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Abstract: This paper presents a review of different classification techniques used to recognize
human activities from wearable inertial sensor data. Three inertial sensor units were used in
this study and were worn by healthy subjects at key points of upper/lower body limbs (chest,
right thigh and left ankle). Three main steps describe the activity recognition process: sensors’
placement, data pre-processing and data classification. Four supervised classification techniques
namely, k-Nearest Neighbor (k-NN), Support Vector Machines (SVM), Gaussian Mixture Models
(GMM), and Random Forest (RF) as well as three unsupervised classification techniques namely,
k-Means, Gaussian mixture models (GMM) and Hidden Markov Model (HMM), are compared
in terms of correct classification rate, F-measure, recall, precision, and specificity. Raw data and
extracted features are used separately as inputs of each classifier. The feature selection is performed
using a wrapper approach based on the RF algorithm. Based on our experiments, the results
obtained show that the k-NN classifier provides the best performance compared to other supervised
classification algorithms, whereas the HMM classifier is the one that gives the best results among
unsupervised classification algorithms. This comparison highlights which approach gives better
performance in both supervised and unsupervised contexts. It should be noted that the obtained
results are limited to the context of this study, which concerns the classification of the main daily
living human activities using three wearable accelerometers placed at the chest, right shank and left
ankle of the subject.

Keywords: activity recognition; wearable sensors; smart spaces; data classifiers; accelerometers;
physical activities

1. Introduction

The aging population is constantly increasing around the world. In the last decade, the active
involvement and participation of the elderly in society became an important challenge from a
social and economic point of view. Currently, assisting elderly people during their daily activities,
increasing their safety, well-being and autonomy, are considered key research challenges of great
interest. Activity recognition based on new wearable technologies (wearable sensors and accessories,
smartphones, etc.) is one of these important challenges. Recognizing and monitoring human activities
are fundamental functions to provide healthcare and assistance services to elderly people living

Sensors 2015, 15, 31314–31338; doi:10.3390/s151229858 www.mdpi.com/journal/sensors



Sensors 2015, 15, 31314–31338

alone, physically or mentally disabled people, and children. These populations need continuous
monitoring of their activities to detect abnormal situations or prevent unpredictable events such
as falls [1]. The new technologies of health monitoring devices range from on-body wearable
sensors to in vivo sensors. For instance, bio-sensors are generally used to monitor vital signs such as
electrocardiography (ECG), electromyography (EMG), blood pressure, heart rate and temperature [2].
Illnesses such as seizures, hypertension, dysthymias, and asthma can be diagnosed and treated
by physiological monitoring. Inclinometers and goniometers are other types of sensors that are
used to measure upper/lower limbs kinematics [3]. Even though there are potential gains of a
remote monitoring system using wearable sensors, there are still challenges in terms of technological
advancements to design wearable sensors that are easy to use and comfortable for the wearer [4].
Continuous reduction in the size and energy consumption of these sensors is another challenge that
needs to be addressed.

This paper focuses on a review of human activities recognition using wearable sensors in the
context of the remote monitoring of an elderly or dependent subject (Figure 1). The home supportive
environment delivers trend data and detection of incidents using non-intrusive wearable sensors.
This facilitates a quick measurement and fast acceptance at the same time. Through real-time
processing and data transmission, healthcare suppliers will be able to monitor the subject’s motions
during daily activities and also to detect unpredictable events that may occur, like a fall [1]. The
subject’s records can be used in medical decision support, prediction and prevention.
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Figure 1. Remote health monitoring architecture based on wearable sensors.

Inertial sensors have been used mainly for navigation of aircraft, ships, land vehicles and
robots, and also for shock and vibration analysis in several industries. Rapid development of
micro-electromechanical systems technology has contributed to the development of small-size,
light-weight and low-cost inertial sensors [5]. Currently, many manufacturers propose inertial sensors
that are easy to attach and wear. These sensors allow one to collect data on daily living activities under
free-living conditions and over extended periods of time. The number and the placement of inertial
sensors on the human body have a direct impact on activity recognition, in terms of the variety of
activities to monitor and the precision of their classification. Vision-based systems using single or
multiple video cameras are also used to recognize daily living activities. These systems are suitable
for motion capture when activities are mainly achieved in small areas, such as an office or house
environment. The most popular system is the Kinect sensor released recently by Microsoft. It includes
an infrared depth-finding camera and a standard RGB camera. This sensor has several advantages
such as low cost, depth information and the ability to operate any time, even at night. However, it has
low performance in natural lighting conditions, causing a shadowing of the points of interest [6]. The
inability to record moving objects at a long distance along with the dependence on surface texturing
and the occlusion problem in cluttered environments represent other disadvantages of the Kinect.
In addition, the computational and storage costs incurred by image processing are relatively high
compared to wearable inertial sensors.
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This paper deals with the classification of daily living human activities using wearable inertial
sensors. Walking, lying, standing up, etc. are examples of these activities. In this study, a dataset
is collected using three inertial sensors and including 12 daily living activities, namely: standing,
stair descent, sitting, sitting down, sitting on the ground, from sitting to sitting on the ground, from
lying to sitting on the ground, lying down, lying, walking, stair ascent and standing up. The choice
of these selected activities was made to represent the majority of everyday living activities [7]. In
addition to these basic activities, emphasis has also been placed on the dynamic transitions between
those activities, which constitute phases where the elderly are more vulnerable and potentially
exposed to falls such as sitting down, standing up, from sitting to sitting on the ground. Most
of the selected activities were used in recent studies related to the recognition of human activities
with elderly subjects [8,9]. Four supervised classification techniques namely, k-Nearest Neighbor
(k-NN), Support Vector Machines (SVM), Supervised Learning Gaussian Mixture Models (SLGMM)
and Random Forest (RF) as well as three unsupervised classification techniques namely, k-Means,
Gaussian Mixture Models (GMM) and Hidden Markov Model (HMM), are compared in terms
of correct classification rate, F-measure, recall, precision, and specificity. The main objective of
implementing several classification techniques is to review, compare and evaluate their performance
using a real dataset. Raw data and extracted features are used separately as inputs of each classifier.
The inertial sensor units worn by different healthy subjects were placed at key points of upper/lower
body limbs (chest, right thigh and left ankle). The activity recognition process includes three main
steps: sensors’ placement, data pre-processing and data classification. Unlike other recent research
works done in the same context of this study, only acceleration data are used, in this paper as
a modality for estimating the activities [5,10]. Moreover, the results obtained with unsupervised
classification algorithms are provided and analyzed.

This paper in organized as follows: in Section 2, background on wearable sensor’s placement,
pre-processing data including feature extraction/selection and classification techniques used in the
field of human activity recognition, are addressed. The adopted methodology including data
acquisition process, use of different classifiers in supervised/unsupervised contexts and performance
evaluation, are presented in Section 3. Section 4 presents the experimental results obtained using
a real dataset (raw data and extracted/selected features). Finally, a conclusion and some research
perspectives are given in Section 5.

2. Backgrounds on Sensors’ Placement, Data Pre-Processing and Classification Techniques

In this section, we present a background on wearable sensor’s placement, pre-processing data
including feature extraction and selection and classification techniques used in the field of human
activity recognition.

2.1. Wearable Sensors’ Placement

The placement of wearable sensors is related to the locations where the sensors are placed and
how they are attached to those locations. Indeed, wearable sensors placement has a direct effect on
the measurement of bodily motions [11], but the ideal sensor location for particular applications is
still a subject of much debate [12]. As shown in Figure 2, wearable sensors can be placed on different
parts of the human body. In particular, the sensors are usually placed on the sternum [13], lower
back [14], and waist [15]. Waist-placement of the wearable sensors can better represent most human
motions since they are then close to the center of mass of the human body [16].

Various studies have combined multiple accelerometers attached at different locations of the
body (see Table 1). The majority of these studies highlight that the placement of many sensors can
become burdensome for the wearer, leading us to focus on determining both the minimum number of
sensors as well as their relevant placement, while still ensuring a sufficiently high activity recognition
rate. Indeed, this rate decreases with the number of wearable accelerometers. As observed in Table 1,
accuracy levels of 83% to 100% for human activity recognition rates have been obtained [14,17–19].
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In [19] an accuracy of 100% was obtained for recognition of some activities such as sitting, lying,
standing and walking across a series of 40 randomly chosen tasks. This result is somehow flawed as
it is obtained on very simple activities, while performance with complex activities was not evaluated.

Table 1. Review of studies on accelerometer placement for human activity recognition.

Reference Placement
ofAccelerometers Detected Activities

Average (%)
ofClassification

Accuracy

Karantonis et al.,
2006 [15] Waist Walking, Falling 90.8%

Mathie, 2004 [18] Waist Falling, Walking, Sitting,
Standing, Lying 98.9%

Yang et al.,
2008 [20] Wrist

Walking, Running, Scrubbing,
Standing, Working at a PC,

Vacuuming, Brushing teeth Sitting
95%

Pirttikangas,
2006 [21] Thigh, Necklace, Wrists Typing, Watching TV, Drinking,

Stairs Ascent and Descent 91.5%

Parkka, 2006 [17] Wrist, Chest Lying, Sitting, Walking, Rowing
And Cycling 83.3%

Olguın, 2006 [22] Wrist, Chest, Hip Sitting, Running, Walking,
Standing, Lying, Crawling 92.13%

Bonomi, 2009 [14] Lower Back
Lying, Sitting, Standing, Working

on a Computer, Walking,
Running, Cycling

93%

Yeoh, 2008 [19] Thigh, Waist Sitting, Lying, Standing And
Walking Speed 100%

Lyons, 2005 [23] Thigh, Trunk Sitting, Standing, Lying, Moving 92.25%
Salarian et al.,

2007 [24]
Trunk , shanks
(IMU sensor) 14 daily living activities -

Gjoreski, 2011 [25] Thigh, Waist,
Chest, Ankle

Lying, Sitting, Standing,
All Fours, Transitional 91%

Chamroukhi,
2013 [7] Chest, Thigh, Ankle

Stairs Ascent and Descent,
Walking, Sitting, Standing Up,

Sitting on the Ground
90.3%

Bayat et al.,
2014 [26] pocket, Hand

Slow Walking, Fast Walking,
Running, Stairs-Up, Stairs-Down,

and Dancing
91.15%

Moncada-Torres,
2014 [27] Chest, Thigh, Ankle 16 daily living activities 89.08%

Gupta et al.
2014 [28] Waist

walking, jumping, running,
sit-to-stand/stand-to-sit,
stand-to-kneel-to-stand,

and being stationary

98%

Garcia-Ceja et al.,
2014 [29] Wrist

long-term activities (Shopping,
Showering, Dinner, Working,

Commuting, Brush Teeth)
98%

Gao et al., 2014 [8] Chest, waist, thigh, side standing, sitting, lying,
walking and transition 96.4%

Massé et al. [30]
Trunk (IMU and

barometric
pressure sensor)

sitting, standing, walking, lying 90.4%

Cleland et al. [12] reported their investigations on everyday activities such as walking, jogging
on a motorized treadmill, sitting, lying, standing, stairs ascent and descent. The data were obtained
from six sensors placed on different locations on the body (the chest, left hip, left wrist, left thigh, left
foot and lower back). The results obtained in this study showed that the sensor placed on the hip
provides the best measures to recognize most everyday activities.
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Other researchers have investigated the optimal placement of the accelerometers for human
activity recognition. Gjoreski et al. [25] studied the optimal location of accelerometers for fall
detection. Four accelerometers were placed at the chest, waist, ankle and thigh. The authors indicated
that the best accuracy rate was achieved by combining sensors placed at the chest or the waist and
the ankle. Chamroukhi et al. [7] have also evaluated the impact of the number of the sensors and
their location on the accuracy of human activity recognition. The best results were obtained for a
configuration with three sensors located on the chest, thigh and ankle. These results demonstrated
that the human activity recognition could be significantly improved by combining accelerometers
located on both the upper and lower parts of the body.

According to Karantonis [15], Mathie [18], Parkka [17] and Yang [20] data acquired from a sensor
placed on the waist gives pertinent information about many activities such as sitting, standing,
walking, lying in various positions, running, stairs ascent and descent, vacuuming and scrubbing.
Other accelerometer placement locations such as on the wrist, chest, hip, lower back, thigh and trunk
have also been used to identify lying, sitting, walking, running, cycling, working on a computer,
etc. [14,19,22,23]. As for recognition of typing, watching TV, drinking, stairs ascent and descent,
Pirttikangas et al. [21] used the wrists, thigh and necklace as relevant sensor placement locations
on the body.

Raj et al. [31] classified human daily activities such as walking, running, stairs ascent/descent,
or driving a vehicle using a watch with an embedded tri-axial accelerometer. Wrist-worn
accelerometers can also be used to estimate sleep duration and activity levels during sleep [32].
Ankle-attached accelerometers are able to efficiently estimate steps, travel distance, velocity and
energy expenditure [17,33]. Accelerometers placed at the top of the head have been also used for
measuring balance during walking [34].

In [8] the authors evaluated the accelerometer based multi-sensor versus single-sensors in
activity recognition. Performances of six representative wearable systems with single sensors or
multiple sensors were compared. The authors showed that the multi-sensor system gives the highest
recognition rate. In [30], an event-based activity classifier is proposed to monitor and recognize
daily living activities in mobility-impaired stroke patients using a trunk-fixed sensor that integrates
barometric pressure (BP) and inertial sensors. The authors proposed a double-stage hierarchical fuzzy
logic inference system. The first stage processed the events such as the start/end of lying or walking
periods, and detected postural transitions while the second stage improved the activity recognition by
providing a simple way to integrate the typical behavior of the subject and biomechanical constraints.

Sensor attachment to the human body involves fixing sensors directly to skin [13] as well as using
an assortment of straps, belts and wristbands [34,35]. Wearable devices can also be integrated into
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clothing. In order to avoid relative motion between the sensors and the human body, the wearable
sensors should be correctly attached to the human body. Otherwise, the vibration or displacement of
those sensors may cause signal interference and thus deterioration of the measurement accuracy.

New technological advancements and the invasion of smartphones in our daily lives offer
new opportunities for daily living human activities research. Recently, many systems have been
proposed to recognize daily living human activities using data acquired from mobile phones [26,36].
Accelerometer data collected with a wrist-watch was used by Garcia-Ceja et al. [29] to segment
long-term activity. An overview of studies according to combinations of sensors placement for human
activity recognition is given in Table 1.

Although the type, the number and the placement of the sensors are important for ensuring
relatively high rates of human activities recognition, issues related to acceptance of such kind of
sensors and wearer’s privacy should also be taken into account. These aspects are addressed in part
in [37], where the authors investigated different types of monitoring technologies for in-home activiy
monitoring and their effects on the wearer.

2.2. Pre-Processing

Data pre-processing is one of the most important steps in the data mining process. It consists
of filtering data, replacing the missing and outlier’s values and extracting/selecting features. To
extract features from raw data, windowing techniques are generally used, which consist of dividing
sensor signals into small time segments. Segmentation and classification algorithms are then applied
respectively to each window. Three types of windowing techniques are usually used: (i) sliding
window where signals are divided into fixed-length windows; (ii) event-defined windows, where
pre-processing is necessary to locate specific events, which are further used to define successive data
partitioning and (iii) activity-defined windows where data partitioning is based on the detection of
activity changes. The sliding window approach is well-suited to real-time applications since it does
not require any pre-processing treatments [3].

2.2.1. Features Computation

Human activity recognition from inertial data is generally preceded by a feature extraction
step. Signal characteristics such as time-domain and frequency-domain features are widely used
for feature calculation. Time-domain features include mean, median, variance, skewness, kurtosis,
range, etc. Peak frequency, peak power, spectral power on different frequency bands and spectral
entropy are generally included in the frequency-domain features. Some of the common time-domain
and frequency-domain features used for human activity recognition are presented in the following:

‚ Time-domain features

Time-domain features include mean, median, variance, skewness, kurtosis, range, etc. These
features are widely used in the field of human activity recognition [5,38,39]. Bouten et al. [39], applied
the integral method to offer estimation of energy expenditure using an inertial sensor. The authors
used the total Integral of Modulus of Accelerations (IMA). This metric is referred to the time integrals
of the module of accelerometer signals (Equation (4)):

IMAtot “

N
ż

t“1

|ax| dt`

N
ż

t“0

ˇ

ˇay
ˇ

ˇ dt`

N
ż

t“0

|az| dt (1)

where ax, ay, az denote the orthogonoal components of accelerations, t denotes time and N represents
the window length.

Other time-domain features such as Zero-Crossings Correlation-Coefficient root mean square,
etc. are also used in [40].
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‚ Frequency-domain features

Discrete Fourier Transform (DFT) is used to compute frequency spectrum of the discrete data
signal x. The DFT is described as follows [41]:

X p f q “
N´1
ÿ

i“0

xi e´j2π f i{N (2)

where X denotes the frequency spectrum, f the f th Fourier coefficient in the frequency domain and N
the length of the sliding window. Equation (5) can be rewritten using the following form:

X p f q “
N´1
ÿ

i“0

ai ` jbi (3)

with ai “ xicosp
2π f i

N
q and bi “ xisinp

2π f i
N

q.
One of the most important frequency-domain features used for human activity recognition is

the Power Spectral Density (PSD). This feature has been used by [42] to recognize activities such
as walking, cycling, running and driving. PSD can be computed as the squared sum of its spectral
coefficients normalized by the length of the sliding window:

P p f q “
1
N

N´1
ÿ

i“0

a2
i ` b2

i (4)

Peak frequency represents the frequency corresponding to the highest computed power
spectrum density over the sliding window. The peak frequency has been used in several studies
related to activity recognition [40,42,43].

The entropy is another feature that is widely used in human activity recognition [44]. Generally,
this feature helps to discriminate between activities that have the same PSD but different patterns of
movement [43]. Entropy can be formulated as follows:

H p f q “
1
N

N´1
ÿ

i“0

cilog pciq , ci “

b

a2
i ` b2

i
řN´1

k“0

b

a2
i ` b2

i

(5)

The DC component is another important feature also used in human activity recognition [43] . It
represents the PDS at frequency f = 0 Hz. It can be formulated as the squared sum of its real spectral
coefficients normalized by the length of the sliding window:

DC “
1
N

N´1
ÿ

i“0

a2
i (6)

Other frequency-domain features based on wavelet analysis are also used in human activity
recognition. For more information the reader is referred to [40,45].

2.2.2. Feature Selection

Feature selection consists of selecting a subset of relevant features from the original
feature set [46]. To differentiate between samples, classification algorithms need representative
features. Using inappropriate or redundant features may deteriorate the performance of a
classification algorithm.

This may result in a curse of the dimensionality problem and a decrease of classifier performance,
therefore, the selection of a reduced number of features, which have optimal discriminative power
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between classes, is significant in data mining. The feature selection process is defined as a process
of searching a subset of appropriate features from the original set. Feature selection is an important
step in the use of machine-learning algorithms as it reduces computation time and complexity, while
improving the overall classification rate.

Liu et al. [47] categorized the feature selection process in a three- dimensional framework into
a data mining task, an evaluation criterion, and a search strategy. The feature selection process is
generally categorized into three categories: filter methods [47], wrapper methods [48] and hybrid
methods [49]. Filter methods operate directly on the dataset by exploiting the intrinsic properties
of the features. These methods rank a set of selected features according to the estimated weights of
each feature. It should be noted that filter methods do not use any classifier in the selection process.
Unlike filter methods, wrapper methods, which often yield better results, use a classifier to evaluate
the selected subsets based on their predictive accuracies. Finally, the hybrid methods select the most
relevant subset based on the use of some internal parameters of the machine-learning algorithm. In
these methods, no validation step is required in the process of feature selection. For more details of
using feature selection methods in human activity recognition application, the reader is invited to
consult some related works [50,51].

2.2.3. Feature Extraction

The combination of original features is an alternative way of selecting a subset of relevant
features. This technique consists of combining the original features set in order to define a new
relevant features set. In other words, feature extraction is the transformation of high-dimensional
data into a meaningful representation data of reduced dimensionality. The main advantage of feature
extraction is that it facilitates classification and visualization of high-dimensional data.

The most popular technique for feature extraction is principal component analysis (PCA) [52],
which is a linear technique that consists of transforming the original features (generally
inter-correlated) into new mutually uncorrelated features. These new features are the so-called
principal components. The main idea behind PCA is to remap the original features into a low
dimensional space in which the principal components are arranged according to their variance (from
largest to lowest). The principal components that contribute to very low variance are omitted.

Linear Discriminant Analysis (LDA) also extracts features through a linear transformation. LDA
is closely associated to principal component analysis (PCA) since these two methods try to find linear
combinations of variables, which best represent the data [53]. The LDA method projects the original
features points into a new space of lower dimension that maximizes the between-class separability
while minimizing their within-class variability unlike PCA which, does not take into account any
difference in classes.

The independent component analysis (ICA) [54] is another feature extraction technique
commonly used on non-Gaussian data. This technique was initially developed to provide solution
to a problem known as Blind Source Separation (BSS). ICA searches for projections of original
features such that the probability distributions of the projected data are statistically independent.
The ICA algorithm aims at finding independent components, such as the original features that can be
expressed as a linear combination of those components.

Another feature extraction method used in data mining is Factors Analysis (FA). In the FA
method, the original features can be grouped according to their correlation, however, FA represents
each group of features that are highly correlated but have small correlations with features in other
groups by some factor. For more details on using feature extraction methods in human activity
recognition application, the reader is invited to refer to some related works in [50,51,55,56].

2.3. Classification Techniques

The features extracted/selected from the raw sensor data are used as inputs of the classification
algorithms. In case of human activity recognition, the patterns of input data are associated with
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the activities (classes) under consideration. In general, the classification task requires learning a
decision rule or a function associating the inputs data to the classes. There are two main directions
in machine learning techniques: supervised and unsupervised approaches [54,57,58]. Supervised
learning approaches for classification such as artificial neural networks [57], Support Vector Machines
(SVM) [59], require entirely labeled activity data. The unsupervised learning approaches, such as
those based on Gaussian Mixture Models (GMMs), Hidden Markov Models (HMMs) [60] allow to
infer automatically the labels from the data.

In the following sections, we briefly describe the classification techniques used in this study
(GMMs, k-Nearest Neighbors (k-NN), SVMs, Random Forests (RFs), K-means and HMMs), as well
as other techniques that are widely used in human activity recognition such as multilayer perceptron,
naive Bayes, hierarchical classification, etc.

2.3.1. k-Nearest Neighbors

k-Nearest Neighbors (k-NN) [54,58] is a supervised classification technique that can be seen as a
direct classification method because it does not require a learning process. It just requires the storage
of the whole data. To classify a new observation, the K-NN algorithm uses the principle of similarity
(distance) between the training set and new observation to classify. The new observation is assigned
to the most common class through a majority vote of its k nearest neighbors. The distance of the
neighbors of an observation is calculated using a distance measurement called similarity function
such as Euclidean distance. Moreover, one should note that when using the K-NN approach and a
new sample is assigned to a class, the computation of distances (i.e., the computation time) increases
as a function of the existing examples in the dataset [61].

Foerster et al. [62] were the first to apply the k-NN classification to differentiate between nine
human activities using time-domain features obtained from three uni-axial accelerometers. In [63]
Foerster and Fahrenberg combined k-NN with a hierarchical decision approach to recognize nine
activities using frequency-domain features. This approach has shown to be more efficient, in terms
of classification accuracy, compared to the k-NN. Other studies based on k-NN for human activity
recognition have also shown a high level of accuracy and satisfactory segmentation results [7,64].

2.3.2. Support Vector Machines

Support Vector Machines (SVMs), introduced by Vapnik [59], is a classifier derived from
statistical learning theory. This well-known machine learning technique that minimizes an empirical
risk (as a cost function) and at the same time, maximizes the margin between the so-called separating
hyperplane and the data.

In their standard formulation, SVMs are linear classifiers. However, non-linear classification can
be achieved by extending SVM by using kernels methods [65]. The key idea of kernels methods is
to project the data from the original data space to a high dimensional space called feature space by
using a given non-linear kernel function. A linear separation in the resulting feature space can then
be achieved by using the Cover’s theorem [66]. Moreover, SVM is a binary classifier; therefore, to
ensure a multi-class classification, pairwise classifications can be used (one SVM is defined by a class
against all a convex others, for all optimization classes), which makes it time-consuming especially in
the case of a large amount of data.

Huynh and Schiele [67] combined SVM and multiple eigen-spaces approach in order to
enhance the standard naive Bayes classifier (see Section 2.3.7) with small numbers of training data.
Krause et al. [68] considered the recognition of eight common activities using SVM and observed
better achievement of frequency-domain features compared to time-domain features.

Doukas and Maglogiannis [69] and Zhang et al. [64] applied SVM techniques to discriminate
between falls and other activities. A microphone and tri-axial accelerometer were used to identify
falls and two activities: walking and running. The recognition rates ranged between 84% and 96%.
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2.3.3. Random Forests

Random Forests (RF) [70] consists of a combination of decision-trees. It improves the
classification performance of a single-tree classifier by combining the bootstrap aggregating (bagging)
method and randomization in the selection of partitioning data nodes in the construction of decision
tree. The assignment of a new observation vector to a class is based on a majority vote of the different
decisions provided by each tree constituting the forest. However, RF needs huge amount of labeled
data to achieve good performances.

In [71], the authors proposed a classification methodology to recognize, using acceleration data,
different classes of motions, such as driving a car, being in a train, and walking, by comparing
different machine learning techniques (Random Forests, SVM and Naive Bayes). The authors showed
that Random Forest algorithm provides the highest average accuracy outperforming the SVMs and
the Naive Bayes.

2.3.4. Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a probabilistic approach, generally used in an
unsupervised classification. Unlike standard probabilistic models based on approximating the data
by a single Gaussian component density, GMM uses a weighted sum of finite Gaussian component
densities. The parameters of GMM (the proportions, the mean vectors and the covariance matrices
of the Gaussian components) are estimated using the expectation-maximization (EM) algorithm [72].
Using constructed features for human activity recognition, it is possible to learn separate GMMs for
different activities. The data classification can then be performed, by selecting the GMM with the
highest posterior probability. One of the drawbacks of this model is that in many cases the GMM
does not guarantee the convergence to the global minimum and a particular attention needs to be
given to the initialization of the EM algorithm. The GMM has been applied in several studies for
human activity recognition as shown in [73].

2.3.5. K-Means

K-means is a well-known unsupervised classification technique that can cluster n objects into
k classes. K-means clustering minimizes the distortion measure the total intra-cluster variance as a
cost function. This consists of iteratively finding the cluster centroids, and then assigning the data
according to their distance (e.g., Euclidean) to the cluster centroids, until convergence. One of the
known limitations of k-means is that it may have poor performance in the case of overlapping clusters
(classes) and it does not define a density on the data and cannot therefore measure the uncertainty
regarding the data classification, particularly in the overlap regions. As for the use of the K-means
for human activity recognition, the reader can refer to [74,75].

2.3.6. Markov Chains and Hidden Markov Models

A Markov chain represents a discrete time stochastic process covering a finite number of states
where the current state depends on the previous one [7]. In the case of human activity recognition,
each activity is represented with a state. A Markov chain is well adapted to model sequential data
and is often used in a more general model that is the Hidden Markov Model (HMM).

The HMM assumes that the observed sequence is governed by a hidden state (activity) sequence.
Once the HMM is trained, the most likely sequence of activities can then be determined using the
Viterbi algorithm [76]. As in the case of GMM, one of the drawbacks of HMMs is that in many cases
this model does not guarantee the convergence to the global minimum and a particular attention
needs to be given to the initialization of the EM algorithm known in the context of HMMs as the
Baum-Welch algorithm.

In [77], the HMM is used in a two-level classification schema to distinguish different daily living
activities. The HMM is trained using the posterior probabilities of the decision stump in order to take
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advantage of the results from the discriminatively trained classifier (decision stump), as well as to
reduce the complexity of the HMM.

HMMs have also been used as a part of unsupervised learning algorithms for human activity
recognition studies [78–80]. In these studies, an HMM with GMM emission densities was developed
using the HMM toolbox [81]. The next section provides a brief summary on other useful techniques
that have been used for human activity recognition.

2.3.7. Other Classification Techniques Used in Activity Recognition

In order to define a given activity, a threshold-based classifier compares different features
to a predefined threshold, generally fixed by the user. This approach is sufficient to identify
static postures, for instance standing, sitting and lying [82,83]. Postural transitions have been also
classified using conventional threshold-based algorithms [13,84]. However, this classification method
is sensitive to the chosen thresholds values.

Several studies have shown that combing different threshold rules improves fall detection
accuracy. In [85], authors showed that using three threshold-based rules for orientation, angular
velocity and angular acceleration, falls can be distinguished with 100% accuracy from everyday
living activities.

Another paradigm for human activity recognition is the one of fuzzy logic methods. Fuzzy logic
takes its origin from fuzzy sets theory. It shows a great potential for activity classification problems.
However, fuzzy logic needs to employ methods for constructing proper membership functions as
well as the combination and the interpretation of fuzzy rules. Besides, only a few studies have
shown satisfactory classification accuracies in fall detection. Among the relevant studies that applied
fuzzy methods for human activity recognition, one can cite those conducted by Salarian et al. [24],
Marin-Perianu et al. [86] and Masse et al. [30].

The multilayer perceptron (MLP) [87], is an artificial neural networks with multilayer
feed-forward architecture and is in general based on non-linear activations for the hidden units. The
MLP minimizes the error function between the estimated and the desired network outputs, which
represent the class labels in the classification context. Several studies show that a MLP is efficient in
non-linear classification problems, including human activity recognition. The MLP has been applied
in several studies for human activity recognition such as [5,7,61].

Another well-known supervised classification technique is the Naive Bayes classifier, which
is popular due to its simplicity and ease of implementation. In this approach the input features
are assumed to be independent, while the conditional likelihood function of each activity can be
expressed as the product of simple probability density functions. For human activity recognition, the
naïve Bayes approach shows similar accuracy level when compared to other classification methods.
The studies presented in [88,89] showed that sometimes naïve Bayesian approach outperforms other
classification approaches, while in [7] the classification accuracy obtained when using naïve Bayes
approach is not relatively high.

The hierarchical classification scheme builds a binary decision structure that consists of
numerous consecutive nodes. Relying on the input features, the binary decision is made at each node.
The discrimination between activities is achieved based on the decision results. Making decisions at
each node requires manual supervision and analysis of the training data making this approach very
time consuming. Time-domain features are used in [90] to classify four different activities. Each
activity is fully recognized (100%) using accelerometers placed at the chest, wrist, shank and thigh.
Similarly, data collected from accelerometers placed at the waist are used in [91] to identify four static
and five dynamic activities. In [17,92] a threshold-based hierarchical classification scheme is applied
to discriminate different dynamic activities. Moreover, in [92] the performances of the hierarchical
approach are compared to those of other standard classification techniques. In [18], authors combined
probabilistic methods and signal morphology techniques to generate a classification decision at each
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node. It is shown that this approach is able to discriminate several human activities. In [15], additional
node was used to detect the fall event.

2.4. Discussion

It is clear that comparing algorithm performance across different studies is a difficult task for
many reasons. This difficulty is mainly related to: (i) the variability in the experimental protocols (the
number of recruited subjects, the nature and the number of the recognized activities—ambulation,
transportation, daily activities, exercise/fitness—the duration and the order of different activities,
etc.); (ii) the applicative objectives behind the human activity recognition (monitoring, fall detection,
home-based rehabilitation, etc.); (iii) the type of sensors used (accelerometers, plantar pressure
sensors, gyroscopes) and their attachment to the body (wrist, chest, hip, thigh, necklace);
(iv) the performance evaluation criteria (accuracy, F-measure, recall, precision, specificity, etc.);
(v) the validation procedure (P-fold, leave one out, repeated random sub-sampling, bootstrap, etc.).
In [14,15,18,20,28,29], one accelerometer was used to recognize activities such as sitting, standing,
lying, walking, running, scrubbing, vacuuming, brushing teeth, falling, etc. The average classification
rate varied from 90.8% and 98.9% and was obtained when using an accelerometer placed at either
waist level [15,18,28] or at wrist level [20,29]. In [17,19,23,26], two accelerometers were used to
recognize activities such as slow walking, fast walking, and rowing. In most of these studies, the
number of activities does not exceed ten activities. A large number of activities were considered
in [27] (sixteen activities) and [7] (twelve activities). In those studies, classification rates ranging
from 89% to 90.3% were obtained. In others studies, three accelerometers were placed at the thigh,
on a necklace and at wrist level [24] and at the level of wrist, chest and hip [22]. Almost similar
results than those obtained in [7,27] are achieved in [21,22]. In [8], the authors evaluated the use of a
single-accelerometer versus a multi-accelerometer to recognize five activities (standing, sitting, lying,
walking and transition). A recognition rate of 96.4% was achieved when using multi-accelerometers
placed at chest, waist, thigh, and side level. In [24], IMU sensors including accelerometers and
gyroscopes, placed at the trunk and the shank levels were used to recognize 14 daily activities of
Parkinson’s disease (PD) patients. A sensitivity of 83.8% was achieved in the case of PD patients.
In [30], the authors integrate IMU and pressure sensors to improve the recognition rate of daily living
activities of stroke patients. A classification rate of 90.4%, was achieved for recognizing basic activities
such as lying, sitting, standing, and walking, as well as distinguishing the body elevation such as flat,
elevator down, elevator up, stairs down and stairs up.
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3. Methods

In this section, we present the proposed methodology including data acquisition, the used
classifiers and the performance evaluation using the 10-fold cross validation method. Figure 3
summarizes the different steps of the adopted approach.

3.1. Data Acquisition

In this study, human activities are estimated using the Xbus Kit from Xsens (Enschede,
Netherlands) which enables ambulatory measurement of the human motion. It consists of a portable
system that incorporates an Xbus Master and three MTx inertial units that are placed on the chest, the
right thigh and the left ankle of the subject see Figure 4. Each MTx unit is equipped with a tri-axial
accelerometer to measure the 3D acceleration, a gyroscope to measure the 3D angular velocity, and
a magnetometer to measure the local Earth magnetic field vector. The MTx units located at the
chest, thigh and ankle levels are connected in series with the Xbus Master. The collected data are
transmitted from the Xbus Master to the host PC using a Bluetooth link. The power consumption of
five MTx units is 2.7 W when using the Bluetooth communication protocol. Four NiMH AA 2500 mAh
rechargeable batteries are included for remote use. The maximum duration of measurements is 3 h
for five MTx using the Bluetooth communication protocol. The sampling frequency of this system
is set to 25 Hz, which is sufficient to measure daily human physical activities [39]. A fundamental
problem in human motion analysis based on the use of IMUs is the alignment between the IMUs’
local coordinate axes and a physiologically meaningful axis. Actually a small tilt or misplacement of
the sensor would result in large variation on the measured data. It should be noted that some research
works completely ignore this problem by assuming that the IMUs can be mounted precisely in a
predefined orientation towards the joint [93,94]. In this study, the IMUs sensors were very securely
attached to the participant’s body using special straps provided by the Xsens Company. These straps
avoid any relative movements and misalignments between the wearable sensors and the associated
body member. Moreover, the sensor-to-segment mounting orientation and position are characterized
by the local coordinates of the joint axis and the joint position, respectively. In this study an external
operator has manually verified both quantities prior to each experimentation test.
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Figure 4. MTx-Xbus inertial tracker and sensors placement.

Data were collected at the LISSI Lab/University of Paris-Est Creteil (UPEC). Six healthy subjects
with different profiles (mean age: 26 years old, mean weight: 65 kg) participated in the experiments.
The subjects were given instructions to perform activities in their own way without specific
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constraints. Each subject conducted a total of twelve activities. The data acquisition was performed
in the office environment over a period of about 30 min. The different activities and their descriptions
are given in Table 2. The acquired data were manually labeled by an independent operator.

Table 2. List of the selected activities (A1 . . . A12).

Activity Reference Description of Activity

A1 Stair descent
A2 Standing
A3 Sitting down
A4 Sitting
A5 From sitting to sitting on the ground
A6 Sitting on the ground
A7 Lying down
A8 Lying
A9 From lying to sitting on the ground
A10 Standing up
A11 Walking
A12 Stair ascent

The dataset is composed of six tests where each one was performed according to the following
sequential activities order: A2 A1 A2 A3 A4 A5 A6 A7 A8 A9 A6 A10 A2 A11 A2 A12. Figure 5 shows
the number of samples in each class (each activity corresponds to a class) for each sequence. One can
note that the different classes are not equally distributed. The transition activities A3, A5, A7, A9, A6
and A10 are weakly represented compared to other activities. We also note that the majority of the
sequences are composed of some sort of standing activity (about 32% of the full dataset).
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Figure 5. Representation of the number of samples in each class for each sequence.

As mentioned earlier, two different (supervised and unsupervised) techniques were used to
recognize the twelve human activities. Four supervised machines learning techniques, that are, k-NN,
SVM, SLGMM and RF, and three unsupervised machine learning techniques, that are, K-means,
GMM and HMMs are compared in terms of performances with respect to the human activity
recognition rate. Two cases were considered in terms of input data:

‚ Raw data
‚ Feature set extracted/selected from raw data.
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3.2. Classifiers

3.2.1. Supervised Machine Learning Techniques

‚ In this study, the LIBSVM toolbox [95] was used to implement a nonlinear SVM model with a
radial basis function kernel. The hyper-parameters C and G are estimated using a grid search
method. The optimal values are C = 2 and G= ´5.

‚ In the case of the RFs algorithm, the only parameter to tune is the number of trees, which is
adjusted by varying the number of trees from to 1 to 100 and determining the one providing the
best accuracy rate. The best number of trees is 20.

‚ For the SLGMMs, a mixture of 12 diagonal Gaussians is used. The proportions, the mean vectors
and the covariance matrix of the Gaussian components are estimated during the training phase
using an appropriate EM algorithm.

‚ In the case of K-NN method, as the only parameter to tune is K, varying K from 1 to 20 leads to
an optimal value of K = 1 for the best accuracy.

3.2.2. Unsupervised Machine Learning Techniques

‚ In this study, HMM with GMM emission probabilities were developed using the HMM
toolbox [81]. However, two hyper-parameters were tuned: the number of states and the number
of mixtures. First, as the dataset consist of twelve activities, the number of states was set to
12 with ergodic topology. Then, number of mixtures was varying from 1 to 4. Based on the best
accuracy rate, the states were modeled using a mixture of 2 diagonal Gaussians.

‚ In the case of the K-means algorithm, the only parameter to estimate is the number of clusters
that corresponds to the number of activities (k = 12).

‚ In the case of the GMM algorithm, as in the case of the K-means algorithm, the only parameter
to estimate is the number of mixture, which corresponds to the number of activities. A mixture
of 12 diagonal Gaussians was used.

In this study, a 10-fold cross validation procedure was used to create the training set and the test set.
In the case of supervised approaches, the models were trained using the training set. In the test step,
the estimated classes were compared to the true classes in order to compute the classification error
rates. In the case of the unsupervised approaches, the models were trained using only the raw data
without considering the labels. The labels were only used to evaluate the classification performances.
In the test step, the classifiers outputs (estimated labels) were matched with the true labels in order to
evaluate the classifier performances.

3.3. Evaluation

The accuracy measure is used to evaluate the classifiers performances. In fact, this metric
measures the proportion of correctly classified examples. In the case of binary classification, the
accuracy can be expressed as follows:

Accuracy “
Tp ` Tn

Tp ` Tn ` Fp ` Fn
(7)

where Tn (true negatives) represents the correct classifications of negative examples, Tp (true
positives) represents the correct classifications of positive examples. Fn (false negatives) and Fp (false
positives) represent, respectively the positive examples incorrectly classified into the negative classes
and the negative examples incorrectly classified into the positive classes.

The accuracy measure does not take into account the unbalanced datasets. In this case, the
accuracy is particularly biased to favor the majority classes. In this study, the class proportions are
not well balanced since the proportion of transitions activities samples is too small (Figure 5). Thus
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the following evaluation criteria are considered: the average of the accuracy rate (R) and its standard
deviation (std), F-measure, recall, precision and specificity.

The F-measure is defined as the combination of two criteria, the precision and the recall, which
are defined as follows:

precision “
Tp

Tp ` Fp
(8)

recall “
Tp

Tp ` Fn
(9)

The F-measure is calculated as follows:

F_measure “

´

1`β2
¯

.recall.precision

β2 recall` precision
(10)

where β is a weighting factor that controls the degree of importance of recall/precision. This
parameter is a positive real number. In this study, β is set to 1 to give the same importance to both
recall and precision.

The specificity (SPC) is also used to evaluate the performances of the different algorithms and is
calculated as follows:

specificity “
Tn

Tn ` Fp
(11)

4. Experimental Results

In this section, we review and compare the performances of the standard supervised and
unsupervised machine learning approaches to recognize the daily living activities presented in the
previous section. This comparison highlights the different algorithm performances in terms of
average accuracy rate (R) and its standard deviation (std), F-measure, recall, precision and specificity.
In this comparative study, two cases are considered:

4.1. Case 1: Raw Data

The results obtained in the case of raw data are given in Tables 3 and 4. Table 3 summarizes
the performance results obtained when using the supervised approaches. It can be observed that
the correct classification rates obtained with different techniques are all higher than 84%. The
k-NN algorithm gives the best results in terms of global correct classification rate, F-measure, recall,
and precision, followed by RF, then SVM and at finally the SLGMM algorithm gives relatively the
worst results.

Table 3. Performances of the supervised algorithms using raw data.

Accuracy ˘ std F-measure Recall Precision Specificity

k-NN (%) 96.53 ˘ 0.20 94.60 94.57 94.62 99.67
RF (%) 94.89 ˘ 0.57 82.87 82.28 83.46 99.43

SVM (%) 94.22 ˘ 0.28 90.66 90.98 90.33 99.56
SLGMM (%) 84.54 ˘ 0.30 69.94 69.99 69.88 98.39

Table 4. Performance results of the unsupervised algorithms using raw data.

Accuracy ˘ std F-measure Recall Precision Specificity

HMM (%) 80.00 ˘ 2.10 67.67 65.02 66.15 97.68
K-means (%) 68.42 ˘ 5.05 49.89 48.67 48.55 93.21

GMM (%) 73.60 ˘ 2.32 57.68 57.54 58.82 96.45
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Table 4 summarizes the results obtained when using the different unsupervised learning
approaches. Compared to the unsupervised classifiers K-means and GMM, the HMM approach gives
the best results in terms of global correct classification rate, F-measure, recall, and precision. These
results can be explained by the fact that the HMM approach takes into account the temporal aspect of
the data used in this study. Tables 3 and 4 show that supervised approaches outperform unsupervised
approaches. However, unsupervised approaches show very encouraging results mainly in the case
of HMM. These performances are obtained without any labeling that is time consuming.

Furthermore, the used supervised classifiers need labeled data in the training model phase. In
addition, these methods do not take into account the sequential dimension of the data in their model
formulation. Indeed, the dependencies between the activities are neglected in the learning phase
as well as in the testing phases. Moreover, it is worth pointing out that in the case of k-NN based
approach, a considerable computation time is required due to the fact that assigning a new sample to
a class require a computation time as many distances as there are examples in the dataset.

In order to identify the patterns that are difficult to recognize, the global confusion matrix are
given in Tables 5 and 6 in the case of k-NN and HMM, respectively. One can observe that confusions
in most cases, occur between transition activities such as (A9, A7) and dynamic activities such as (A1,
A11), (A1, A12) and (A11, A12). These confusions are more important in the case of HMM. One can
also observe that the basic activities such as A2, A4, A8 are easier to recognize than transition activities
such as A3, A5 and A7.

Table 5. Global confusion matrix obtained with k-NN using raw data.

Obtained Classes

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
A1 88.98 0.41 0.04 0 0.04 0 0 0 0 0.78 4.34 5.41
A2 0.40 98.52 0.08 0 0 0 0 0 0 0.21 0.56 0.23
A3 0.21 0.64 95.73 0.53 0.64 0 0 0 0 0.96 0.85 0.43
A4 0 0 0.77 98.92 0.31 0 0 0 0 0 0 0

True A5 0.08 0 0.55 0.16 97.98 0.47 0.08 0 0.16 0.55 0 0
Classes A6 0 0 0 0 0.22 99.41 0.03 0 0.25 0.08 0 0

A7 0 0 0 0 0.22 0.15 95.71 1.53 2.33 0.07 0 0
A8 0 0 0 0 0 0 1.58 97.62 0.80 0 0 0
A9 0 0 0 0 0.25 0.34 3.96 0.67 94.44 0.34 0 0
A10 1.58 0.46 0.19 0 0.65 0.28 0 0 0.19 94.07 0.93 1.67
A11 4.07 0.41 0.03 0 0 0 0 0 0 0.55 92.57 2.37
A12 5.05 0.43 0 0 0 0 0 0 0 1.03 3.08 90.42

Table 6. Global confusion matrix obtained with HMM using raw data.

Obtained Classes

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
A1 55.33 1.70 1.08 0 0.62 0 0 0 0 3.19 23.52 14.57
A2 2.83 86.22 0.47 0 0 0 0 0 0 1.50 6.97 2.01
A3 0.12 0 39.86 32.82 12.53 0 0 0 0 10.62 0.24 3.82
A4 0.10 0 9.58 87.21 3.11 0 0 0 0 0 0 0

True A5 0.67 0 7.20 0.29 73.61 0.10 1.06 0 1.44 15.55 0 0.10
Classes A6 0 0 0 0 3.15 91.63 0.88 0 2.18 2.16 0 0

A7 0 0 0 0 2.24 0.50 29.74 35.33 27.95 4.25 0 0
A8 0 0 0 0 0 0 13.14 81.38 5.48 0 0
A9 0 0 0 0 2.13 0 37.03 16.70 33.75 10.39 0 0
A10 0 0 0 0 9.20 0 0 0 1.15 89.66 0 0
A11 19.59 1.38 2.53 0 0 0 0 0 0 2.38 56.95 17.17
A12 16.65 0 3.72 0 2.44 0 0 0 0 5.75 11.10 60.34
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4.2. Case 2: Feature Set Extracted/Selected from Raw Data

In order to improve the results presented above a preprocessing step consisting of features
extraction and selection is performed. Nine accelerometrics signals are acquired from three MTx
IMUs and for each signal; the following time and frequency domain features are calculated:

‚ Eleven time-domain features are extracted, namely: mean, variance, median, interquartile rang,
skewedness, kurtosis, root mean square, zero crossing, peak to peak, crest factor and rang.

‚ Six frequency-domain features are extracted, namely: DC component in FFT spectrum, energy
spectrum, entropy spectrum, sum of the wavelet coefficients, squared sum of the wavelet
coefficients and energy of the wavelet coefficients.

In addition, the correlation coefficients of mean and variance of the norm of each acceleration
signal are calculated. Thus, a set of nine correlation coefficients, six means and variances of the norm
of each acceleration signal are calculated.

A total of 168 characteristics are calculated for each sliding window with a size of 25 samples
(1 s each) with 80% overlap. The window size is chosen to ensure the statistical significance of
the calculated features. The choice of the window-overlapping rate is done in order to guarantee
satisfactory characterization of the transitional activities, which are ephemeral. In our case, the
transitional activities take about 2 s, thus using windows of 25 samples without overlapping leads to
the extraction of features with just two samples, which are not sufficient to correctly characterize these
transitions. Following the feature extraction step, a process is performed to find a minimal subset
of features that are necessary and sufficient to adequately characterize the different activities. As
described above, finding the best subset among all features is carried out during the feature selection
procedure. In this study, a wrapper approach based on random forest feature selection algorithm [70]
is used to select the best features among the extracted ones. This algorithm reorders the features
according to their relevance percentage. A set of 12 features representing more than 80% of relevance,
are selected as the classifiers inputs. Figure 6 describes the different steps of the activity recognition
process using the selected features.
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The results obtained using the supervised approaches with extracted/selected features are
reported in Table 7. The correct classification rates obtained with the different techniques are greater
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than 85%. Similarly to the case of raw data, k-NN algorithm gives the best results in terms of correct
classification rate and its standard derivation, F-measure, recall, and precision, followed by RF, then
SVM and finally SLGMM. As it can be shown, a significant improvement for some algorithms can
be observed (an average improvement of 3% with a slight reduction of std is observed for k-NN
and RF). In the case of SVM and SLGMM, a slight improvement about 1% can be observed on the
correct rate. Regarding F-measure, recall and precision, an average improvement of 10% and 4%
are observed for SVM and SLGMM, respectively. The results obtained using unsupervised machine
learning techniques in the case of selected features are reported in Table 8. These results show an
improvement in terms of correct classification rate, F-measure, recall and precision. Besides, in the
case of HMM, an improvement of 3% of global rate with slight reduction of std (about 0.8%) can be
observed, while F-measure, recall and precision increase by about 3%, respectively. Improvements
can be also noted for the performances of the GMM. In the case of K-means, an improvement of
4.53% and 3.53% of global correct rate classification and recall, respectively along with a decrease of
3% of std can be observed. A slight improvement of about 0.4% and 2.67% can also be observed on
F-measure and precision respectively. Finally, even though improvements in terms of performances
are observed when using the selected features as input for the different algorithms, the feature
extraction/selection step requires implementing additional models and routines, to extract and select
optimal features. Moreover, the feature extraction process needs additional computational time,
which can be challengeable for real time applications.

Table 7. Performances of the supervised algorithms using extracted features.

Accuracy ˘ std F-Measure Recall Precision Specificity

k-NN (%) 99.25 ˘ 0.17 98.85 98.85 98.85 99.96
RF (%) 98.95 ˘ 0.09 98.27 98.24 98.25 99.90

SVM (%) 95.55 ˘ 0.30 93.02 93.15 92.90 99.92
SLGMM (%) 85.05 ˘ 0.57 73.44 74.44 73.61 99.88

Table 8. Performances of the unsupervised algorithms using extracted features.

Accuracy ˘ std F-Measure Recall Precision Specificity

HMM (%) 83.89 ˘ 1.30 69.19 68.27 67.74 98.38
K-means (%) 72.95 ˘ 2.80 50.29 52.20 51.22 97.04

GMM (%) 75.60 ˘ 1.25 65.00 66.29 64.30 97.12

Tables 9 and 10 represent confusion matrix obtained with k-NN and HMM using
selected features.

Table 9. Global confusion matrix obtained with k-NN using selected features.

Obtained Classes

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
A1 99.00 0.32 0 0 0 0 0 0 0 0.08 0.48 0.12
A2 0.06 99.75 0.04 0 0 0 0 0 0 0.03 0.07 0.04
A3 0 0.43 99.15 0.43 0 0 0 0 0 0 0 0
A4 0 0 0.11 99.79 0.11 0 0 0 0 0 0 0

True A5 0 0 0 0.23 99.38 0.23 0 0 0.08 0.08 0 0
Classes A6 0 0 0 0 0.07 99.78 0.07 0.03 0.05 0 0

A7 0 0 0 0 0 0.21 99.65 0.14 0 0 0 0
A8 0 0 0 0 0 0.15 99.79 0.06 0 0
A9 0 0 0 0 0.08 0.17 0.33 99.42 0 0 0
A10 0.35 0.18 0 0 0.09 0.09 0 0 0 99.20 0.09
A11 0.22 0.17 0 0 0 0 0 0 0 0 99.34 0.28
A12 0.08 0.17 0 0 0 0 0 0 0 0.04 0.25 99.45
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Table 10. Global confusion matrix obtained with HMM using selected features.

Obtained Classes

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
A1 57.74 0.06 0.43 0 0.31 0 0 0 0 4.07 20.17 17.21
A2 1.36 94.66 0.31 0 0 0 0 0 0 0.89 1.98 0.80
A3 3.82 0 55.30 5.69 15.42 0 0 0 0 1.64 4.91 13.24
A4 0 0 2.85 96.31 0.83 0 0 0 0 0 0 0

True A5 2.05 0 1.80 0.66 71.62 4.35 2.21 0 5.50 11.48 0 0.33
Classes A6 0 0 0 0 1.39 97.09 0.30 0 0.94 0.28 0 0

A7 0 0 0 0 1.54 0 59.91 4.25 32.30 1.99 0 0
A8 0 0 0 0 0 0 3.30 94.69 2.01 0 0
A9 0 0 0 0 4.02 1.75 32.68 0.10 50.41 11.03 0 0
A10 13.56 0 1.51 0 6.44 0 1.92 0 2.19 60.68 7.12 6.58
A11 19.87 4.45 1.50 0 0 0 0 0 0 3.45 57.02 13.73
A12 16.37 0.17 0 0 0.34 0 0 0 0 1.90 17.26 63.97

The same observations can be made as in the case of using raw data as input classifiers. However,
a considerable improvement can be observed compared to those obtained when using raw data. This
can be explained by the fact that the extracted/selected features characterize well the different human
activities. As stated above, comparing different algorithms’ performance across different studies
is a difficult task for many reasons, such as the experimental protocol differences, the applicative
objectives behind human activities recognition, the type of sensors used and their attachment to the
body, the performance evaluation and validation and the nature/number of the recognized activities.
The obtained results in terms of accuracy rate are almost similar to those obtained in related studies
(e.g., [7,25–27]). For example in the case of k-NN, accuracy rates of 95.8% and 98.7% were obtained
in [7] and [5] respectively. In the case of SVM, SLGMM and RF, similar performances were obtained
in [5,7,70,73,75]. In the case of unsupervised based classifiers such as K-means, GMM, and HMM,
the accuracy rates, range from 60.2% to 84% ([7,75,78–80]). It should be noted that the studies
using feature extraction/selection as classifiers inputs have shown better performances, e.g., [5,62,63].
These results are also confirmed in this study.

5. Conclusions and Future Work

We have presented a review of different classification techniques that were used to recognize
human activities from wearable inertial sensor data. This paper describes the whole structure of
the recognition detection process, from data acquisition to classification. Issues related to wearable
sensor’s properties and placement on the human body are addressed first. Feature computation,
selection and extraction processes are shown, followed by a literature review comparison between
various supervised and unsupervised learning approaches used for classifying of daily human
activities. Finally, we presented a comparative study using well-known supervised and unsupervised
based approaches (k-Nearest Neighbors, Gaussian Mixture Models in both cases supervised and
unsupervised approaches, Support Vector Machines, Random Forest, k-means and Hidden Markov
Models) applied on a real dataset. Both, raw data and extracted/selected features are used as inputs
for the classifiers. The different classification approaches are compared in terms of the recognition
of twelve activities (including static, dynamic and transition activities) using data from three MTx
inertial IMUs placed at the chest, the right thigh and the left ankle.

The supervised approaches, when using raw data or extracted/selected features, are more
accurate compared to unsupervised approaches, yet the latter are more computationally efficient and
do not require any labels (unsupervised classification techniques are able to directly create models
from unlabeled data).

The results obtained with the real dataset show the effectiveness of the k-NN approach, which
gives the best results compared to the other methods. RF and SVM give almost the same results
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and slightly better in the case of RF, especially when using extracted/selected features. The
SLGMM-based algorithm gives the lowest results in the case of supervised approaches. In the case of
unsupervised approaches, HMM gives the best results, followed by GMM and K-means. The main
advantage of the HMMs with regards to other techniques is that the statistical model used in the
HMMs includes both sequential aspect and temporal evolution of the data. Except for HMMs, the
other algorithms treat the data as several realizations in the multidimensional space without taking
into the consideration possible dependencies between the activities.

We have also seen that the extracted/selected features improve the classification accuracy at the
expense of computation time that can be penalizing, in particular for real time applications. This work
can be extended in several directions: the combination of several classifiers constitutes a promising
approach as many classifiers applied to the same dataset have the potential to generate different
decision boundaries, which are able to display different patterns. Thus, merging the classification
techniques would give complementary decisions and advance the accuracy level. As stated above, the
different machine learning methods in both supervised and unsupervised contexts, were evaluated
with six participants. Future steps involve expansion of the dataset by adding further participants in
general and, in particular, elderly subjects. Another point that deserves to be adequately and further
assessed is related to the wearer’s privacy and the acceptability of the wearable sensors. Yet the use
of inertial sensors less invade the wearer privacy compared to the use of cameras, few studies in the
literature have investigated the acceptability of these sensors in close contact with the users.
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