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Abstract: Wireless sensor networks have gained significant traction in environmental signal
monitoring and analysis. The cost or lifetime of the system typically depends on the frequency
at which environmental phenomena are monitored. If sampling rates are reduced, energy is saved.
Using empirical datasets collected from environmental monitoring sensor networks, this work
performs time series analyses of measured temperature time series. Unlike previous works which
have concentrated on suppressing the transmission of some data samples by time-series analysis but
still maintaining high sampling rates, this work investigates reducing the sampling rate (and sensor
wake up rate) and looks at the effects on accuracy. Results show that the sampling period of the
sensor can be increased up to one hour while still allowing intermediate and future states to be
estimated with interpolation RMSE less than 0.2 ◦C and forecasting RMSE less than 1 ◦C.

Keywords: wireless sensor networks; time series analysis; interpolation; forecasting; temperature;
environmental monitoring

1. Introduction

Wireless Sensor Networks (WSNs) allow dense spatiotemporal measurement of environmental
phenomena such as temperature, humidity, solar radiation and rainfall [1] which in turn can be used
to better understand local environmental conditions and processes. However, low-cost WSNs are also
characterized by the resource constrained nature of the WSN hardware. Limited available energy
for data sensing, storage and transmission is a common constraint in WSNs in remote areas where
mains power in unavailable or uneconomical to access. Sensor nodes are typically battery powered,
where node lifetime is determined by battery lifetime. Indefinite operation can be achieved with
energy harvesting using technologies such as solar cells, but energy efficiency is still a key factor
in determining the cost of deployment since more energy use means larger and more expensive
rechargeable batteries and solar cells.

The spatial extent, spatial density and sensing frequency of the WSN nodes is partially determined
by the scientific purpose of the deployment, but they will also be determined by the ability to model
the processes which generate the environmental data in sufficient detail to be able to interpolate data
values between sensed readings, both in time and space. If data can be accurately estimated between
readings, then the frequency of making readings can be reduced, which in turn reduces the energy
requirements and the deployment cost of the system, while increasing its lifetime. Previous work
has not investigated the quantitative effects of reducing sampling frequency on the accuracy of both
interpolated and predicted values. The optimal sampling interval will depend on the parameters being
sensed, the environment in which they are sensed, the specific features of the sensors, and the scientific
requirements for accuracy. This paper demonstrates the use of a data-driven method for determining
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sufficient sampling intervals through analysis of several specific sensor deployments. While we use
temperature as a use case, many features of our approach are generalizable to other sensing modalities.

This paper first investigates the nature of temperature readings in a large scale WSN deployment
in Springbrook, Australia [2]. Around 175 microclimate sensor nodes have been deployed for more
than 5 years, and they have recorded temperature readings (as well as other environmental phenomena)
every 5 min during this time. This provides a rich source of data for further analysis. For this paper,
just one week of data has been explored, since there is a significant cost involved in data cleaning and
checking prior to statistical analysis. The robustness of results would be improved if the analysis was
applied to a larger portion of the data.

In this paper, the temporal dynamics of the temperature recorded by the WSN is analyzed in
detail, with a view to answering two questions. Firstly, if the interval between sensing events is
increased, how accurately can temperature be interpolated between the sensor readings. Longer
sensing intervals will reduce the consumed energy, and hence reduce deployment cost or extend
deployment lifetime. Secondly, if real-time readings of temperature are needed, for how long can future
values of temperature be accurately extrapolated without needing instantaneous data transmission.

This paper addresses two research questions. Firstly, it analyzes the reduction in measurement
accuracy if the sampling interval is extended with temperature interpolated between these values.
Also different interpolation methods are compared.

Secondly, we model the temperature phenomenon as a stochastic process and analyse it using
a time series modelling framework [3], and use this analysis to determine how the short-term
predictability of future temperature is affected by sampling interval, and extrapolation technique.

The rest of the paper is organized as follows: Section 2 reviews the related literature. Section 3
explains the data used, Section 4 examines the first research question about the effect of sampling
interval on temperature measurement accuracy, Section 5 repeats the analysis for a different data set,
Section 6 explains time series modelling as background for the second research question, Section 7
answers this research question about future temperature prediction, and Section 8 concludes the paper.

2. Previous Work

WSN have the potential to revolutionize environmental sensing, providing high spatial and
temporal resolution data [4]. Recent deployments include personal environment monitoring [5], city
monitoring [6], building monitoring [7], ocean exploration [8] and toxic gas monitoring [9].

However, the nature of the measured phenomena are not always well understood. Environmental
phenomena can vary at very small spatiotemporal scales [6,10]. Exhaustive spatiotemporal study of
the behaviors of such dynamic phenomena requires deployment of an adequate number of sensor
nodes and effective collection of data.

In terms of temporal resolution, various ad hoc schemes have been proposed to optimize sampling
frequency, e.g., in [11] soil moisture is sampled more frequently near rain events to give more useful
data, however such techniques have not considered the detailed statistical nature of the signals.

Techniques have been proposed for spatially interpolating values within a sensor field [12–15]
but these generally assume a smooth gradient across the sensor deployment area, and the techniques
have not been well verified in real deployments. Most of the aforementioned references did not
consider statistical behavior of the environmental phenomena or they assume process stationarity [15].
Liu et al. [16] also investigate spatially clustering nodes and reducing sampling interval by having
only one sample report from a cluster each sample interval. The same effect could be achieved by
simply reducing each cluster to a single node. Also, their spatial redundancy techniques have not been
tested on real data, only on synthesized data.

Use of formal time series analysis in sensor networks has been reported by several researchers.
Law et al. [17] use time-series modelling to decide the confidence levels for future samples, and skip
the future readings if the values are likely to be accurate enough. However, this requires substantial
processing (adjusting time series models continuously for each new sample), and it requires full rate
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sampling for some time after skipping samples. At best, it reduces the number of required samples by
less than 50%.

In [18], Le Borgne et al. use time series prediction for future estimation of samples, so that some
data transmission can be suppressed. They present a useful algorithm for selecting a suitable time
series, but savings are only achieved for data transmission. The sensors still need to sample data
at the full rate. Miranda et al. [19] use autoregressive models to predict samples based on spatially
nearby sensors, however, their work does not investigate how to decide upon the optimum sample
rate. Liu et al. [20] also present a method for suppressing the transmission of data samples if the
receiver is able to accurately forecast samples based on time series models. Sensors are still required
to sample data regularly. This method does not allow sampling intervals to be increased. Recently,
Aderohunmu et al. [21] have also used similar time-series modelling for forecasting future sample
values so that data transmission can be suppressed. Amidi [22] has used ARIMA modelling for the
smoothing of noisy data and for interpolating missing data samples in a series, but again has not
analysed the best sample rate to provide accurate data interpolation.

Pardo et al. [23] investigate a neural network model for predicting future temperature in an indoor
environment for use with intelligent air-conditioning. Their neural network predictors perform
considerably worse than Bayesian predictors (although the authors claim there is little practical
difference), but their work does not investigate the effect of different sampling intervals.

Liu et al. [16] propose on-sensor temporal compression of data by only transmitting a dynamically
computed subset of data (with linear interpolation between these). This reduces the quantity of
transmitted samples, but not the sampling interval of the sensors, and also increases the latency before
receiving measurements.

Tulone and Madden [24] propose a system called Probabilistic Adaptable Query (PAQ) system
which develops an AutoRegressive (AR) time series model for every node for predicting future values.
If the future predictions based on past transmitted values are below some threshold, then no new data
is transmitted. Once this threshold is exceeded, new data is transmitted. Data still needs to be sampled
at high temporal resolution, and there is no investigation of what the best sampling interval should be.
They also propose round-robin scheduling on sensors in spatial clusters.

In general these previous works have used time series analysis to model the statistical behavior of
the data. They have been used for outlier and anomaly detection, and for separating the underlying
trends from noisy signals. They have been used for suppressing data transmissions when forecast
values are close to the measured values. However, with such systems, there has been no reduction
in the sampling interval, just in the transmitted data. Energy use consists of three main components.
Firstly every time data needs to be sampled, the sensor node needs to wake up, wait for the sensor node
and sensing transducer to stabilize, undertake any computational tasks (such as calibrating readings,
or comparing against predicted estimates of values), and possibly transmitting data to the data sink.
Previous work still requires the sensor to wake up, stabilize and compute at high sampling frequency.
Even if the energy to wake up, stabilize and compute is relatively small compared to transmission costs,
as would be the case for a temperature sensor, reducing the sensing frequency, and hence the number
of wake up times, will have a direct impact on sensor lifetime. Substantially more energy can be saved
in the sensor sampling interval can be extended without compromising the scientific usefulness of
the collected data. Previous work has not used time series analysis to analyse the accuracy of both
interpolated and extrapolated data values as the sampling period is varied. This analysis can help
a sensor network designer to set a sampling rate that satisfies the required error limit whilst reducing
energy consumption.

In this work, no behavioral assumptions of the process are made and all analyses are validated
with proper statistical tests. This analysis will allow insights into the required sampling intervals for
long-term deployments with moderate accuracy requirements.

It is worth noting that several papers, e.g., [16,24], reduce sampling intervals by round robin
scheduling of nodes with a spatial cluster of highly correlated nodes. In this paper, only sampling
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within a single time series is investigated, although we expect to address spatial redundancy in our
future work.

3. Temperature Data from Springbrook WSN Deployment

This section describes one set of temperature data that used for this study, and presents some
simple empirical observations. Situated in southeast Queensland, the Springbrook WSN deployment
consists of 175 sensor nodes monitoring temperature, pressure, humidity, wind, and several other
environmental parameters with a sampling period of 5 min, and it has been operating since 2008 [2].

Figure 1 shows four days of data from four sensors in the deployment which shows that the
temperature patterns are highly correlated between nearby sensors. This means that interpolation
and prediction results from one sensor node should be representative of results from all nodes in that
deployment. However, the temporal pattern over the week does not always show a clear daily pattern.
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Figure 2 shows the readings of one sensor over one week which shows that the temperature does
not rise and fall smoothly over the course of a day but has a significant component of noise.
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Figure 3 shows a differenced version of the signal, as given by Equation (1):

Y’(t) = Y(t) − Y(t − 1) (1)
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Figure 3. One week of difference values.

On first observation, this differenced signal does not have any clear structure, but appears largely
random. Simple statistical analysis shows a mean close to zero and a standard deviation of 0.14 ◦C.

4. Accuracy versus Sampling Interval

As mentioned earlier, energy can be saved and sensor lifetime extended if the interval between
sensor readings is extended. In this first experiment, the sensing interval is extended from the existing
5 min intervals to intervals of 10 min, 15 min, 20 min, 30 min, 45 min, 60 min, 90 min and 120 min by
selecting appropriately spaced samples from the 5-min data for one sensor over one week. Values at
the intervening 5 min intervals are then interpolated, and the RMSE (root-mean-square error) and MAE
(mean absolute absolute error) of the interpolated values are calculated. Two different interpolation
algorithms are chosen. The first method uses linear interpolation between the sampled points, and the
second method uses a cubic spline between the sample points. Table 1 shows the RMSE and MAE of
interpolated values, and the 99th percentile absolute error when the various interpolation methods are
applied to the one week sequence shown in Figure 2.

Table 1. Interpolation Error for Different Sampling Intervals (in ◦C).

Sampling
Interval (Mins) RMSE Linear MAE Linear RMSE Cubic MAE Cubic 99% Linear 99% Cubic

10 0.0884 0.0528 0.0852 0.0519 0.3250 0.2893
15 0.1097 0.0664 0.1088 0.0669 0.4000 0.4037
20 0.1166 0.0755 0.1228 0.0793 0.4200 0.4496
30 0.1527 0.0937 0.1531 0.0962 0.5800 0.5709
45 0.1865 0.1152 0.1921 0.1190 0.6867 0.7410
60 0.2224 0.1335 0.2330 0.1430 0.8425 0.8753
90 0.2439 0.1566 0.2507 0.1629 0.9133 0.8774

120 0.2646 0.1720 0.2893 0.1882 0.9425 1.0206
240 0.3297 0.2161 0.3290 0.2215 1.2758 1.2189

Figure 4 shows the growth of error with increasing sample intervals. The 95% confidence interval
for the RMSE of linear interpolation is also shown in Figure 4, and the difference between linear and
cubic interpolation is not significant within these confidence intervals. Except at smaller sampling
intervals, cubic spline interpolation gives poorer results, and so linear interpolation is preferred.
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These results show that with linear interpolation, the MAE remains below the standard deviation of
the difference signal (0.14 ◦C) in Figure 3 when the sampling interval is extended to 60 min. Alternatively,
if the accuracy requirement was that 99% of interpolation errors have an absolute magnitude of less
than 0.5 ◦C then the sampling interval can be extended to 20 min.

It should be stressed that these results apply to this particular deployment. The general result,
however, is that statistical analysis of sampled data over an initial deployment at relatively high
sampling rate can give insights into a lower long-term sampling rate which does not significantly
sacrifice accuracy.

5. Repeating for Another Data Series

The analysis above is repeated for another temperature data set using a different set of sensor
hardware, a different physical location (a mine rehabilitation and revegetation site) and a different time
of year (December 2013), again with samples every 5 min [25]. Figure 5 below shows four adjacent
sensors over a one week period, Figure 6 shows one signal, Node 5, in detail, which has a clear
cyclic pattern. Figure 7 shows the differences between consecutive signals over 7 days. The signal
appears mostly like a random noise signal, centred on zero. The variance of the noise is not constant,
but also varies cyclically with higher variances in the middle of the day. The standard deviation of the
temperature difference is around 0.3 ◦C.Sensors 2017, 17, 1221 7 of 17 
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Figure 7. Temperature Difference, Node 5 over 7 days.

Table 2 repeats the analysis of how well linear interpolation and cubic spline interpolation can
estimate intermediate temperatures if the sampling interval is reduced to 10 min, 15 min, 20 min,
30 min, 60 min, 690 min, 120 min or 240 min.

Table 2. Interpolation Error (◦C) for Different Sampling Intervals for Mine Data.

Sampling
Interval (Mins) RMSE Linear MAE Linear RMSE Cubic MAE Cubic 99% Linear 99% Cubic

10 0.1746 0.0941 0.1751 0.0960 0.6740 0.6366
15 0.2085 0.1164 0.2185 0.1211 0.7554 0.8286
20 0.2342 0.1360 0.2487 0.1459 0.8862 0.9436
30 0.2723 0.1588 0.2846 0.1693 1.0099 1.0027
45 0.3664 0.2029 0.3694 0.2087 1.2578 1.3131
60 0.4655 0.2498 0.4635 0.2493 1.5781 1.5309
90 0.5837 0.3093 0.5762 0.3033 1.9658 1.8047

120 0.6057 0.3836 0.5840 0.3663 2.1344 2.0859
240 0.9780 0.6687 0.8121 0.5515 3.0073 2.7782

Again linear interpolation gives better estimates at smaller sampling intervals up to 60 min.
For sampling intervals over 60 min, there is a small advantage for cubic spline interpolation. The results
also show that the sampling interval can be extended to about 60 min without the errors in the
interpolated values exceeding 0.3 ◦C, which is the standard deviation of the difference signal between
consecutive samples.
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6. Time Series Analysis of Random Processes

The next experiment involves forecasting future values of temperature based on past samples.
Liu et al. [20] described a system for saving sensor transmission energy when real-time estimates of
temperature are needed. Samples are taken at regular intervals, and at each interval both the sender
and the receiver calculate an estimated value based on the past time series. If the actual sensed value
at the transmitter is within an error margin (say 0.5 ◦C) then no data is sent, and the receiver uses the
forecast estimate. Once the error exceeds the error limit, then the actual current value plus any recent
past values needed for future forecasting are sent. Liu et al. show a reduction in transmitted data of
70% with a corresponding reduction in energy use. However, their work uses indoor temperature
readings with a very smooth behavior. We are interested if such a forecasting approach also works
in a much more variable outdoor environment. Forecasting of future values uses an ARIMA process
model and the subsequent sections explain the theoretical background behind such forecasting before
such techniques are applied to our data.

6.1. Time Series and Stochastic Process

Due to the lack of complete knowledge of the complex underlying physical processes that
generate local climate, environmental phenomena are in general modelled as stochastic processes [26].
A stochastic process varying in time is characterized by the sequence of a random variable. Any time
sequenced realization of such a process is called a time series. Time series analysis involves a range
of investigations of the behavior of the observed stochastic process. Such analyses reveal structural
behavior of the process that can be used to fit a suitable statistical model and understand short-term
and long-term behaviour. Time series analysis is widely employed in areas such as signal processing,
business processes and economic modelling, and there are many references which explain the concepts
in detail [27–29].

Typically, in time series analysis, a process Y(t) is assumed to consist of several sub components:
a trend, µ(t), a periodicity P(t), seasonality, P(t), and a random shock e(t), as shown in Equation (1).
The trend component represents a deterministic tendency such as long term global warming;
a periodicity represents regularly repeating behavior such as diurnal temperature variations;
seasonality represents longer term patterns such as summer and winter, and the random shock
captures the effects of local short term changes which are not explained by the longer term patterns:

Y(t) = µ(t) + P(t) + S(t) + e(t) (2)

If the properties of a process vary with time, then it is difficult to predict future values from its
observed time series Y(t) and such a process is called a non-stationary process. Most environmental
phenomena fall in this category. In order to analyze a random process and perform state estimation,
some sort of stationarity assumption needs to be made. In general, a second order stationarity
assumption is made which assumes that the mean and the variance characteristics of the process do
not change over time.

6.2. Time Series Model Development Strategy

Time series model development involves estimating a process characterizing components
mentioned in Equation (2) with several sequential steps as shown in Figure 8. This generic time-series
analysis framework is also known as Box-Jenkins time series modelling [28]. Structural analyses study
the sample autocorrelation function and examine the stationarity property of the process.
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6.2.1. Model Specification

In general, the current state of any random process may depend on time, its past states, and
some random shocks or a combination of these. Such dependencies of the observed series need to be
extracted. Linear or nonlinear regression captures the trend component of the process. Dependencies
with previous states can be captured by regression of the current state with the previous state and the
effect of random shocks can be captured by involving noise components.

There are many different possible time series modelling approaches, but the most general of these
is the Auto Regressive, Integrated, Moving Average (ARIMA) model. Stationarity of time series can
be determined from the analysis of sample autocorrelation function and conducting an Augmented
Dickey-Fuller (ADF) unit root test [28]. If the time series is found to be non-stationary, transformation
of the series can be performed that makes the series stationary. Logarithmic and power transformation
and series differencing are the most commonly used transformation approaches. If the difference is
taken to make the time series stationary, then the model is an Integrated model (i.e., ARIMA rather
than ARMA). The order of the differencing is represented by a parameter d.

The ARIMA model specification involves finding suitable autoregressive (AR) and moving
average (MA) sub components of the Integrated model. The model represented in Equation (2) and
can then be specified as in Equation (3):

Yt = µ + φ1Yt−1 + · · ·+ φpYt−p+et − θ1et−1 − · · · − θqet−q (3)

Parameters specify deterministic (µ), autoregressive (φ), moving average (θ), and error (e)
components. p and q represents the orders of AR and MA components which are determined by
analyzing sample autocorrelation, and extended autocorrelation function of the time series. Overall,
the time series is then modelled by an ARIMA (p, d, q) model.

6.2.2. Parameter Estimation

After specifying differencing to achieve stationarity and specifying the AR and MA orders,
the next step is the estimation of the parameters involved in Equation (3). For most random processes,
parameters φi and θi are estimated using a Least Square (LSE) or Maximum Likelihood (ML) estimator.
These parameters can then be used to estimate future values of the series

6.2.3. Model Diagnostics

Model specification deals with examining the goodness of the fit of the model parameters.
Analysis of the residuals and over-parameterized models are two approaches used for validation.
If residuals obtained after fitting a model fit a Gaussian noise distribution, then the model is considered
to be valid. Over parameterizing models involve internationally over fitting model with higher orders
of p and q. If the over fitted model doesn’t show significant improvement in its residuals, the fitted
model is considered to be valid.
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6.2.4. Time Series Forecasting

After fitting a suitable model, the future state of the time series can be forecast. These future
values can themselves be used to estimate further future values of the series. The forecasting power
of the time series model is based on how many future sample values can be estimated with some
desired accuracy.

7. Forecasting Experiments

As mentioned earlier, forecasting of future values can reduce the transmission energy for real-time
temperature modelling. Analysis of the mine site temperature data (from Figure 6 above) is undertaken
to estimate the forecasting accuracy of future samples.

The time series analysis in Section 6 uses standard methods to characterize the physical process.
This section proposes a mechanism that uses the results of the time series analysis to identify the best
sampling interval for a sensor deployment. We also observe what level of prediction improvement is
gained by use of ARIMA models.

Environmental time series are usually non-stationary and require data cleaning to deal with
missing data due to energy failures or other causes. The non-stationary nature is addressed by
applying differencing and checking that the difference signal is stationary, as described in Section 7.1.
The data used here has been manually checked the series here have been cleaned of any missing or
repeated data (which was less than 1% of the data samples).

7.1. Structural Analysis of Time Series

Data analyses in this paper are primarily done in R [30], specifically using the package developed
in [31]. Microsoft Excel and MATLAB are used for some data formatting and data plotting.

The chosen data series is the one week sample series shown in Figure 6 above. Stationarity is
checked by examining the one week sample autocorrelation plot of the selected series, as shown in
Figure 9. This autocorrelation plot has a clear structure which varies with the autocorrelation lag.
Temperature patterns in one day are clearly correlated with the pattern the next day. This shows the
clear presence of non-stationary (periodic) behavior in the series. After applying differencing, the time
series in Figure 7 above was obtained. Figure 10 shows the autocorrelation of the differenced signal.
Compared to the sample autocorrelation of Figure 9, the differenced series has an autocorrelation
function which still has some regular structure, but the magnitude of the autocorrelation is less than
0.2 for all lags.Sensors 2017, 17, 1221 11 of 17 
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7.2. Model Order Selection

As the series becomes stationary after differencing, an ARIMA model will be used for the time
series model. As the average of the differenced series varies about zero, the expected value of the
deterministic trend can be considered to be zero. The next step is to determine the orders of AR and
MA components for the most suitable model. The Akaike Information Critera (AIC) are widely used
criteria which trade off the increased accuracy of higher order models with the parsimonious use of
fewer model components [21]. Using the “auto.arima” routine from the forecast package in R which
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tests many different models, AR and MA orders of the series are estimated for different sampling
rates. Estimation of AR and MA orders for different sampling rates help us to examine how time series
model varies with different sampling rate of the deployed sensors. Table 3 shows the models with the
best AIC score based on the first three days of data as shown in Figure 8 above, for different sampling
rates (i.e., for subsampled subsets of the original data). These different sampling rates capture different
realizations of the process and specify different orders for the ARIMA models, however there is not
any clear interpretation of how ARIMA model order varies with sampling rate, other than the fact that
for this data set, 60 min sampling gives the simplest model.

Table 3. AR and MA orders for different sampling rates.

Sampling Rate (Minutes) Fitted Models

5 ARIMA(3,1,1)
10 ARIMA(2,1,2)
15 ARIMA(1,1,3)
20 ARIMA(1,1,3)
30 ARIMA(2,1,1)
60 ARIMA(1,1,0)
120 ARIMA(3,1,1)

Experiments on other data (such as the data shown in Figure 2, or on different subsets of the
week in Figure 8) show that the best ARIMA model order is not very consistent between different
deployments or different periods and would need to be revised regularly when used for prediction.
Rechecking and updating the best predictive model order once a week for each different sensor (rather
than using a single model order for all deployments) would allow seasonal changes in model order to
be tracked.

7.3. Forecasting

To test the forecasting ability of the time series models, the ARIMA models are used to forecast
the remaining four days of data shown in Figure 6. In particular, the following procedure is used.
For each sampling rate, the ARIMA model of the order shown in Table 3 is trained on three days
of data, and then used to predict up to two hours forward from that point, e.g., for 5 min sampling,
24 future points are estimated, for 30 min four future points are estimated, and for 120 min, one future
point is estimated. Then the 3 day training window is moved forward by 2 h, the models retrained,
and the process repeated for the remainder of the four “testing” days of the sample. For sampling
rates greater than 5 min, the future predictions at 5 min intervals are linearly interpolated between the
future prediction points. For example, for 30 min sampling, the future prediction at 5 min is linearly
interpolated between the last data point and the first predicted point.

Additionally, two other prediction models are used based on the 5 min sampled data. The “zero
difference” model uses the last data point in the undifferenced series as the predictor for the next two
hours. This is the same as using the mean (zero) of the differenced series as the predictor of the next
difference. The “same difference” model linearly extrapolates from the last two data points in the
undifferenced series, which is the same as assuming that the next difference value is the same as the
current difference value.

The accuracy of the future predictions are measured by the RMSE of the predictions across the
four days, and also the MAE of the predictions. Table 4 shows the results for RMSE and Table 5 shows
the results for MAE. Figure 12 shows a plot of the RMSE for the different predictors versus the forecast
time, where, for example “ARIMA5” means the ARIMA model with 5 min sampling interval.
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Table 4. RMSE of Future Temperature Predictions in ◦C.

Forecast Simple Models ARIMA Models Sampling Intervals (Minutes)

Time
(Mins)

Zero
Diff

Same
Diff 5 10 15 20 30 60 120

5 0.33 0.49 0.33 0.17 0.13 0.13 0.11 0.12 0.12
10 0.48 0.78 0.45 0.45 0.38 0.39 0.35 0.34 0.34
15 0.59 1.07 0.51 0.51 0.51 0.51 0.45 0.44 0.46
20 0.62 1.36 0.53 0.54 0.54 0.63 0.54 0.54 0.57
30 0.91 2.02 0.75 0.76 0.77 0.90 0.86 0.84 0.85
60 1.56 4.05 1.07 1.07 1.06 1.29 1.17 1.39 1.33

120 3.32 8.47 2.50 2.52 2.52 2.71 2.58 2.80 2.48

Table 5. MAE of Future Temperature Predictions in ◦C.

Forecast Simple Models ARIMA Models Sampling Intervals (Minutes)

Time
(Mins)

Zero
Diff

Same
Diff 5 10 15 20 30 60 120

5 0.24 0.27 0.21 0.11 0.08 0.08 0.07 0.08 0.09
10 0.35 0.49 0.32 0.32 0.26 0.26 0.23 0.21 0.22
15 0.45 0.65 0.38 0.38 0.38 0.36 0.31 0.29 0.31
20 0.52 0.87 0.42 0.42 0.42 0.46 0.40 0.37 0.43
30 0.73 1.31 0.58 0.58 0.59 0.63 0.63 0.55 0.62
60 1.27 2.60 0.82 0.82 0.81 0.85 0.82 0.90 0.96

120 2.71 5.71 1.91 1.94 1.98 2.03 1.97 2.03 1.74
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Figure 12. RMSE versus Prediction Horizon for Different Predictors.

Because the different predictors are difficult to distinguish in Figure 12, Figure 13 shows
an expanded close up of the prediction up to 60 min, with the poorly performing linear extrapolation
(Same Difference) excluded. Figure 13 also shows the 95% confidence interval for the ARIMA60 results,
showing that the differences between predictors is small compared to the confidence interval.
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Figure 13. Detail of RMSE versus Prediction Horizon for Different Predictors with 95% confidence
interval for ARIMA60.

As can be seen from this data, the RMSE in forecasting increases as we forecast further in the future
and it exceeds 1 ◦C after about 60 min. This behavior can be explained by the sample autocorrelation
function in Figure 8. The correlation between samples decreases steadily as the lag increases, and so,
as predicted, the prediction error steadily increases. Another interesting observation from Figure 13 is
that the forecasting error does not change significantly with sampling interval. The “Same Difference”
or linear extrapolation method performs very poorly, and the “Zero Difference” method also performs
worse than any of the ARIMA models. In this particular example, the ARIMA model prediction
with 30 min sampling has lowest error. The differences between the ARIMA models with different
sampling intervals is small, and it is expected that the differences are artifacts of the particular data
series. However, a clear message is that prediction accuracy does not depend on high frequency
data sampling.

8. Conclusions

In this paper, univariate time series analysis is performed on an environmental sensors
array deployed for monitoring outdoor environmental temperatures. Statistical properties of the
phenomenon are observed and a suitable time series model is fitted. After parameter estimation,
evaluation of the forecasting error of the future temperature is performed with varying sampling period
of the sensor. Interpolation between subsampled series is also performed, and linear interpolation is
preferred to more complex cubic spline interpolation. Temperature can be interpolated with an RMSE
accuracy of less than 0.2 ◦C while extending the sampling interval to 60 min. For prediction, an RMSE
in prediction of less than 1 ◦C is possible if the sampling interval is extended to around 60 min.

Altogether, this detailed analysis shows than frequent temperature sampling (every 5 min)
provides limited additional information over sampling at intervals up to 60 min. Such a down
sampling can be helpful in extending the energy-limited lifetime of the sensor, and reducing the data
storage requirements.

This analysis has shown that it is not possible to state the best sampling interval for all
deployments based on experiments from one deployment. Instead, determination of the best sampling
intervals would need to be done on a case-by-case basis after some initial high-frequency sampling.
Then detailed data analysis using the methods described above can be used to determine a suitable
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sampling interval for that particular deployment. Our planned future work will move from the
required temporal resolution to look at the required spatial resolution for measuring sensor data across
a geographical area.
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