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Abstract: The growing interest and use of indoor mapping is driving a demand for 

improved data-acquisition facility, efficiency and productivity in the era of the Building 

Information Model (BIM). The conventional static laser scanning method suffers from 

some limitations on its operability in complex indoor environments, due to the presence of 

occlusions. Full scanning of indoor spaces without loss of information requires that 

surveyors change the scanner position many times, which incurs extra work for registration 

of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed 

herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique 

for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we 

incorporated constrained adjustment based on an assumption made with respect to typical 

indoor environments: that the main structures are formed of parallel or orthogonal line 

features. The superiority of the proposed constrained adjustment is its reduction for 

uncertainties of the adjusted lines, leading to successful data association process. In the 

present study, kinematic scanning with and without constrained adjustment were 

comparatively evaluated in two test sites, and the results confirmed the effectiveness of the 

proposed system. The accuracy of the 3D mapping result was additionally evaluated by 

comparison with the reference points acquired by a total station: the Euclidean average 

distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which 
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satisfied the error tolerance for point cloud acquisition (0.051 m) according to the 

guidelines of the General Services Administration for BIM accuracy. 

Keywords: SLAM; laser scanner; point clouds; line feature; constrained least  

squares adjustment 

 

1. Introduction 

A Building Information Model (BIM) is based on 3D models that organize and represent  

as-designed construction site information, whereas as-built information usually is derived from 

monitoring activities. Comparison of as-designed with as-built information facilitates quality control 

and enhances building management efficiency [1]. Recently introduced 3D laser scanners make 

possible rapid and accurate capturing of a huge number of point clouds, which produces very dense 

and elaborate coordinate data points for the surfaces of a physical object [2,3]. Integration of laser 

scanning with BIM can yield significant advantages over traditional approaches, specifically by 

facilitating fast and accurate data acquisition for existing conditions [4–7]. In the AEC (Architecture, 

Engineering, and Construction) domain, correspondingly, the 3D “as-built BIM” has become an 

essential means of accurately representing recently constructed buildings and their facilities to support 

maintenance process [8,9]. The major focus in this study is the development of efficient 3D data 

acquisition system for input of as-built BIM creation. 

Conventional static laser scanners capture data from objects in their line of sight. Ensuring a 

complete map in the presence of occlusions necessitates scans from multiple positions, which result in 

a number of point cloud groups. The process of transforming multiple point clouds into a single point 

cloud is called registration. Registration of multiple point clouds requires that surveyors setup the laser 

scanner at a position with known coordinates or position artifacts (known as targets) in the overlap 

areas. Not surprisingly, using targets to merge multiple point clouds incurs additional cost and time in 

scanning-position surveying and manual post-processing. Moreover, it requires accurate instrument 

installation; any error at any given position renders the data collected there unusable [10–12]. In any 

case, indoor mapping applications involving very complex office environments with many occlusions 

certainly impose severe operational limitations on conventional static scanning systems. 

Alternatively, we propose herein a kinematic 3D laser scanning system that continuously scans and 

registers point cloud data using feature-based Simultaneous Localization And Mapping (feature-based 

SLAM) technique. The feature-based SLAM has been employed for autonomously navigating mobile 

systems with 2D laser scanner that horizontally map the surrounding environment and use the acquired 

features for system-position correction. One way to acquire a 3D map is to use an additional scanner to 

scan the vertical profiles of the environment along the system’s trajectory. In this case, the accuracy of 

3D data depends on that of the system’s position [13–17]. Unfortunately however, the feature-based 

SLAM suffers from data association errors due to incorrect extraction and matching of feature 

extractions [18]. 

In order to improve the performance of feature-based SLAM, constraint approaches are interesting 

solutions that modify the basic algorithm according to some environmental assumptions. This allows, 
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for all cases that do not violate those assumptions, much improved performance [19,20]. The basic 

assumptions, specifically for indoor environments, are as follows: (1) the main structures (e.g., walls 

and doors) are formed of straight lines; (2) all such structures are parallel or perpendicular to each 

other. Zunino [21] used the orientation of the first-extracted line as a reference angle and corrected the 

other lines to fulfill the 90° geometric constraint. Nguyen et al. [22] suggested orthogonal SLAM, by 

which only lines that are parallel or perpendicular to each other are mapped. Using the lengths of line 

segments as weights, they defined the reference line segment for horizontal and vertical directions and 

rotated the other lines around their midpoints to align them with the reference orientation; finally, the 

system’s position and its surrounding map were updated according to the orientations and relative 

distances between the corrected lines. The main drawback of the above methods is that they are 

basically heuristic approaches: they do not statistically consider observation (point cloud) errors in 

correcting extracted lines with respect to geometric constraints. Choi et al. [23] aligned the first 

extracted line parallel with x-axis and compared its colinearity and geometric constraints with the other 

lines. If a line satisfied both conditions, it was merged with the first line; if it satisfied only the geometric 

constraints, it was added as a new feature. However, at the starting point, they always need to align the 

system’s initial direction with the main structure of the environment and update a single line segment 

separately without considering its geometric relationships with the other lines. Kuo et al. [24] 

incorporated the orthogonal assumptions into the lightweight Rao-Blackwellized Particle Filter (RBPF) 

SLAM. They picked up a reference line that has been observed most of the time and identified whether 

the other lines are orthogonal to the reference one. By filtering out the non-orthogonal lines, they could 

increase the accuracy and reduce the complexity when calculating the importance weight of each particle 

in RBPF process. However, they did not use the orthogonal constraint to adjust the line parameters. 

Recently, Choi, et al. [25] proposed a soft constrained SLAM system that utilizes a monocular 

upward-looking camera. The camera extracts line and point features on the ceiling: both are detected 

repeatedly and consistently for long periods of operation time. The distances between line and point 

measurements are calculated and applied in the constrained Extended Kalman Filter (EKF) framework. 

Since the constraint is not derived from a priori knowledge but rather from an observed geometric 

relationship, it is considered a soft constraint method. Nonetheless, further studies are necessary to 

exploit the soft constraint approach for laser-scanning-based SLAM. 

This research formulated a new feature-based SLAM technique incorporating a constrained least 

squares method. The superiority of the proposed approach, compared with the previous works, lies in 

its direct adjustment of extracted line features according to the parallel or orthogonal conditions: the 

least squares method accounts for the presence of errors in point cloud observations and decreases the 

uncertainties of estimations of final line-feature parameters [26,27], which leads to successful data 

association. For the proposed approach, the Unscented Kalman Filter (UKF) algorithm was chosen, 

because it is a widely used means of estimation for feature-based SLAM and is easy to implement [28,29]. 

The performance of the proposed approach was tested both with and without the constrained adjustment. 

The accuracy of the constrained kinematic 3D laser scanning system’s point cloud acquisition was 

evaluated by comparison with the measurements acquired by a total station. Additionally, to investigate the 

feasibility of the point cloud acquisition in BIM perspective, further evaluation was performed in reference 

to the guidelines of the General Services Administration for BIM accuracy [30]. 
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2. Methods 

2.1. Overview 

Features contain both semantic and metric information: semantically, they provide the feature type 

such as point, line or plane; and metrically they provide geometric parameters such as range and 

orientation [19,31]. The feature-based SLAM technique entails incrementally building a map of features 

in the environments and using this feature map to simultaneously localize the mobile system [20]. In case 

of line-feature-based SLAM, the basic assumption, particularly for building interiors, is that the physical 

structures can be modeled by a set of orthogonal or parallel lines, though this requires a reliable feature 

extraction technique [32,33]. 

This research proposes a constrained least squares method that adjusts the extracted line features 

according to the geometric conditions (orthogonality or parallelism) to effect better localization 

quality. Figure 1 shows the overall process of the proposed approach. The current mobile system, 

which has two wheels on the left and the right, initially predicts its state based on odometry 

information, but it is strongly influenced by the accumulation of errors, which results in considerable 

location errors at the end [24]. Assuming the line features taken from scans to be more reliable, they 

can be used to correct the system’s state through data association. Unfortunately, uncertainties arising 

from scan data can lead to incorrect feature extraction and failure in data association step [18,34]. The 

proposed constrained approach is applied to adjust the line-feature extractions, which helps to reduce 

uncertainties, thus leading to successful data association. Finally, based on the corrected system’s 

locations, 2D vertical point profiles are sequentially registered. In this way, the 3D environment is 

reconstructed along the system’s trajectory. 

 

Figure 1. Study flow chart. 
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2.2. Odometry Positioning 

The Kalman Filter based SLAM estimates a process state at some given time and then obtains 

feedback in the form of measurements. As such, its equations fall into two groups: control update 

equations (the state model) and measurement update equations (the measurement model). The state 

model is responsible for projecting forward (in time) the current state and error covariance estimates to 

obtain the a priori estimates for the next time step. The measurement model is responsible for the 

feedback; i.e., for the incorporation of a new measurement into the a priori estimate to obtain  

an improved a posteriori estimate [35]. 

In the control update, provided that the state estimation of the current kinematic scanning system 

(position and orientation) at time t is [ ]T
X̂( ) ( ) ( ) ( )t x t y t t= θ , the next state X̂ ( 1)t

−

+ , which is  

the displacement of the mobile system between two intermediate points along its trajectory, can be 

obtained by odometry dead-reckoning. The odometry model relies on a piecewise approximation using 

the displacements of the left and the right wheel as 

[ ]T

r lO s s=  (1)

Aiming to estimate the a priori state of the kinematic scanning system at time t + 1, the following 

transition function is used: 

ˆ ˆX ( 1) (X( ), ( ))t f t O t
−

+ =  (2)

( ) cos( ( ) / 2)

( ) sin( ( ) / 2)

( )

x t s t
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 



 (4)

where s and ∆θ represent the distance and angular displacement respectively between two consecutive 

time steps t and t + 1, and b is the baseline between two wheels [36]. 

2.3. Line-Feature Extraction 

After the displacement, only the location of the mobile system changes, as estimated by odometry, 

while the locations of map features, being static entities, remain the same as estimated in the previous 

time instant. Since the odometry information is often erroneous, we cannot rely directly on it [37], but 

we can use the map features of the environment to estimate the a posteriori state of the kinematic 

scanning system because the displacement of the mobile system produces changes in the dependencies 

existing between the location of the mobile system and those of the map features [38]. This is 

accomplished by scanning the features from the surrounding environment and re-observing them while 

the system moves around [39]. The line segment, as represented by the Hessian model, is the 

commonly employed feature in SLAM [40,41]: 

cos sin 0x yφ + φ − ρ =  (5)
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where the line parameters [ ]T
Y = φ ρ  are the orientation and distance from the origin, respectively. 

In the present study, an incremental algorithm is used to extract line features from the laser scan 

data, owing to its superior speed and correctness compared to other line-extraction algorithms [42].  

The incremental algorithm starts with the first two points (p1 and p2 in Figure 2) to construct a line.  

It then adds the next point to the current line model (line #1 in Figure 2), and re-computes the line 

parameters. If a predefined condition (e.g., the variances of line parameters) is satisfied, it continues to 

add new points (p3–p6 in Figure 2); otherwise, it puts back the last point and computes new line 

parameters (line #2 in Figure 2) [42,43]. 

 

Figure 2. Incremental line extraction algorithm (adapted from [43]). 

2.4. Constrained Adjustment 

The proposed constrained approach is based on the fact that in most indoor environments, major 

structures, such as walls and doors, can be represented by sets of lines that are orthogonal or parallel to 

each other. Assuming that the first line Yr 
1  is the reference, the conditional equations for the other 

orthogonal or parallel lines Yi are defined as 

1| | 2 , is orthogonal ( ) 2, ,r
i iif Y i nφ −φ −π < θ ⊥ =   (6)

1 1| | | | , is parallel ( ) 2, ,r r
i i iif or Y i nφ −φ −π < θ φ −φ < θ =   (7)

where ϕr 
1 and ϕi are the orientation of the reference and the other line, respectively (ranging from −π to 

π), θ is the threshold to identify the orthogonal lines: θ = 10° was empirically determined because it 

effectively filtered out the arbitrarily-oriented lines while reserving the lines which are slightly off the 

constraints (possibly due to sensor imperfections) in this research. In Equation (7), the former 

condition indicates the case that the other line Yi is located in the same side as the reference line Yr 
1, and 

the latter condition, vice versa. Figure 3 illustrates the conceptual idea of the orthogonal and the 

parallel relationships of extracted line features. As indicated in the figure, a total of five lines are 

detected within the range (δ) of the laser scanner. Among them, a line including the largest number of 

point clouds is selected as the reference line (Yr 
1 ). If the other lines satisfy conditional Equation (6), 

they are considered to be orthogonal, as 2Y ⊥  and 3Y ⊥ ; otherwise, if the other lines are on the opposite 

side of the reference line and satisfy the former condition of Equation (7), or if they are on the same 

side of the reference line and satisfy the latter condition of Equation (7), they are considered to be 
parallel, as 4Y   and 5Y  , respectively. 
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Figure 3. Constrained relations of extracted line features. 

To formulate the matrix expression, the normal matrix and its matching constraints matrix are 

formed. In this procedure, the constraint equations border the normal equations as 

TT T ˆ

ˆ0 c

J WJ WJ Z

Z
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 (8)
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The Equation (10) is a linearization of Equation (9) by Taylor series, where J is the Jacobian matrix 

of the Hessian line model Equation (9) with respect to ϕ and ρ, τ is the observed minus computed 

values, ξ̂  is correction values of line parameters, Yi0 is initial approximation of line parameters (ϕio ρio) 

of line i. Ai indicates the matrix of partial differentials, where i is number of lines and ni is number of 

points which was used to extract the line. Correspondingly, the Jacobian matrix of the constraint model 

(Equations (6) and (7)) is formed with respect to ϕr 
1  and ϕi then included in the normal matrix as 

additional rows Z and columns ZT, and their constants 2±π  or ±π are added to the constants matrix as 

additional rows τc. For example, in the case of Figure 3, line 2Y ⊥  and 3Y ⊥  satisfy the orthogonal 

condition, and line 4Y   and 5Y   satisfy the parallel condition relative to the reference line (Y r 
1 ). 
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Therefore the matrix form of the constraint equation is formed as shown in Equation (11) and the first 

term of Equation (11) will be matrix Z. The signs in front of 2
π  and π are dependent on the angle 

parameter difference, positive or negative. Weight matrix (W) is based on the number of points which 

was used to extract a line (Equation (12)). τ is the observed minus computed values. ξ̂  is the estimated 

correction value for the line-feature parameters while λ̂  is the additional row for Lagrangian multipliers. 

1

1

2

2

3

3

4

4

5

5

1 0 1 0 0 0 0 0 0 0 2
1 0 0 0 1 0 0 0 0 0ˆ ˆ, , ,
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c cZ Z
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 
 

  (12)

where, ni is number of points when extracting ith line and i is number of lines extracted. Finally, the 

correction ξ̂  and the dispersion ˆD{ }ξ  (the adjusted covariance) of the line parameters are calculated as 

( ) ( )11 1 T 1 T 1ˆ
cN c N Z ZN Z ZN c

−− − − −ξ = + τ −  (13)

( ){ }12 1 1 T 1 T 1
0

ˆD{ } N N Z ZN Z ZN
−− − − −ξ = σ −  (14)

where 2
0σ  is the reference variance, N indicates the normal matrix JTWJ, and c is JTWτ. For nonlinear 

least squares adjustment, the initial value is necessary. The extracted line parameter from the point 

cloud data was used as initial value. The initial value is continuously adjusted by the computed values 

which were based on the constraint conditions. The adjustment process is repeated until the computed 

value ( ξ̂ ) become sufficiently small [26,27,44]. In this study, process is repeated until the total sum of 

the line parameter’s increment ( ξ̂ ) gets smaller than 0.001 or the number of iteration reaches 20 times. 

For the distance (ρ) value the threshold 0.001 means 0.001 m, and for the orientation (ϕ) it means 

0.001 rad which results in 0.0017 m error per 10 m. Figure 4 shows the detail process. The number of 

iteration (≤20) was checked as a convergent condition. When the iteration hits 20 times, it is not 

considered to be convergent, and the line is eliminated from the line list. Note that both 1N −  and TZ Z  

in Equation (14) are symmetric, positive definite matrix, the constraints will correspondingly decrease 

the uncertainties of adjusted parameters. 
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Figure 4. Iterative process of nonlinear least squares adjustment with constraints. 

The most important aspect of least squares adjustment, for which reason it is superior to the other 

heuristic approaches for constrained SLAM, is its permission of all point observations with 

corresponding Jacobian matrix (J) and constraint condition matrix (Z) to be entered into a single 

adjustment equation and used simultaneously in the computations. The adjusted line parameters satisfy 

the geometric constraints (orthogonality or parallelism) and minimize the weighted residuals under the 

given constraints [26], thus resulting in better consistency between line extractions at different time 

steps for the next process, data association. 

2.5. Data Association 

Once the mobile system obtains sensor readings at any position, a way of paring the newly observed 

features to the past observations has to be defined. It is called data association and plays an important 

role because the system’s pose can be well estimated only when data association is correct [45]. New 

features at time t + 1 are obtained from horizontal scanning in the body frame (b), whereas previous 

features until time t are stored in the global frame (g), thus the transformation model to the 

corresponding sensor is defined as 
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where n and m indicate the number of the newly observed and predicted line features, Ci and Cj are the 

respective covariance matrices of the line features. Ci was calculated from the former process  

(Equation (14)), Cj is calculated from the UKF prediction step, and χ2 
γ,d is a number taken from a χ2 

distribution with d = 2 degrees of freedom and probability level γ = 99% on which the hypothesis of 

pairing correctness is rejected [46]. Then, the pairs that satisfy both conditions, which is to say, that are 

less than χ2 
γ,d and one-to-one matches, are accepted and retained for the calculation of the measurement 

innovation (the observed minus the predicted value) [35], which is used later to estimate the a posteriori 
state ˆ ( 1)X t + . If the pair only satisfies the former condition, that is, if it shows the one-to-many match, it 

is considered incorrect and is neglected. The non-matched observations greater than χ2 
γ,d are transformed 

to the global frame and added to the next iterations as new features [47]. 

2.6. Unscented Kalman Filter 

The UKF is a variant of the Kalman filter which is specifically aimed at problems with nonlinear 

models, which not only gives better performance than that of the EKF, but also has several benefits in 

terms of ease of implementation. Its superior performances over that of the EKF algorithm have been 

reported in many SLAM studies [48–52]. Figure 5 describes the process of UKF SLAM. The mapping 

functions f and h represent the nonlinear, deterministic state and measurement models. The random 

variables w and v represent the process and measurement noise, and their noise covariance Q and R are 

assumed to be independent of each other, following the normal probability distributions, respectively. 

The UKF starts with the unscented transformation which computes the effect of a nonlinear function 

upon a mean X and covariance P. It operates by computing a deterministic sample set (sigma points) 

which is then propagated through the non-linearity [52]. In control update, L is the dimension of X,  

λ is the scaling parameter, and WX and WP are the weight for the X and P, respectively. Once the sigma 

points χ are obtained from the previous position ˆ ( )X t  and covariance P(t) in step (1), a current state  

(mean ˆ ( 1)X t
−

+  and covariance ( 1)P t
−

+ ) is predicted in steps (2) and (3). Using the predicted mean 

and covariance, the sigma points are recalculated in step (4). In step (5) of measurement update,  

Y indicates newly observed features, and the predicted mean Ŷ
−

and covariance YYP  and XYP  of the 

measurement are calculated using the newly updated sigma points ψ for the measurement model h. 

Finally, the difference ν  between the observed Y and the predicted features Ŷ
−

 is multiplied by 

Kalman gain and used to correct the current system’s position in step (6) and covariance in step (7). 

For additional details, please see Thrun et al. [53], Andrade-Cetto, Vidal-Calleja and Sanfeliu [48], and 

Terejanu [54]. 
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Figure 5. Process of Unscented Kalman filter. 

3. Experimental Results 

3.1. Implementation of Kinematic Scanning System 

Figure 6a shows the kinematic 3D laser scanning system developed in our research. It measures 

approximately 35 cm (length) × 35 cm (width) × 78 cm (height). The platform is equipped with 

odometry, and carries a laptop computer (used for storing the data of each sensor) and three 2D laser 

range finders (Hokuyo UTM-30LX). The front laser range finder is mounted horizontally to map 

unknown environments and correct the position of the scanning system. The other two are mounted 

vertically to scan the profiles of surrounding environments while the scanning system moves. The 3D point 

cloud is obtained by registering those vertical profiles on the system’s trajectory. The scan area is 270° in 

the horizontal direction (with 1081 points) and 180° in the vertical direction (with 721 points), and the 

interval angle is 0.25°. This research assumes that the intrinsic sensor calibration is completed, and the 

extrinsic calibration process of the developed kinematic scanning system is given in Jung et al. [55] Since 

the current system is not designed for automatic navigation, the surveyor needs to manually move it in 

scanning an indoor space, as shown in Figure 6b. 

  

Figure 6. (a) Kinematic 3D laser scanning system and (b) system operation. 
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A pilot implementation of the kinematic scanning system was conducted for two typical indoor 

places, a seminar room and a corridor at Yonsei University (Figure 7). The seminar room is a relatively 

small and simple structure including much clutter, whereas the corridor is longer and includes several 

pillars and a corner, though less clutter. The size of the seminar room is about 8.8 m (length) by 8.3 m 

(width), and the corridor is approximately 27.7 m long and 2.6 m wide. 

 

Figure 7. Test sites: (a,b) are the seminar room; (c,d) are the corridor. 

For optimum filtering results, exact knowledge of the process and measurement noise covariance 

matrix (Q and R) is important. In practice, however, they are usually unknown and come from 

intensive empirical analysis [56,57]. To specify Q and R, one of the methods is to fix one of them and 

vary the other one by trial and error to find the smallest value that yields stable state estimates [58]. In 

this study, the diagonal element values of Q were determined to be (0.001 m)2 for x, y and  

(0.001 rad)2 for θ, and the diagonal element values of R were determined to be (0.019 rad)2 for ϕ and 

(0.024 m)2 for ρ. 

In the experiment, three travels were performed for each test site in order to verify the effects of  

the proposed constrained SLAM approach. During the operation, if an obstacle was too far to be 

perceived, the feature detection process did not occur, causing the accumulation of odometry errors due 

to the absence of SLAM update feedback [59]. In practice, it was found that the line-feature 

extractions by the incremental algorithm with Hokuyo UTM-30LX increased linearly according to the 

threshold distance d (Figure 2); for example, if d was 0.01 m, line features up to about 10 m could be 

extracted, and 0.02 m was appropriate for 20 m. Because a too-large d for a small space extracts 

unnecessary line features, leading to computational complexity in the SLAM process, a proper 

threshold that takes due account of the size of the scan area should be adopted. Accordingly, in the 

present study, the threshold was determined to be 0.01 m for the small seminar room, and 0.02 m for 

the long corridor. 
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Figure 8 shows the trajectories of the mobile system in two test sites. For the seminar room, the 

mobile system started to move at the lower-right corner, and traveled along the counter-clockwise 

path, revisiting the start point to obtain a complete map. Meanwhile, for the corridor, the mobile 

system started to move from the lower-right point and completed one-way travel. As the mobile 

system moved along the trajectory of the seminar room, its positional uncertainties in the sideward 

direction (Figure 9a,c,e) and the forward direction (Figure 9b,d,f) were recorded within two standard 

deviations (95% upper confidence level) [60]. In the figure, the red and blue graphs indicate the 

positional uncertainties of the standard SLAM and the constrained SLAM, respectively. Note that the 

mobile system was forced to turn sharply at the four corners. This generally would degrade the quality 

of navigation, since the odometry errors would quickly accumulate particularly for the sideward 

direction. Accordingly, in the first travel (Figure 9a), both the standard and constrained SLAMs show 

continuous increases of uncertainty until the mobile system reached the first turn (around 3000 time 

steps). After which, the standard SLAM shows drastic divergences of uncertainty, which were mainly 

due to failure in the data association phase, leading to loss of information for the correction in 

measurement update. Meanwhile, the constrained SLAM maintains smooth growth of uncertainty until 

the second turn (around 5000 time steps) and shows convergences, indicating that the system  

re-observed the line features in the beginning, which reduces the uncertainty for the line features as 

well as the system’s pose [53]. Similarly, in Figure 9c,e, the constrained SLAM maintains the 

consistent pattern, smooth convergences after divergences of uncertainty, whereas the standard SLAM 

shows abnormal divergences of uncertainty after half the time steps. The superiority of the constrained 

SLAM also can be found in the forward direction (Figure 9b,d,f): overall, the constrained SLAM 

successfully maintains the convergences during the entire time step, whereas the standard SLAM 

shows the drastic divergences of uncertainty again. 

 

Figure 8. Trajectories of kinematic laser scanning: (a) the seminar room; (b) the corridor. 

Figure 10 provides further qualitative evidence of the feasibility of the constrained approach.  

Note that the estimated mobile system’s trajectory is improved by matching newly observed features 

with previously stored features, thus it is desirable to obtain as much pairings as possible in the data 

association [38]. In the figure, the vertical axis denotes the number of features, and the horizontal axis 

represents the time steps. The green graph indicates the number of newly observed line features for 

each time step, and the red and blue graphs indicate the number of matched line features without and 
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with the constrained approach, respectively. There are apparent discrepancies in the results without and 

with the constrained approach: all of the tests show that the constrained approach had higher matching 

numbers, commonly after the third turns (the red graph between 6000 and 9000 time steps in Figure 10), 

which resulted in the failures to maintain convergences of uncertainty for the standard SLAM in  

Figure 9. The overall matching rates in the seminar room test without and with the constrained approach 

were calculated as 45.4% and 85.8% for the first travel, 50.7% and 69.2% for the second travel, and 

46.7% and 76.9% for the third travel, respectively. This result demonstrated the primary advantage of the 

proposed constrained approach for successive data association, as achieved by reducing the uncertainties 

of the adjusted line parameters and continuing to improve the localization accuracy. 

 

Figure 9. Uncertainty estimates of the seminar room test resulting from UKF SLAM  

without (red graphs) and with (blue graphs) the constrained approach: sideward direction 

(a,c,e); and forward direction (b,d,f). 
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Figure 10. Comparisons of data association results for the seminar room test: (a) first 

travel; (b) second travel; and (c) third travel. 

The effects of the constrained approach were also found in the other test site, the corridor. This 

time, it completed one-way travel, thus all of the travels showed continuous growth of the system’s 

positional uncertainties in the sideward directions (Figure 11a,c,e). Compared with the seminar room 

tests, the differences between the standard SLAM and the constrained SLAM are not noticeable 

(possibly due to its straight and simple trajectory). As the system traveled along the trajectory, 

however, the standard SLAM started to show slightly larger divergences of uncertainty than the 

constrained SLAM. In fact, the difference is more noticeable in the forward directions (Figure 11b,d,f): 

after the mobile system reached half the time step, the standard SLAM shows the abnormal divergences 



Sensors 2015, 15 26445 

 

 

of uncertainty. This can be explained also by the low matching numbers in the data associations in 

Figure 12, red graphs: the number of matched line features without the constrained approach  

(red graphs) gradually decreased, which lead to a lack of information and the abnormal divergences of 

system’s positional uncertainty. Satisfactory results, by contrast, could be achieved with the 

constrained SLAM: the application showed continuous convergences of uncertainty; likewise, the 

number of matched line features appeared to be well maintained at every time step (Figure 12, blue 

graphs). The overall matching rates in the corridor tests without and with the constrained approach 

were calculated as 55.8% and 88.0% for the first travel, 62.5% and 95.0% for the second travel, and 

56.8% and 83.2% for the third travel, respectively. 

 

Figure 11. Uncertainty estimates of the corridor test resulting from UKF SLAM  

without (red graphs) and with (blue graphs) the constrained approach: sideward direction 

(a,c,e) and forward direction (b,d,f). 
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Figure 12. Comparisons of data association results for the corridor test: (a) first travel;  

(b) second travel; and (c) third travel. 

3.2. Visualization of Point-Cloud Data 

The feasibility of the proposed constrained approach was further investigated with reference to the 

completeness of the mapping results. According to the highest line matching success rate, the first 

travel for the seminar room (85.8%) and the second travel for the corridor (95.0%) were selected. The 

first travel for the seminar room consisted of 9072 time steps (232.0 s) and resulted in a map with 

about 13.4 million points; the second travel for the corridor had 11,627 (324.8 s) time steps and 

yielded a map with about 20.2 million points. Note that the current scanning system provides complete 

observations of the surrounding environments; in Figures 13–16, the ceiling points are omitted for the 

purposes of a clearer comparison. 
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A qualitative visual inspection of the seminar room revealed that the mapping accuracies with the 

odometry information only (Figure 13a) degraded quickly with distance traveled, due to the 

accumulated errors. In comparison, Figure 13b,c show that for the same scene, the mapping results 

from the use of the feature information were much more consistent. However, in the detailed view of 

the seminar room (Figure 14a,b), it is evident that the standard SLAM approach, showing a noticeable 

drift at the end, was not satisfactory (Figure 14a), whereas the mapping reconstruction by the 

constrained SLAM correspond more closely to the real environment (Figure 14b). Likewise, the visual 

inspection of the corridor results (Figures 15 and 16) demonstrated the usefulness of the constrained 

approach for indoor mapping. 

 

Figure 13. Point-cloud data acquisitions of the seminar room by kinematic scanning:  

(a) odometry only; UKF SLAM (b) without and (c) with the constraint approach. 
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Figure 14. Detailed view of the seminar room (a) without and (b) with the constraint approach. 

 

Figure 15. Point-cloud data acquisitions of the corridor by kinematic scanning:  

(a) odometry only; UKF SLAM (b) without and (c) with the constraint adjustment. 
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Figure 16. Detailed view of the corridor (a) without and (b) with the constraint approach. 

3.3. Accuracy Assessment 

To test the feasibility and acceptability of the point-cloud acquisitions for the purpose of input to  

as-built BIM creation, the metric quality was assessed with the method proposed by Hong et al. [61] 

and the guidelines of the General Services Administration (GSA) for BIM accuracy [30]. The accuracy 

assessment was based on the well-distributed and clearly identifiable points such as corners of doors, 

walls, and windows as depicted in Figure 17. For the reference, the measurements acquired by  

a highly-accurate total station were used. First, the accuracy of the point-cloud data was assessed by 
means of the Euclidean average distance error ( avgδ ) 

1

1
| R T |

n

avg i i
i

a b
n =

δ = − −  (17)

where ai is the i-th check point in the point-cloud data, ib  is the corresponding check point acquired by 

the total station, and R and T are the rotation and translation parameters for 3D Helmert 

transformation. Note that the scale was not considered in this transformation [62]. In Figure 17a, a total 

of 27 points were extracted from the seminar room, among which 14 were used to calculate the 

transformation model parameters (yellow points), and the remaining 13 for the validation (red points). 

For the corridor in Figure 17b, a total of 38 points were extracted: 19 for the transformation model 

(yellow points), and 19 for the validation (red points). The error vectors in the x, y, and z directions 

together with the corresponding average errors are listed in Table 1 (the seminar room) and Table 2 

(the corridor). The Euclidean average distance error was calculated to 0.034 m for the seminar room 

and 0.043 m for the corridor, which satisfied the error tolerance (level 1) for point-cloud acquisition 

(0.051 m) according to the GSA guidelines [30]. Additionally, the quality of the point-cloud data was 

assessed by the Root Mean Square Error (RMSE) and the Spherical Accuracy Standard (SAS). The 

RMSE was calculated as 

( )2

1

1 n
t
i i

i

RMSE a b
n =

= −  (18)

where t
ia  indicates the point transformed to the coordinates of the total station. The RMSEs for x, y, z 

directions also are listed in Tables 1 and 2. The SAS, which represents the spherical radius of a 90% 

probability sphere [63], is defined as 



Sensors 2015, 15 26450 

 

 

( )2.5 0.3333 x y zSAS RMSE RMSE RMSE= × × + +  (19)

The calculated SAS value was 0.050 m for the seminar room and 0.067 m for the corridor.  

This represents a positional accuracy of the two point-cloud acquisitions at the 90% confidence level. 

The main factors affecting the higher error for the corridor are: (1) one-way travel that did not allow 

for revisiting the starting point; and (2) the relatively small number of matched line features in the 

corridor (3.63 per time step) relative to that achieved for the seminar room (3.79 per time step). 

 

Figure 17. Check point distribution of (a) the seminar room; and (b) the corridor. 

Table 1. Accuracy assessment results for point-cloud data of the seminar room (unit: meter). 

Point ID Error Vector X Error Vector Y Error Vector Z Error 

1 −0.021 −0.013 0.005 0.025 
3 −0.023 0.000 −0.013 0.027 
5 0.003 −0.006 −0.015 0.016 
7 0.010 0.061 0.021 0.066 
9 0.030 −0.015 −0.013 0.036 

11 −0.019 0.030 0.022 0.042 
13 −0.021 0.013 0.002 0.025 
15 0.018 0.001 0.017 0.025 
17 0.022 −0.011 −0.001 0.025 
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Table 1. Cont. 

Point ID Error Vector X Error Vector Y Error Vector Z Error 

19 0.031 0.009 −0.008 0.034 
21 0.000 0.000 −0.004 0.004 
23 0.007 −0.014 0.008 0.018 
25 0.041 0.004 −0.001 0.041 
27 0.029 −0.045 −0.002 0.053 

Average error    0.034 

RMSE 0.024 0.024 0.012 0.036 

SAS    0.050 

Table 2. Accuracy assessment results for point-cloud data of the corridor (unit: meter). 

Point ID Error Vector X Error Vector Y Error Vector Z Error 

1 −0.031 0.009 0.000 0.032 
4 −0.059 0.019 −0.002 0.062 
6 −0.062 0.023 0.022 0.069 
8 −0.010 0.003 0.017 0.020 
10 −0.013 −0.015 0.004 0.020 
12 0.014 0.014 −0.034 0.039 
14 −0.002 0.036 −0.039 0.053 
16 0.011 0.025 0.011 0.030 
18 0.007 −0.012 0.006 0.015 
21 0.010 −0.024 0.007 0.026 
22 0.008 −0.027 −0.007 0.029 
24 0.016 −0.046 −0.011 0.050 
25 0.056 −0.026 −0.002 0.062 
28 −0.007 −0.033 −0.001 0.034 
29 0.027 −0.010 −0.009 0.030 
32 0.019 −0.025 −0.012 0.034 
34 0.088 −0.022 −0.005 0.090 
36 −0.002 −0.037 0.015 0.040 
38 −0.063 −0.026 0.053 0.086 

Average error    0.043 

RMSE 0.036 0.025 0.019 0.048 

SAS    0.067 

4. Conclusions 

The present study proposed a new line-feature-based SLAM technique incorporating the 

constrained least squares method for line adjustments. The superiority of the proposed approach, 

compared with the conventional methods, is its reduction of the adjusted lines’ uncertainties for 

successful data associations, which consequently leads to more accurate systems’ pose estimations. 

The experimental results showed accurate reconstructions of 3D scenes, demonstrating the proposed 

method’s potential utility for indoor mapping. Moreover, the proposed constrained adjustment method 
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can be simply applied to any line-feature-based SLAM applications to indoor environments satisfying 

the parallel and orthogonal assumptions.  

In this light, we are currently looking into how this technique can be applicable to other feature-based 

methods. As regards feature extraction, interesting for the purposes of further research is the geometric 

constraints concept, which could make possible the implementation of new features (e.g., curves and 

circles) and their geometric relationships for various indoor conditions. Future work will also focus on 

combining new sensors such as camera and IMU (Inertial Measurement Unit) for improved navigation 

quality. The combined utilization of these sensors with laser scanners allows new sensor readings for 

redundancy, increasing localization performance and long-term stability. In addition, autonomous 

navigation for the developed kinematic scanning system is needed, because uncertainties arising from 

manual operation can lead to incorrect localization and mapping results. However, for the purposes of 

obtaining a complete map of complex and cluttered indoor environments, fully automated navigation is not 

practical at the present stage. The viable solution is semi-autonomous navigation such as marker-based 

SLAM, whereby the system’s location is identified with the marker attached to a surveyor or controlled by 

remote control. Ultimately, the proposed kinematic scanning system is applicable to the as-built BIM, 

where it can be used for fast and efficient raw point-cloud data acquisition. The next phase of the 

research will involve the automated recognition of objects from the point-cloud data, which should be 

followed to keep up with the requirements of SCAN-to-BIM conversion. 
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