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Abstract: This paper presents a simple methodology to perform a high temperature coupled
thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are
equipped with chemical composition gratings sensors (CCGs). The methodology also considers the
presence of coupled loading within the response provided by the CCG sensors. The theoretical strain
of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15%
between the analytical and experimental data. To further verify the validity of the results from the
tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain
fields within the UHTC structure equipped with the CCG. The results show that the compressive
stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the
supporting structure in the hot environment. The results related to the strain fields show that the
relative error with the experimental data decrease with an increase of temperature. The relative error
is less than 15% when the temperature is higher than 200 ◦C, and only 6.71% at 695 ◦C.

Keywords: fibre optic sensors; strain and temperature; chemical composition gratings (CCGs);
high temperature application; hot structure; thermo-mechanical

1. Introduction

Over the past two decades many fibre Bragg grating (FBG)-based sensors have been developed for
applications in high-temperature environments due to their unique features [1–4]. Some examples of
the interesting characteristics that characterise FBGs are their low weight, compact size, electromagnetic
and radiofrequency compliance, durability, long-distance transmission capabilities and good heat
resistance [5,6]. FBG sensors are regrouped into classes that include type I, type II and long-period
gratings, photonic crystal fibres, sapphire gratings and chemical composition gratings (CCGs), the
latter also commonly called regenerated FBGs (RFBGs). RFBGs have been used in environments
up to 1295 ◦C [7] and are typically produced from hydrogen-loaded optical fibres by applying an
annealing treatment at temperatures between 800 ◦C and 1000 ◦C [8]. The original grating is completely
erased and a new grating refractive index modulation is generated following the annealing process.
The main advantages of RFBGs are their ultrahigh temperature stability, good grating qualities and
their potential for measuring reflected light.
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To produce stable thermal sensors for high temperature environments Fokine [9–14],
Zhang [15,16], Canning [7,17–19], Barrera [20–22], Guan [23–25] and others [26–30] have devoted
significant efforts to the study of the design, production and related technologies of RFBGs. Recently,
a number of research groups have also begun to focus their efforts on the application of RFBGs
in high-temperature environments. Issues related the utilisation of RFBGs in these challenging
environmental conditions are related to the safe packaging and installation of the sensors in
structures, because silica-based RFBGs are extremely brittle and fragile after the annealing process [1].
Méndez et al. [31,32], Selfridge et al. [33], Sai Prasad and co-workers [34] have used metal substrates
to provide the connection between the optical fibre sensors and the structure. Mamidi et al. [35],
Reddy et al. [36], Barrera et al. [37,38] and Azhari et al. [39] have also used a metal or ceramic tube to
encapsulate the RFBGs to perform measurements in high temperature environments.

In a previous work [40] we have described a simple method to apply CCG sensors on ultra-high
temperature ceramic materials (UHTCs) in order to measure strains in thermal environments up to
1000 ◦C. This background work has shown the promise of using CCGs for applications in high
temperature environments. Aerospace hot structures and thermal protection systems (TPS) are
examples of some of the most likely applications for CCG sensors, which are subjected to simultaneous
thermal and mechanical load [41]. The thermo-mechanical coupling makes the measurement of
high temperature strains however extremely difficult and expensive. In this paper we present an
experimental method that can identify the presence of a simultaneous thermal and mechanical load
on a structure subjected to high temperatures by using CCGs. We carry out a thermo-mechanical
experiment related to the application of CCGs on an ultra-high temperature ceramic material (UHTC)
structure. The results from the experiments and from theoretical formulas are compared and analysed.
We also develop a FE model to simulate the experiments and explain the failure mechanism based on
the stress distribution and strain field variation. The relative errors between the CCG sensor and FE
method related to the strain measurements are also compared and discussed.

2. Experimental Design

The experimental setup used in this work (Figure 1) was designed to simulate a realistic
service condition represented by a thermal protection shield (TPS) on a hot external structure, like
in hypersonic vehicles [42,43]. The UHTC specimen [40] was heated vertically from the bottom
through the hole on the workbench. The diameter of the heating spot was 20 mm and the distance
from the laser heating-lens mounted at the bottom of the gantry to the specimen was 200 mm.
The vertical displacement of the UHTC specimen was fixed by a horizontal vice along the two borders.
The minimum force was adjusted to produce a friction force to balance the weight of the specimen.
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Corundum ceramic plates were placed on the contact area between the UHTC specimen and
the horizontal vice to reduce heat transfer. In this situation, the thermal expansion of the UHTC in a
vertical direction was restricted upon heating and a compression stress was then induced along this
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direction. The CCG sensor was attached to the surface of the UHTC along the horizontal direction to
measure its thermo-mechanical response.

The CCG sensor used in this study was fabricated using Ge-doped silica fibres at the Institute of
Photonics Technology (Jinan University, Guangzhou, China). A high-purity alumina adhesive (Rebond
989FS, Cotronics Corp., New York, NY, USA) was used to connect the CCG to the specimen. The size
of the specimen was 40 mm × 45 mm × 5 mm. The UHTC sample used in this study was fabricated
from commercial ZrB2 (Northwest Institute for Non-ferrous Metal Research, Xi’an, China) and SiC
powders (Weifang Kaihua Micro-powder Co. Ltd., Weifang, China). The powder mixtures of ZrB2

with 15% v/v SiC were ball-milled in ethanol for eight hours with a hard milling tool and dried in a
rotating evaporator. Milled powder was then hot-pressed uniaxially in a boron nitride coated graphite
die at 1950 ◦C for 60 min under a vacuum and 30 MPa of pressure was applied, giving it good oxidative
stability up to 2000 ◦C [44].

A high-power fibre-coupled laser (DILAS Diodenlaser GmbH, Mainz-Hechtsheim, Germany.
Laser class: Compact-980.10-1500C, output power: 1500W, wavelength: 980 nm ± 10 nm@25 ◦C) was
used to heat the specimen in this study. The temperature of the specimen was controlled by adjusting
the laser heater output power according to the temperature response data. An optical fibre-grating
demodulator (si425 Optical Sensing Interrogator, Micron Optics, Inc., Atlanta, GA, USA) was used to
record reflected wavelength signals. A thermocouple was mounted on the adhesive layer to measure
the temperature of the specimen and a multi-channel temperature signal acquisition instrument
(LR8402-21, HIOKI, Nagano, Japan) was used to record temperature responses. The thermocouple
signal was mainly used for temperature compensation, which is generally adopted to decouple CCGs
signals [45].

3. Experimental Results and Analysis

3.1. Experimental Results

The designed experimental rig is shown in Figure 2. The thermo-mechanical experimental test
was performed using a CCG sensor with centre wavelengths of 1550.521 nm. During the test, the
specimen was slowly heated by adjusting the output power of the laser heater, and the response of the
CCG sensor and thermocouples was recorded by the instruments. The test stopped when the UHTC
specimen fractured at 695 ◦C.
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Figure 2. Experimental rig for the thermo-mechanical test.

The fracture was located at the centre of the specimen in an area parallel to the direction of the
CCG sensor (Figure 3). During the test the specimen’s compression stress along the vertical direction
increased alongside the temperature, because its expansion at that direction was constrained by the
horizontal vice. Cracks were generated when local stress exceeded the UHTCs strength at that specific
temperature, and the fracture occurred with propagating cracks due to the fragility of the UHTCs.
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Figure 3. Photo of UHTC specimen with a fracture after a test.

The curve of the measured response signals from the CCGs versus the temperature is shown
in Figure 4a. As can clearly be observed from that plot, the response of the wavelength presents a
nonlinear increase versus the temperature. Nonlinearity is affected by many factors, such as the highly
temperature-dependent nature of the thermo-optical coefficient and the thermal expansion coefficient
of the silica fibres [46], the variation in the period of the optical fibre sensor and the elastic-optic
coefficient [47]. Figure 4b shows the results of the relative variation in wavelength versus temperature,
as well as the quadratic curve-fitting of the experimental data. Table 1 lists the curve fitting parameters
with a 95% confidence interval. Similar quadratic thermal responses have been recorded in other
studies [40,48–50].
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Table 1. Fitting parameters of experimental data (R2 = 0.986).

Parameter Value Standard Error

Coefficient of the first-order term KT1 1.18 × 10−5 9.98 × 10−8

Coefficient of the second-order term KT2 −1.39 × 10−9 1.52 × 10−10

Universal constant C −2.20 × 10−4 1.28 × 10−5

3.2. Analysis of the Results

We have used Equation (1) [50] to denote the quadratic relationship between the relative variation
of the measured total wavelength response ∆λB/λB and the temperature:

∆λB
λB

= KT1∆T + KT2∆T2 + C (1)
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where KT1 represents the coefficient of the first-order term, KT2 represents the coefficient of the
second-order term, and C is a universal constant. The first-order term coefficient KT1 can also be
written in the following form [40]:

KT1 = (α + ζ) + Kεβ (αs − α) (2)

where α, ζ and Kε denote the thermal expansion coefficient, thermo-optical coefficient and strain
sensitivity coefficient of the CCGs, respectively. The term αs denotes the thermal expansion coefficient
of the UHTC and β is the strain transfer coefficient used to characterise the strain difference between
the structural and the actual sensed strains induced by the adhesive layer. The sensed strain can be
represented by the actual structural strain multiplied by factor β [50]:

εC = β(αs − α)∆T (3)

where εC denotes the CCGs-sensed strain along the horizontal direction for this test.
From Equations (2) and (3) it is possible to derive the following relation:

εC =
KT1 − (α + ζ)

Kε
∆T (4)

The strain values εC sensed by CCGs can be calculated using Equation (4) from the experimental
data. Then, the practical structural strain can be calculated by the following equation, while the values
of β at different temperatures can be found from [40]:

εS = εC/β (5)

The theoretical strain of the specimen can be solved by considering the thermal deformation
relations. If we denote εTh as the theoretical strain of the specimen along the horizontal direction (CCGs’
direction), its final value contains the effects of the strain in both horizontal and vertical directions:

εTh = (αs − α)∆T + υ (αs − α)∆T (6)

where υ is the Poisson’s ratio of the UHTC material. Figure 5 shows a comparison between the
experimental and theoretical strain. One can observe the existence of good agreement between the two
data sets. The nonlinear experimental strain in Figure 5 was calculated by using Equation (4), in which
the parameter KT1 has been obtained from the response signals of the CCGs. The theoretical strain in
Figure 5 was calculated by using Equation (5). The maximum relative error is 2.15%, indicating that
the CCGs sensor can provide a good strain measurement under thermo-mechanical loading for the
external hot structure to which it is applied.
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4. Finite Element Analysis and Discussions

4.1. Finite Element Model

A finite element method (FEM) was used to simulate the thermo-mechanical test process. It is
worth mentioning that the use of a robust FE model to represent the phenomenon could be instrumental
to reduce the time available for the experimental tests, and especially the financial costs associated
to full-scale experimental trials. A full-size three-dimensional model of the UHTC specimen and
the adhesive layer was built using the finite element analysis (FEA) software (ANSYS, Version 16.1),
as shown in Figure 6a. The FE model was assumed to be a combination of two quarter-spheres and a
half-cylinder, approximately. The detailed dimensions of the adhesive layer and UHTC specimen used
in this study are shown in Table 2. The CCG sensor was ignored in the FE model due to its small size.
The material properties of the UHTC and adhesive are shown in Tables 3–5. The properties not listed
in the tables at other temperatures can be estimated by linear interpolation. Heat transfer analyses
were carried out with three dimensional twenty-node DC3D20 elements. Thermal-mechanical analyses
were carried out with three dimensional twenty-node C3D20 elements. A mesh convergence study
had been performed, and showed that the mesh size was sufficient for the stress within the critical
region to converge.
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Table 2. Dimensions of the adhesive layer and UHTC specimen.

Parameter
Adhesive Layer UHTC Specimen

Length Width Height (Sagitta) Length Width Thickness

Value (mm) 20 6 2.5 45 40 5

Table 3. Mechanical properties of the UHTC material [51,52].

Density
(kg/m3)

Poisson’s
Ratio

Elastic Modulus (GPa) Compressive Strength (MPa)

20 ◦C 1400 ◦C 20 ◦C 800 ◦C

4960 0.165 463.0 158.7 1106.4 1009.2

Table 4. Thermal properties of the UHTC material [40,53].

T (◦C) 20 303 594 891 1196 1499 1806

Thermal conductivity (W/m·◦C) 112.00 110.63 88.86 67.70 61.67 64.04 50.77
Specific heat (J/kg·◦C) 700.00 777.61 828.19 869.36 1013.46 1016.08 1083.27

CTE (10−6 ◦C−1) 3.31 5.45 6.67 7.20 7.62 8.03 8.43
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Table 5. Properties of the adhesive material [54].

Density
(kg/m3)

CTE
(10−6 ◦C−1)

Thermal Conductivity
(W/m·◦C)

Specific Heat
(J/kg·◦C)

Elastic Modulus
(GPa)

Poisson’s
Ratio

3700 8.1E-6 85.18 1004.16 370 0.2

The mechanical and thermal boundary conditions are illustrated in Figure 6b,c. The displacements
of two side faces of the specimen along the vertical direction were fixed to the constraints representing
the horizontal vice. The temperature history curve measured during the experimental test (Figure 7)
was applied to the bottom surface of the specimen as the temperature boundary condition. The total
heating time was 2570 s. Heating area was a 25 mm diameter circular area, which is the same as that
of the laser heater spot. Other areas of the bottom and top surface were specified as the radiation
boundary condition with a surface emissivity of 0.85. Natural convection was not considered in
this study. Both the UHTC and adhesive layer were assumed be isotropic materials and remained
in the linear elastic range during analysis, and they were always perfectly bonded to each other.
The experimental simulation was carried out based on the sequential coupled thermo-mechanical
analysis with a Newton-Raphson method.
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4.2. Results and Discussion

The temperature distributions at the end of the thermal analysis are given in Figure 8. It can
be seen that the maximum temperature of the specimen at the centre reached the value of 695 ◦C
while the minimum temperature was 681.2 ◦C and localised at the corners of the specimen. The large
thermal conductivity value of the UHTCs material made the maximum temperature difference lower
than 14 ◦C.
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The temperature field distribution has been used as a thermal load to predict the internal stresses
in the structure. The transient stress analysis results showed that the primary stress on the specimen
was a compressive one (vertical to the CCG), and was caused by the constraints provided by the
horizontal vice. By comparing the thermal stress contours at different times, it is possible to draw
the same conclusion about the specimen’s stress along the y-direction: stresses are always negative
(i.e., compressive), and the minimum compressive stress in absolute value is located at the bonding
region between the UHTC and the adhesive layer, while the maximum compressive stress (magnitude)
is located in the area around the boundary of the bonding area. The compressive stress distributions
along the y-direction without an adhesive layer at 1900 s and 2000 s are shown in Figure 9a,b.
The compressive stress at the four borders reached 1053 MPa at 1900 s (Figure 9a) and exceeded
the UHTCs’ compressive tensile strength at that specific temperature (446 ◦C).
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According to the FE analysis, the temperature of the border after 2000 s was around 484 ◦C, and
the corresponding compressive strength was 1048 MPa. Two strip-shaped areas near the connection
region exceeded their compressive strength (Figure 9b). If we compare the locations of the failure
with the fracture point shown in Figure 9c, it is apparent that the fracture occurred in the location
corresponding to the maximum compressive stress. The FEA results provide evidence to justify the
observed experimental results. The micro-cracks present in the structure may have been generated
as a result of the constrained thermal expansion after 2000 s, followed by crack propagation until
fracture occurred.

The strain on the specimen can also be obtained from the FEA analysis. We selected all the nodes
along the line where the CCG was bonded at the UHTCs’ adhesive surface, then calculated the average
value of the nodal mechanical strains along the x-direction and obtained the strain versus time and
temperature curves. These numerical values were then compared with the strain values measured by
the CCG sensor (Figure 10a). By comparing the finite element simulation results with the experimental
data we found that the results of the two methods are in good agreement. Table 6 provides the relative
error of the two results, which decreased for increasing temperatures. The relative error was however
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larger in the low temperature regime (less than 100 ◦C), due to the strain value being itself very small.
Above 200 ◦C the relative error was less than 15%, and the relative error between the two methods at
the final temperature of 695 ◦C was only 6.71%.
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Table 6. Relative errors of mechanical strain between FEA and experimental results.

Temperature (◦C) 100 200 300 400 500 600 695

Relative Errors 18.96% 14.92% 13.79% 13.19% 9.91% 8.10% 6.71%

Within the elastic range we can use the strain to calculate the corresponding stresses, according to
Hooke’s law. As shown in Figure 10b, the structural compressive stress curves were calculated over
time by using the strain of the FEA and the CCG sensor. At the same time, the compressive strength of
the UHTC at the corresponding temperature was also obtained (see Figure 10b). Both compressive
stresses were greater than the material compressive strength in the 1900 s–2000 s range, and the
temperature range of the corresponding times were roughly 446 ◦C–483 ◦C, respectively. This was in
agreement with the experimental results.

The discrepancies between simulations and experimental results were mainly derived from
the representation of the boundary conditions and assumptions like the use of adiabatic boundary
conditions. In the actual experiment, it was difficult to completely insulate the specimen from the
surrounding environment and to keep the applied displacement constraints constants. Nonetheless,
the results show that the FE model is capable to represent the physics and provide some robust
predictions about the thermo-mechanical coupling occurring inside the structure.

5. Conclusions

In this work, the application of a CCG fibre optic sensor on a hot structure was evaluated and a
simple method to perform a combined thermal and mechanical load test has been presented. A high
temperature test was performed on a UHTC specimen that was subjected to thermo-mechanical loads.
The response characteristics of the bonded CCG were highlighted by a signal decoupling technique on
the basis of a temperature compensation method. The results showed that the relative error between
the test results and the theoretical strain value was less than 2.15%. The finite element method was
used to simulate the experimental process, and the temperature field, stress field and strain field
were calculated and analysed. The finite element analysis showed that the compressive stress of the
connecting region exceeded the strength value of the material in the thermo-mechanical coupling
environment, which explains the failure of the hot supporting structure. Numerical simulations can
accurately predict the location and time of the failure of thermal structures, as well as the corresponding
stress failure values. The numerical analysis can also reasonably explain the failure mechanism
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observed during the test. Furthermore, the numeric simulation results showed that the relative error
of the strain decreased alongside an increase in temperature. The relative error was lower than 15%
when the temperature was higher than 200 ◦C and only 6.71% at 695 ◦C.
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