
sensors

Article

Self-Tuning Fully-Connected PID Neural Network
System for Distributed Temperature Sensing and
Control of Instrument with Multi-Modules
Zhen Zhang, Cheng Ma * and Rong Zhu

Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
zhangz14@mails.tsinghua.edu.cn (Z.Z.); zr_gloria@mail.tsinghua.edu.cn (R.Z.)
* Correspondence: macheng@mail.tsinghua.edu.cn; Tel.: +86-10-6277-1694

Academic Editor: Vittorio M. N. Passaro
Received: 24 August 2016; Accepted: 12 October 2016; Published: 14 October 2016

Abstract: High integration of multi-functional instruments raises a critical issue in temperature
control that is challenging due to its spatial–temporal complexity. This paper presents a multi-input
multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating
the temperature environment within a multi-module instrument. The smart system ensures that the
internal temperature of the instrument converges to a target without the need of a system model, thus
making the control robust. The system consists of a fully-connected proportional–integral–derivative
(PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show
that the presented system can effectively control the internal temperature under various mission
scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a
new scheme for a complex and time-variant MIMO control system which can be widely applied for
the distributed measurement and control of the environment in instruments, integration electronics,
and house constructions.
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1. Introduction

Miniaturization, modularization, and multi-functionalization have become development trends
in instrumentation [1–4]. For example, Christian et al. [5] introduced one of the smallest real-time
polymerase chain reaction (PCR) systems with a size of 100 × 60 × 33 mm3 and a weight of
approximately 90 g. Segyeong et al. [6] presented a portable microfluidic flow cytometer with dual
detection ability of impedance and fluorescence that is 150 × 100 × 100 mm3 in size and weighs nearly
800 g. Roda et al. [7] designed a simple and versatile portable device based on chemiluminescence
lensless imaging that can simultaneously perform different types of bioassays.

For the instruments with multi-modules, internal temperature control becomes an important
issue, since the different functions are achieved by several modules integrated in one box, and the
modules’ thermal characters vary. For instance, the typical PCR temperatures are approximately
90 ◦C in denaturation, 55 ◦C in annealing, and 72 ◦C in extension [1]. Thus, these are three different
temperatures in one cycle. The loop-mediated isothermal amplification (LAMP) temperature is set
to a fixed value of 55 ◦C [2]. However, general modules require the environment temperature to be
constant and near to room temperature. This is a challenge, since the modules are shaped differently
and placed very close to each other due to spatial constraints.

Distributed temperature control is a general problem in various fields. Song et al. [8] introduced
a method using artificial neural networks to optimize the temperature control in data centers.
Shen et al. [9] designed a novel decoupling control system for high-dimensional, multi-input,
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multi-output (MIMO) room temperature control. Pohjoranta et al. [10] presented a method to
control the temperature difference over the solid oxide fuel cell stack based on the predicted model.
Moon et al. [11] introduced a temperature control method for an ultrasupercritical once-through
boiler–turbine system using MIMO dynamic matrix control technology.

The distributed MIMO temperature control problem is complex because of strong coupling and
time-variance in the internal structure. The modeling method is a common decoupling method with
the estimation of the action object. Li et al. [12] introduced a decoupling method in a double-level
air flow dynamic vacuum system based on neural networks and prediction principle. Gil et al. [13]
presented a constrained nonlinear adaptive model-based control framework applied to a distributed
solar collector field. Shen et al. [14] presented the temperature uniformity control of large-scale vertical
quench furnaces with a proportional–integral–derivative (PID) decoupling control system to eliminate
the strong coupling effects of multi-heating zones. Although the modeling method is an effective
approach to dealing with the coupling effects in some cases, it cannot meet all the demands in practical
application. Furthermore, the control performances of this method usually depend on the accuracy of
the developed model, which highly restricts the robustness of the system.

The proportional–integral–derivative neural network (PIDNN) controller is independent of
system modeling, and it is suitable for fan speed control [15–17]. Lee et al. [15] presented a PIDNN
controller for a server fan cooling system. Rossomando et al. [16] used an adaptive neural PID
controller for mobile robots’ trajectory tracking control. Maraba et al. [17] introduced a PIDNN-based
speed control method for an asynchronous motor. To control a MIMO coupling fan cooling system,
PIDNN controllers were used separately and thus could not deal with the coordination among the
fans, which degraded the effectiveness of the control.

In this paper, a novel MIMO temperature sensing and control system based on a fully-connected
PID neural network (FCPIDNN) is developed for an integrated instrument with multi-modules.
The system takes the advantages of a PIDNN controller and full-connection neural networks, and
capably adjusts the internal temperature of the instrument independent of object modeling. It enables
the achievement of a global optimization by self-tuning, and makes a reconfiguration under failure
event. The effectiveness of the control methodology is demonstrated and validated experimentally.

2. Problem Model and Design of Self-Tuning FCPIDNN Temperature Sensing and
Control System

2.1. Temperature Control Problem Formulation

Due to the complexity of the thermohydrodynamic operation, it is generally difficult to build an
accurate model for an instrument system. Stafford et al. [18] have made a thorough study at flat plate
heat transfer with axial fan flows. They used infrared thermography to quantify a two-dimensional
profile of the heat transfer coefficient on a flat plate for a range of fan speeds and the distances from
fan to plate. A relationship between the fan speed and heat transfer intensity was presented. Generally,
when the other conditions were kept stable, the faster the fan speed, the higher the Nusselt number
in their experiments. Thus, the convective heat transfer characteristics can be changed by adjusting
the fans’ speeds. Grimes et al. [19] have researched air flow and heat transfer in fan-cooled electronic
systems. In their works, we can see that the heat transfer processes situated in the inlet and exit air
flow from the fan varies significantly. The fan exhaling flow is unsteady and swirling, and the Nusselt
number is higher, which enhances the heat transfer. However, this method makes the internal air
more disordered.

Based on the previous research, when the other influencing factors keep invariant, we can get the
function relation of temperature and fan speed in the presented mockup as:

Ti = fi (F1, . . . , Fj, . . . , F6), i = 1, . . . , 6 (1)
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where Ti is the sensor’s temperature around module i, and Fj is the speed of cooling fan j. That is,
the temperature variation is infulenced by the fans’ speed. As mentioned above, due to the complexity
of the structural configuraiton and the thermohydrodynamic coupling, the function fi cannot be
obtained exactly. We can convert Equation (1) to another form:

Ti = ∑ 6
k=1(aik·Fk), k = 1, . . . , 6 (2)

aik = aik (F1, . . . , Fj, . . . , F6), j = 1, . . . , 6 (3)

where aik is the coefficient of Fk, which is decided by Fj (j = 1, . . . , 6). So, we can get the matrix form of
the function relation as: T1

...
T6

 =

 a11 . . . a16
...

. . .
...

a61 . . . a66


 F1

...
F6

 = A

 F1
...

F6

 (4)

where A stands for the relation matrix.

2.2. MIMO Temperature Sensing and Control System

As mentioned above, the PIDNN controller does not rely on the object’s model. The structure of
the PIDNN controller is a three-layer network whose hidden layer neurons’ activation functions work
as a PID controller [15–17]. The improved FCPIDNN controller proposed in this paper takes a series of
PIDNN controllers as basic controllers and adds a full connection layer between the basic controllers
and the cooling fans.
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Figure 1. Structure of the fully-connected proportional–integral–derivative neural network 
(FCPIDNN) temperature controller for an instrument. 

The structure of the FCPIDNN controller is shown in Figure 1. It contains a four-layer neural 
network. The symbol i represents the serial number (i = 1,..., 6). Ri is a target temperature. Ni is the 
fourth layer neuron. Pi is the pulse width modulation (PWM) control signal inputting to fan i, 
which is used to control fan speed. Fi is the speed of fan i. Ti is the local temperature of sensor i. The 
MIMO controller includes two main parts. One is six separate PIDNN controllers. The other is the 
full connection structure of the neural network. The structure of the PIDNN controller is shown in 
Figure 2, where Ri is the target temperature. Ti is the actual local temperature. Yi is the output of the 
PIDNN controller [15]. There are three layers in the PIDNN, including an input layer, a hidden 
layer, and an output layer. Each neuron has an input o and an output x. The input layer is used to 
estimate the difference between the set-point and the actual value. The hidden layer is composed of 
P, I, and D neurons, which implement a PID algorithm combined with connection weights from the 

Figure 1. Structure of the fully-connected proportional–integral–derivative neural network (FCPIDNN)
temperature controller for an instrument.

The structure of the FCPIDNN controller is shown in Figure 1. It contains a four-layer neural
network. The symbol i represents the serial number (i = 1, ..., 6). Ri is a target temperature. Ni is
the fourth layer neuron. Pi is the pulse width modulation (PWM) control signal inputting to fan i,
which is used to control fan speed. Fi is the speed of fan i. Ti is the local temperature of sensor i.
The MIMO controller includes two main parts. One is six separate PIDNN controllers. The other is the
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full connection structure of the neural network. The structure of the PIDNN controller is shown in
Figure 2, where Ri is the target temperature. Ti is the actual local temperature. Yi is the output of the
PIDNN controller [15]. There are three layers in the PIDNN, including an input layer, a hidden layer,
and an output layer. Each neuron has an input o and an output x. The input layer is used to estimate
the difference between the set-point and the actual value. The hidden layer is composed of P, I, and
D neurons, which implement a PID algorithm combined with connection weights from the hidden
layer to the output layer. The output layer contains one neuron, summing the outputs of the hidden
layer with weights. Here we utilize this kind of independent PIDNN mainly to reduce the complex
calculating cost to achieve a real-time online training.
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The full-connection structure from the output of the PIDNN to the fourth layer is mainly used to
link the basic controllers to the fans. As seen in Equation (4), the relationship between the six fans and
the output temperatures can be represented as a dimensional matrix. Under a slight change of the fan
speed, this relationship can be approximately linear. Thereby, Equation (4) can be simplified as:
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Y6

 (5)

where woij is the weight from Yi to Nj, and li is the scale factor between Pi to Fi.
In the PIDNNi, the weights from the first layer to the second layer are wi11 = wi12 = wi13 = 1 and

wi21 = wi22 = wi23 = −1, and the weight from the hidden layer to the output layer is wihl (l = 1, ..., 3).
The weight from the third layer to the fourth layer is woij, where i and j present the serial number
from PIDNNi to neuron Nj. The goal of the FCPIDNN controller is to minimize the deviation of
the actual temperature from the target temperature. The weights are updated online using the
back-propagation (BP) algorithm. So, the cost function is defined as:

J(n) =
1
2

6

∑
m=1

e2
m(n) (6)

where e represents the difference between the target and actual temperatures, m represents the number
of temperature control channels, and n represents the sample number. The BP updated algorithm is
used as:

woij(n) =woij(n− 1)− ηo
∂J (n)

∂woij (n)
(7)

wihl(n) =wihl(n− 1)− ηh
∂J (n)

∂wihl (n)
(8)



Sensors 2016, 16, 1709 5 of 12

where ηo and ηh are the learning coefficients. The partial derivative terms in Equations (7) and (8) can
be written as:

∂J
∂woij

=
6

∑
m=1

(
∂J

∂em

∂em

∂Tm

∂Tm

∂Fj

∂Fj

∂Pj

∂Pj

∂woij

)
(9)

∂J
∂wihl

=
6

∑
m=1

{
∂J

∂em

∂em

∂Tm

[
6

∑
j=1

(
∂Tm

∂Fj

∂Fj

∂Pj

∂Pj

∂Yi

∂Yi
∂wihl

)]}
(10)

Due to the absence of the system model of the instrument, we use a sign function to deduce
∂Tm
∂Fj

as:

∂Tm

∂Fj
= sgn

[
Tm (n)− Tm (n− 1)
Fj (n)− Fj (n− 1)

]
(11)

2.3. Convergence Analysis

Based on Equation (5) to Equation (6) and Figure 2, the difference between J(n) and J (n− 1) can
be written as:

4 J(n) = J(n) − J(n − 1) =
6

∑
i=1

3

∑
l=1

(
∂J(n)

∂wihl(n)
4 wihl(n)

)
+

6

∑
i=1

6

∑
j=1

(
∂J(n)

∂woij(n)
4 woij(n)

)
(12)

According to Equation (7) to Equation (8), we can get

4 woij(n) = woij(n) − woij(n − 1) = −ηo
∂J(n)

∂woij(n)
(13)

4 wihl(n) = wihl(n) − wihl(n − 1) = −ηh
∂J(n)

∂wihl(n)
(14)

Introducing Equations (13) and (14) into Equation (12), we can get

4 J(n) = J(n) − J(n − 1) =
6

∑
i=1

3

∑
l=1

(
−ηh

∂J(n)
∂wihl(n)

∂J (n)
∂wihl (n)

)
+

6

∑
i=1

6

∑
j=1

(
−ηo

∂J (n)
∂woij (n)

∂J (n)
∂woij (n)

)
(15)

Equation (15) indicates that 4J(n) ≤ 0, meaning that the cost function J(n) converges to the
minimum, implying that the system is stable.

3. Experiments and Discussion

3.1. Instrument Mockup

In practical applications, the different modules in an instrument have different power
consumptions. To evaluate the proposed self-tuning FCPIDNN for temperature sensing and control,
a mockup of a real instrument was constructed. The 3D model of the mockup is shown in Figure 3.

The mockup is 350 mm × 350 mm × 415 mm in volume with six modules inside. These modules
have different shapes and volumes. Inside each module, there is a heater to generate heating and
a small ventilation fan. The six heaters have different power, and the ventilation fans drive the
heat out of the modules into internal public space of the mockup. Each module has a temperature
sensor around itself, and there are six main cooling fans set at the back of the mockup. These cooling
fans serve as temperature-tuning actuators to modulate the internal temperature of the instrument.
Therefore, a temperature sensing and control system is built up with the modules, temperature sensors,
and cooling fans.
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Figure 3. (a) The appearance of the instrument; (b) The perspective view of the 3D model with six
modules inside and six cooling fans at the backplane; (c) The internal configuration of the instrument.

3.2. Experimental System and Results

The temperature sensing and control system was applied to a mockup of an instrument with
multi-modules, as illustrated in Figure 4a. The instrumentation includes a mockup, a power supply
(KEITHLEY 2260b-30-72), a temperature sensors (DS18B20) array, a tailor-designed data processing
circuit, and a data monitoring computer. The system used the FCPIDNN controller mentioned above
to perform the online temperature control. The details of the mockup have been presented previously.
Figure 4b shows the back view of the mockup, with six fans indicated as fan1 to fan6. Figure 4c
shows the internal layout of the mockup. The power supply was used to provide electrical energy
to the heaters inside the six modules, simulating the heating behavior of the modules. The powers
of the heaters inside modules 1 and 6, modules 2 and 3, and modules 4 and 5 are set to 24W, 48W,
and 96W, respectively. The temperature sensors were used to detect the local temperatures around
the six modules. The data processing circuit, including a field-programmable gate array (FPGA,
EP2C35F484), acquired the temperatures around the six modules from temperature sensors through
universal asynchronous receiver and transmitter (UART) port, implemented the developed self-tuning
temperature control and outputted the PWM control signals to the fans. The data processing circuit
also output the temperature information to the data monitoring computer through the UART port.
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To demonstrate the control performances of the proposed method in a MIMO temperature 
sensing and control system, we conducted three experiments and compared with the conventional 
method. The first experiment was conducted by comparing the temperature responses of the 
instrument by using a FCPIDNN controller and a traditional PIDNN controller. The second 
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Figure 4. (a) Structure of the temperature sensing and control system; (b) Back view of the instrument
mockup; (c) Internal layout of the mockup. PCB: printed circuit board.

Figure 5 shows the top level structure diagram of the FPGA’s program. The temperature signals
are transported to the FPGA by a UART port. Then, the temperatures are extracted by a data converter
and sent to the FCPIDNN controller together with the set-points. Finally, the calculated results are
converted to the PWM signals and output to the fans. The number of the total logic elements used in
the FPGA was 32,754. Specifically, the number of the total combination functions and dedicated logic
registers are 32,020 and 4382, respectively.
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To demonstrate the control performances of the proposed method in a MIMO temperature sensing
and control system, we conducted three experiments and compared with the conventional method.
The first experiment was conducted by comparing the temperature responses of the instrument
by using a FCPIDNN controller and a traditional PIDNN controller. The second experiment was
conducted to demonstrate the self-tuning of the controller when the target temperature changed
in-process. The third experiment was conducted to simulate the reconfiguration of the control system
when a pop-up actuator fail occurred.
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Figures 6 and 7 show the control results using conventional PIDNN and FCPIDNN controllers,
respectively. Figure 6a shows the results using a PIDNN controller to control a single module
temperature. Figure 6b shows the results using six separate PIDNN controllers to control the
temperatures of the six modules. Each controller worked in its own separate control loop. We can
see from the results that the PIDNN could control the environmental temperature of one module
very well, but brought steady-state errors when controlling for multiple modules. The steady-state
temperatures of several controlled objects did not converge to the target, due to the presence of the
mutual interference among the cooling fans. To solve this problem, we need to build connections
among the controllers and thus ensure the controlling processes tending to global optimization.
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Figure 6. (a) Control results of a PIDNN controller for single module; (b) Control results of six separate
PIDNN controllers for the six modules (Target temperature is 33 ◦C).
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Figure 7. (a) Control results of the FCPIDNN controller (Target temperature 33 ◦C); (b) Variation of the
square root of the cost function (

√
J (n)).

Figure 7a shows the results using the FCPIDNN controller. The experimental condition was
the same as that in Figure 6a. Figure 7b shows the corresponding variation of the square root of
the cost function. We can see that the temperature of different modules tended to the setting targets
simultaneously, and the cost function’s variation shows that the difference between the actual and
target temperatures decreased and approached the minima. There were no steady-state errors in the
temperature, and the control obtained a global convergence.

Figure 8 shows the control results using FCPIDNN controller when target temperature varied
in process. There were three different control processes. Figure 8a,b (process 1) shows the control
results when one temperature control target changed in a stable state. In the process, six controllers
maintained the six modules’ temperature at 32 ◦C at the beginning. Then, the target temperature of
module six was changed to 34 ◦C, and others’ temperatures remained unchanged. After a period of
self-tuning by the FCPIDNN controller, the temperatures of all modules approached to their own
targets, and the cost function gradually reduced to the minima. Figure 8c,d (process 2) show another
control result when temperature target changed to different values. In the process, the temperature
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initially remained at 35 ◦C. Then, the target temperature for modules 1, 2, and 6 was changed to
33.5 ◦C, and the target temperature for modules 3, 4, and 5 was changed to 32 ◦C. After a period of
self-tuning, all modules approached their target temperatures separately. Figure 8e,f (process 3) shows
the control results when the target temperature for all modules was changed twice in the process; i.e.,
35 ◦C at the beginning, then changed to 32.5 ◦C, and finally changed to 30 ◦C. The FCPIDNN controller
successfully modulated the temperature of the modules to the setting targets and the square roots of
the cost function got to minima at last.
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Figure 8. (a) Control results of the FCPIDNN controller when one temperature control target changed
in a stable state; (b) Variation of the square root of the cost function (

√
J (n)) in process (a); (c) Control

results of the FCPIDNN controller when temperature control targets changed to two different ones
halfway; (d) Variation of the square root of the cost function (

√
J (n)) in process (c); (e) Control results

of the FCPIDNN controller when temperature control targets changed twice in the control process;
(f) Variation of the square root of the cost function (

√
J (n)) in process (e).

Reliability of temperature control is generally very important in practical use. When a fan fails to
work, the system can make a self-reconfiguration to adapt to this situation. To validate the reliability,
we conducted an experiment by setting the target temperature of all modules to 32.5 ◦C at the beginning
of the process, and then shut off one fan. Figure 9a,b shows the control results when all fans were
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working. Figure 10 shows the control results when fan 2 failed. Figure 11 shows the control results
when fan 3 failed. We can see that the temperatures of the modules could be modulated to the setting
targets, even though one fan failed.Sensors 2016, 16, 1709 10 of 12 
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Figure 9. (a) Control results of the FCPIDNN controller when all fans were working (target temperature
is 32.5 ◦C); (b) Variation of the square root of the cost function (

√
J (n)).
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Figure 10. (a) Control results of the FCPIDNN controller when fan 2 failed (target temperature is
32.5 ◦C); (b) Variation of the square root of the cost function (

√
J (n)).
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Figure 11. (a) Control results of the FCPIDNN controller when fan 3 failed (target temperature is
32.5 ◦C); (b) Variation of the square root of the cost function (

√
J (n)).

From the experiments, we can see that both FCPIDNN and PIDNN can control the system without
the need of the model. The FCPIDNN can successfully deal with the coupling MIMO system with
global optimum, but PIDNN can only control the temperature for one module, and will bring errors
when controlling multiple coupling modules. In addition, FCPIDNN can make self-reconfiguration to
the actuator fail. The above capabilities enhance the robustness of the control system and make the
system smart, aiming at any possible scenario.
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4. Conclusions

In this paper, we developed a MIMO self-tuning temperature sensing and control system with
a novel FCPIDNN controller for an instrument with multi-modules. A mockup system was built
up to mimic the complicated environment in the instrument and test the effectiveness of the MIMO
self-tuning system. The MIMO temperature sensing and control system can adjust the internal
temperature environment of the instrument without the need for system modeling. It can get to
a global optimal result by on-line self-tuning. The system is applicable to effectively control the
internal temperature of an instrument aiming at various mission scenarios, in particular, it is able to
self-reconfigure upon actuator failure.
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