipschitz algorithm has
been suggested to simultaneously optimize different conflicting objectives in wireless sensor networks.
Interval programming has been proposed in [202] to solve the multi-objective optimization problem
relating to sensor network deployment in the marine vehicles. A Bayesian approach has been proposed
in [203] to solve the multi-objective optimization problem relating to the structural health monitoring
sensor network. The proposed algorithm could successfully obtain a trade off between the cost of the
and the accuracy of observation. In [204], a Bayesian approach has been suggested for optimizing
decentralized detection networks. An artificial intelligence based algorithm has been proposed in [205]
to solve a multi-objective optimization formulation relating to route planning of intelligent transport
system employing wireless sensor network.
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7. Multi-Objective Optimization in Wireless Sensor Networks: Trends

To show the interest of the research community in the field of multi-objective optimization for wireless
sensor networks, we have categorized this trend into different dimensions.

(1) Focus of research with respect to multi-objective optimization algorithms.
(2) Focus of research with respect to optimization objectives.
(3) Focus of research with respect to nature of optimization problem.

7.1. Focus of Research with Respect to Multi-Objective Optimization Algorithms

Contrary to the single objective optimization, a solution to a multi-objective problem is a concept
rather than a definition [3]. Therefore, there is usually no single global solution, and it is therefore
necessary to find a set of solutions satisfying the optimality conditions. Pareto optimal solutions consist
of solutions that are not dominated by any other solutions. A solution X is said to dominate Y if
X is better or equal to Y in all attributes, and strictly better in at least one attribute [12]. Therefore,
Pareto optimal solutions provide different trade-off scenarios where none is better than the other and
the decision maker chooses one according to the preferences or specific requirements. Due to the its
characteristics to achieve different trade-off solutions, Pareto optimal solution approaches are being
preferred which is evident from Figure 6. In more than half of the articles in the literature, Pareto
optimal approach has been used to solve the multi-objective optimization problems. Other commonly
used technique is the weighted sum approach. It scalarizes a set of objectives into a single objective by
assigning different weights to each objective. Conceptually this method is simplest and also widely used
but it is affected by the selection of different weights. The selection of weights depends on the preference
of each objective which is decided by the decision maker [11]. Therefore, the outcome of the approach
is highly sensitive to the choice of the weights. There are few other less commonly used approaches
namely, weighted average, Pareto archived evolution strategy, normal boundary intersection, weighted
Chevyshev norm, weighted sum of square, lexicographic and epsilon constrained.

7.2. Focus of Research with Respect to Optimization Objectives

Optimization problems relating to wireless sensor networks can be broadly categorized as design
optimization, deployment optimization, optimal operation, optimal planning, optimal layout, optimal
management and optimal placement. Figure 7 shows distribution of articles corresponding to the
aforementioned optimization objectives. Research community is predominantly inclined towards
tackling the issues of design, deployment and operation related optimization problems. For example,
optimal design of data forwarding protocol has been proposed in [137] to minimize energy consumption,
uniform battery power depletion and minimize delay. Sensor network deployment problem has been
considered in [206] with the objectives of coverage maximization, satisfaction of detection threshold and
energy minimization. A coverage control strategy has been proposed in [140] for solving the conflicting
problems of energy consumption, equilibrium energy and network coverage in wireless sensor networks.
Less frequently tackled problems are related to planning, layout, management and placement.
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Figure 6. Trend of research community w.r.t. multi-objective optimization techniques.
Where, EC = Epsilon constrained, Lex = Lexicographic, WSS = Weighted sum of square,
WCN = Weighted chevyshev norm, NBI = Normal boundary intersection, PAES = Pareto
archived evolution strategy, WAVG = Weighted average, WSUM = Weighted sum and
PO = Pareto optimal.

Figure 7. Trend of research community w.r.t. optimization objectives.

7.3. Focus of Research with Respect to Nature of Optimization Problem

In various applications of wireless sensor networks, the desirable objectives including but not
limited to maximization of coverage, maximization of battery life, maximization of energy efficiency,
minimization of cost, minimization of delay, maximization of throughput and minimization of packet



Sensors 2015, 15 17605

error rate are formulated by using different optimization formulations. Different practical scenarios
related to optimization give rise to different nature of optimization problem. Figure 8 shows a glimpse of
the trend relating to different optimization formulations. It is evident that most of the desirable scenarios
culminate in NP-Hard optimization formulations. For example in [207], optimization of connectivity,
coverage, cost, network lifetime and service quality has been formulated as NP-Hard optimization
problem. The problem of optimal channel assignment to maximize the throughput, improve fairness
and handoff experience of the users have been formulated as NP-Hard problem in [195]. The other
commonly used optimization formulations are combinatorial, non-convex, convex, mixed-integer linear
programming, linear programming, non-linear programming, NP-Complete, mixed-integer non-linear
programming, integer linear programming and concave.

Figure 8. Trend of research community w.r.t. nature of Multi-objective Optimization (MOO)
formulations.

8. Conclusions and Future Work

Optimization problems relating to wireless sensor network planning, design, deployment and
operation often give rise to multi-objective optimization formulations where multiple desirable objectives
compete with each other and the decision maker has to select one of the tradeoff solutions. These
multiple objectives may conflict with each other. For example, maximization of coverage conflicts with
the packet error rate, delay, network/battery life time and the overall cost of the system. Whereas in
some cases, there exist multiple objectives having no direct relationship with each other, rather they are
design dependent; e.g., maximization of coverage has no direct relationship with the throughput, energy
efficiency and the QoS. On the other hand, some objectives support each other; e.g., maximization of
network/battery life supports the maximization of energy efficiency and minimization of the overall cost
of the system. Keeping in view the nature of application, the sensing scenario, input and output of the
problem, the type of optimization problem changes. To address different nature of optimization problems
relating to wireless sensor network design, deployment, operation, planing and placement, there exist a
plethora of optimization solution types.
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Due to resource constraints of wireless sensor networks, optimization method that requires relatively
less memory and computational power, and produces acceptable results is highly desirable in view of
implementing it on each sensor node. This article presented a contemporary review of multi-objective
optimization techniques being used to solve different problems relating to design, operation, deployment,
placement, planning and management of wireless sensor networks. We analyzed the existing literature to
show the trend of the research community with respect to multi-objective optimization algorithms, nature
of optimization problems, year-wise optimization objectives and with respect to research emanating
from different geographical areas. We also presented a generic resource allocation problem in wireless
sensor networks which consists of input variables, required output, objectives and constraints. A list of
constraints are also presented to give an overview of different constraints which are considered while
formulating the optimization problem in wireless sensor networks. Finally, the article classified different
solution algorithms being used to solve the optimization problems relating to wireless sensor networks.

Keeping in view the multi facet coverage of this article relating to multi-objective optimization,
it can be expected that this article will open up new avenues of research in the area of multi-objective
optimization relating to wireless sensor networks. For example, efficient wireless charging is an open
challenge in wireless sensor networks in order to efficiently charge the motes and to prolong the network
life time. Similarly, adopting the renewable energy sources to provide adequate power to the motes can
be another challenging task. Prolonged life time coupled with the enhanced processing power can also be
formulated as a multi-objective optimization problem. Similarly, simultaneous solution of security and
energy issues also become a multi-objective task. Therefore, a multi-objective optimization framework
can be developed to jointly optimize the security, power, lifetime and the onboard processing capability.
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