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Abstract: Independent living of elderly persons in their homes requires support that can be 
provided with modern assistive technologies. Monitoring of elderly persons behaviour delivers 
valuable information that can be used for diagnosis and detection of health problems as well as 
triggering alerts in emergency situations. The paper includes a description of the ultra wideband 
system developed within Networked InfrasTructure for Innovative home Care Solutions (NITICS) 
Active and Assisted Living (AAL) project. The system can be used as a component of AAL 
platforms. It delivers data on users localization and has a fall detector functionality. The system 
also provides access to raw measurement results from Microelectromechanical Systems (MEMS) 
sensors embedded in the device worn by the monitored person. These data can be used in solutions 
intended for elderly person’s behaviour investigation. The system was investigated under 
laboratory conditions as well as in home environment. The detailed system description and results 
of performed tests are included in the article. 
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1. Introduction 

World population is getting older. In Europe, according to EC report on aging [1], the number 
of people aged 65 and over is expected to grow from 18% of the population (in 2013) to 28% in 2060. 
Maintaining quality of life for all these people becomes a demanding task. One of the main points of 
Active and Assisted Living (AAL) programme strategy [2], is the promotion of independent living of 
elderly persons in their homes for as long as possible. 

Elderly person’s independent living is almost impossible without help of others. The majority 
of effort connected with the age-related care in Europe is made by family, friends and healthcare 
workers (80% according to [2]). Therefore, the solutions supporting caretakers as well as caregivers 
are highly demanded. The caretakers’ burdens can be lessened with Assistive Technologies (AT) 
defined as “any devices or systems that allow an individual to perform a task they would otherwise 
be unable to do or increase the ease and safety with which the task can be performed” [3]. 

According to [4,5], the main objectives of AT are: 

• to help with everyday activities (e.g., moving between places, rehabilitation, help in intellectual 
activities); 

• to gather and process health related data (e.g., temperature, blood pressure, sugar level);  
• to monitor elderly persons (e.g., detection of health endangering events, behaviour analysis); 

and  
• to support socialization and leisure activities (e.g., helping to make contacts with other people, 

playing games). 

Recently, the great progress made in Information and Communication Technologies (ICT) 
encourages many investigators to search for AAL solutions in this field. The UWB (Ultra Wideband) 
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monitoring system presented in the article also exploits ICT. It is a part of the platform developed 
within NITICS AAL project [6]. Although it is mainly intended for monitoring tasks, some of its 
functions can also be used for support elderly persons in everyday activities. Moreover, it can be 
used as a source of data in other AAL solutions.  

Majority of AT platforms are built in accordance with the general architecture presented in 
Figure 1. Data gathering system contains devices delivering data to be processed. Environmental 
sensors (e.g., ambient temperature and humidity sensors), medical instruments (e.g., blood pressure 
meters, pulse oxymeters, and blood glucose meters), user interfaces (e.g., touch screens and 
microphones) and UWB monitoring system belong to this group. The UWB monitoring system 
provides information on person’s localization, fall detection alerting and gait related parameters as 
well as raw measurement results. 

 
Figure 1. Data processing in Assistive Technologies (AT) platform. 

Data processing system uses gathered data to evaluate monitored person’s behaviour (e.g., 
physical activity, detection of deviations from routine activities, and detection of dementia patient 
wandering) and to control home automatics (e.g., lighting, door locks, and air condition system). At 
the last stage, data processing results are exploited. Information is sent to caretakers over user 
interfaces or is consumed by devices included in home automation system. 

Localization and tracking is a key functionality of the presented monitoring system. Positioning 
accuracy of the system should be high enough to retrieve the route passed by the monitored person. 
It is essential in certain AAL applications, e.g., in detection of wandering occurring in case of elderly 
dementia patients. In addition to an information on visited room, the system should detect a 
situation when a person is approaching certain objects e.g., kitchen stove. It might be helpful in 
assessing monitored patient’s behaviour. For such purposes sub-meter positioning accuracy is 
usually sufficient. 

Many technologies can be used to determine person localization. Laser scanners, ultrasound 
transceivers, radio based systems and infrared or visible light systems are only a few examples of 
solutions that can be used for this purpose. The up-to-date survey of positioning technologies can be 
found in [7]. 

From above technologies radio solutions seem to have most advantages. Due to through the 
wall propagation the quantity of nodes comprising positioning system infrastructure can be 
significantly reduced. There are many radio technologies used for localization. Unfortunately, the 
most popular solutions based on Bluetooth Low Energy (BLE) and WiFi devices do not provide 
sufficient localization accuracy in indoor environment. The UWB technology was chosen as it allows 
for positioning with sub-meter accuracy. UWB positioning systems are more accurate and precise 
than other commonly used narrowband radio technologies. Wide signal bandwidths, ability to 
resolve signal components in time domain and time of arrival measuring techniques are the reasons 
behind their better performance. 

The developed system integrates UWB with Microelectromechanical Systems (MEMS) 
technology to improve localization accuracy and reliability. Embedding MEMS sensors in the 

Data gathering
system

Data processing
system

Users interfaces
Home automation 

systems

Medical instrumentation results
Environmental sensors data

Home automation sensors
Localization

Fall detection
Gait parameters

Raw data (accelleration, TDOA, 
atmospheric pressure)

Alerts and statistics
( e.g.  fall detection, 

abnormal behaviour, 
too low activity) 



Sensors 2017, 17, 2092  3 of 21 

 

localization system tag also allows gathering information on person’s body movements. Fall 
detection and gait characterization can be made with collected data. 

The article describes an ultrawideband monitoring system for AAL applications. Section 2 
contains a description of current achievements in the field and comparison of proposed solution to 
other developments. Section 3 includes the system description, and presents implemented functions, 
system architecture and particular devices. In Section 4, algorithms used to process raw 
measurement results into demanded data are presented. Section 5 is dedicated to system tests. 

2. Related Works 

The number of publications dealing with use of different assistive technologies is enormous. 
They range from simple devices intended for performing one function, e.g., fall detection to complex 
systems of much broader functionalities. Therefore, related works analysed in this section deal 
mainly with systems utilizing wearable sensors and providing similar functionalities: localization, 
fall detection and extraction of gait related parameters. Most of these solutions use wireless transfer 
of results from sensors. 

2.1. Persons Tracking  

Localization of elderly persons in AAL applications is a subject of many papers. In majority of 
solutions, Wireless Local Area Network (WLAN) and Wireless Personal Area Network (WPAN) 
networks are used. However, there are also works concerning technologies such as UWB, ultrasonic 
and Bluetooth Low Energy (BLE). Use of inertial sensors or some combination of mentioned 
technologies is also described by some authors. 

Xie et al. [8] presented a work related to WiFi based indoor localization using RSSI 
measurements performed by a smartphone. Three different data classification methods were 
presented; however, localization accuracy was limited to detecting a room in which the smartphone 
was located. Xu et al. [9] have also proposed WiFi and Received Signal Strength (RSS) measurement 
based localization. They introduced new method, supporting selection of access points providing 
noisy or redundant information and therefore improving accuracy. 

In [10], a BLE based system is described. The results allow assigning the person to the particular 
room. Monitoring of the activities of daily living of the elderly with BLE beacons is presented in 
[11,12]. Recorded signal levels were fused with results from smartphone’s inertial sensors. Presented 
approach involves usage of the iPhone 5’s accelerometer, compass and its ability to measure level of 
signals coming from BLE tags and integrates them using Kalman Filter. Presented results, with the 
average localization estimation error below 1 m, are quite promising. However, tests were 
performed in situations where the phone was carried in a hand in front of the tester, which explicitly 
oriented it and allowed for easier step and orientation estimation. 

Similar system based on iBeacon technology is presented in [13]. iBeacon devices are deployed 
in the tracking area. RSS measurements are performed by the device worn by the person. However, 
position calculation is performed server-side as the gathered are immediately sent to the central unit 
and is not stored locally.  

There are also several works involving RFID-based indoor localization. Huang et al. [14] 
presented an approach that combines wearable MEMS sensors with active RFID tags serving as 
beacons deployed in the vital positions of the area covered by the localization system. MEMS sensors 
are attached to the person at their lower limbs (two per leg) and waist (one sensor), which allows for 
estimation of the posture (which can be distinguished as sitting, standing, squatting, supine and 
prone) and gait-based position calculation. Active RFID tags are used for the position correction 
when person would get in their read-range. Achieved accuracies are in range of 1–2 m. Another 
approach was presented by Wang et al. [15]. The proposed system consists of active RFID readers 
distributed in the tracking area. Monitored elderly person wears the RFID tag and the smartphone 
and is localized when coming in the range of the readers. 

There are also reports of localization using ultrasonic signals. Charlon et al. [16] have presented 
a telemetry system combining two wireless technologies—ultrasonic and 802.15.4. Both signals are 
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used to calculate ToF (Time of Flight) between the worn tag and the beacons mounted in the area 
covered by the system. Gathered data are further used to estimate position of the person and 
movement data, such as gait speed or trajectories. 

Accuracies achieved in localization systems based on narrowband radio interfaces are usually 
low, as can be seen in cited works. Reconstruction of movement trajectory necessary for detection of 
dementia patient wandering or determination of time spent in particular places at home may be 
difficult. UWB localization systems seem to be a more suiting solution to these problems. 
Comparison of UWB and RFID based localization systems can be found in [17]. Conclusions in that 
paper confirm much better positioning accuracy of UWB system.  

For several years, UWB positioning systems have been successfully implemented in many areas 
in industry and commerce. Unfortunately, AAL applications of such systems are relatively rare. 
Some of the UWB indoor localization research is focused on the UWB radar technology as in [18]. 
Experiments consisting in analysis of movements of six dementia patients with the use of 
commercial positioning system [19] are described in [20]. Gathered location traces allowed for 
evaluation of patient state, detection of relations between patients and provided insight into their 
habits. The drawback of the solution is a very high cost of the system. Zhao et al. [21] presented 
comparison between the Ubisense UWB system and Cricket ultrasonic system. 

There are a few articles describing positioning systems built from Decawave chips used also in 
the monitoring system presented in the article. Contigiani et al. [22] describe tests of two UWB 
IEEE802.15.4a based commercial localization systems in retail environment. In both solutions 
Decawave chips were used. Although the supermarket environment is different from home 
environment, obtained results proved that such systems can be used for efficient trajectory 
recording. 

2.2. Fall Detection  

Solutions found in the literature usually present one of two different approaches to elderly 
person fall detection. The first one consists in embedding sensors and devices into environment 
where the person lives, while the second one is based on wearable sensors. 

Sensors located in elderly person environment are mainly intended for investigation of elderly 
person behaviour, activity recognition and fall detection. Radar sensors or cameras are typically 
used for this purpose. Some of the proposed systems use typical video cameras, which is perceived 
controversial due to possible privacy violations. Therefore, depth cameras [23], which allow 
preserving privacy while maintaining high system efficiency, gain more recognition. Another 
solution detects a fall by analysis of its effects: sounds and vibrations caused by a person’s body 
hitting the ground. An example of the system fusing measurements of both types of signals can be 
found in [24]. The common drawback of ambient sensors is their number required to cover all rooms 
in an elderly person’s home.  

The wearable sensors are an interesting alternative allowing for system infrastructure reduction 
but they have to be worn by the person, which is less convenient for the monitored person. MEMS 
sensors, which recently have strongly developed, are becoming cheaper and more accurate, making 
them the most popular choice for wearable fall detection systems. Especially tri-axial accelerometers 
with possible support of compass and gyroscope are getting a lot of attention in recent works. Bagala 
et al. [25] have presented thorough investigation of the accelerometer-based fall detection with an 
emphasis on the real-life falls. Dias et al. [26] have also described fall detection monitoring using 
wearable sensors. Furthermore, they have proposed a ZigBee based communication system for 
wireless transmission of the results. 

Wang et al. [27] have presented a fall-detection system based on the wearable MEMS sensors 
integrated with the active RFID technology used for easy localization of the patient in the case of 
falling down. Huang et al. have proposed similar solution in [14].  

However, MEMS sensors are not the only solution for devices capable of detecting falls or even 
detecting patients posture. Wang and Gu [28] propose a wearable RFID system that combines 
wearable sensors and RFID tags for real time activity recognition. Passive RFID tags, which are light, 
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maintenance free and can be sewn into clothes are used. RFID reader is attached to the person’s body 
and it senses the RFID tags. As BAN (Body Area Network) propagation model is quite sophisticated 
and strongly dependent on the body position, Wang and Gu propose a method utilizing analysis of 
multiple radio patterns coming from multiple RFID tags attached to different body parts. That way, 
specific radio pattern combinations may be related to specific body positions and activities. 

2.3. Conclusions 

The article authors do not have solutions integrating UWB positioning and movement analysis 
functionalities, in which accelerometers are used not only for movement evaluation (e.g., fall 
detection) but also for improving positioning accuracy. UWB solutions are mainly dedicated to 
position determination but not fall or activity detection. They are far less spread than BLE or WiFi 
based systems, however their key features such as devices’ small sizes and high positioning accuracy 
might allow them to gain ground among the indoor localization systems. Moreover, most 
commercially available systems as well as most experimental systems still utilize wired 
synchronization between the devices [19,29,30], which makes them hard to install in most home 
environments. 

None of presented systems provides complex solution, integrating precise and accurate 
ultrawideband localization with the wearable MEMS sensors allowing for fall detection, gait 
analysis and ability to provide data that can be further analysed in terms of elderly monitoring and 
assisting. In comparison to presented state of the art solutions, novelty of the developed solution 
consists in: 

• integration of UWB positioning and movement analysis functionalities; 
• a positioning algorithm fusing step parameters and positioning results; 
• using UWB radio packets not only for localization but also for data transfer from tags; 
• wireless synchronization of the positioning system infrastructure nodes that provides easier 

system installation (reduction of cabling); and 
• reduction of the number of sensors in the tag resulting in better tag’s energy efficiency.  

3. UWB Monitoring System 

3.1. System Requirements 

During system design phase, a set of requirements concerning functionality and design was 
formulated. The system should be able to reliably track an elderly person in his/her home, provide 
data for person’s gait characterization and include fall detector functionality. Tracking should be 
performed with sub-meter accuracy so that a retrieval of a passing route would be possible. Due to 
relatively small movement velocity, positioning rate of a few times per second should be sufficient. 
The elderly person will be equipped with a small wearable device attached to a belt, a lanyard or 
attached to the wrist with Velcro strap. The system infrastructure should be unobtrusive, and cables 
between infrastructure devices should be eliminated. 

The above requirements had an impact on the system design. The accuracy requirement forced 
the use of UWB signals for positioning. The need for unobtrusivity resulted in wireless system 
infrastructure. Synchronization signals and measurement results are sent over UWB or WiFi links. 
The number of sensors in the wearable device was limited to accelerometer and barometer because 
of their low power consumption. The gyroscope due to high consumed current was not included in 
the design. 

Finally, the changes and the need for reliability forced to develop a new positioning algorithm 
fusing measurement results performed with UWB receivers and results obtained from wearable 
device sensors. 
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3.2. System Architecture 

The functional architecture of UWB monitoring system is presented in Figure 2. The system is 
composed of anchor nodes installed in the building and tags worn by the monitored persons. The 
tags are equipped with sensors for acceleration and atmospheric pressure measurements and UWB 
transmitters. The UWB radio link conforms to the IEEE 802.15.4a standard [31]. Transmitted packets 
contain results of measurements carried out in the tag. 

Two types of anchor nodes are used in the system:  

• standard nodes responsible for reception of packets from tags and reference nodes and for 
packets time of arrival measurement; and 

• reference anchor nodes equipped with a precise temperature compensated oscillators, which 
are responsible for reference signals broadcasting. Reference signals enable correction of 
measurement errors resulting from the anchors oscillators frequencies difference. The 
correction process is described in Section 4.1. 

Anchor nodes send results of performed measurements and data retrieved from tags’ packets to 
the system controller over WiFi links. There tracked persons’ locations are calculated. 

 
Figure 2. Monitoring system architecture. 

3.3. Tag 

The system tag is a wearable device, thus should be small, light and energy efficient. Therefore, 
only two MEMS sensors, accelerometer and atmospheric pressure meter, were embedded. The tag 
architecture is shown in Figure 3. The tag is controlled by MSP430FR5739 (Texas Instrument) 
microcontroller, providing low current operation modes. The use of FRAM memory allowed 
significantly reducing current consumption. Communication with sensors and the radio module is 
conducted over chip’s SPI interfaces.  

Figure 3. Tag architecture and assembled tag.  
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The tag is equipped with two MEMS sensors, accelerometer (BMA280) and environmental 
sensor (BME280)—both from Bosch Sensortec. The BMA280 is a tri-axial device able to measure 
acceleration in two ranges, ±2 g to ±16 g with 14 bit resolution. The second MEMS sensor (BME280) is 
able to measure temperature, humidity and atmospheric pressure.  

DWM1000 module (from Decawave) comprising DW1000 chip [32] and UWB ceramic antenna 
was used as a UWB transmitter. The signals were transmitted in 5th channel (6.5 GHz), and signal 
bandwidth was close to 500 MHz. To increase transmission range, a preamble of 2048 symbols was 
used. Data rate was equal to 110 kbit/s. After each transmission, the module is moved to sleep mode. 

The tag is supplied from one 3.7 V LiIon 400 mAh battery. All components are supplied via 
BQ24071 battery charger chip used for battery current control during discharge and charge 
processes. The micro USB connector was used for external power supply connection. Current 
consumptions of particular tag components are included in Table 1. 

Table 1. Tag’s components current consumption. 

Chip Mode Current Consumption 

MSP430FR5739 
Active 177 μA 

Sleep (Low-Power Mode 3) 6.3 μA 

BME280 
Measurement  12.8 μA 

Sleep (Sleep mode) 0.1 μA 

BMA280 
Measurement 130 μA 

Sleep (Suspend mode) 2.1 μA 

DWM1000 
Transmission 70 mA 

Sleep 100 nA 

The sampling rate of the employed sensors is different. Accelerometer is sampled every 32 ms, 
barometer every 160 ms. Measurement results are placed in the IEEE801.15.4a packet payload and 
transmitted with 160 ms period. The transmitted frame content is shown in Figure 4. Total frame 
length equals to 35 bytes. 

 
Figure 4. Tag’s frame payload. 

3.4. Anchor Nodes 

Designed anchor nodes and reference node share the same hardware design presented in 
Figure 5. The only difference is the use of custom built UWB radio module including DW1000 chip, 
TCXO oscillator and UWB antenna in the reference anchor node. All anchor nodes are equipped 
with the TIVA series TM4C123GH6PM, ARM Cortex-M4F microcontroller. It is the main processing 
unit, and controls other peripheral devices. For communication with the system controller, a XB2B 
XBee WiFi module connected to the 2.4 GHz antenna is used. UWB radio module is used for 
reception of packet from the tag and for communication with other anchors. Devices are also 
equipped with flash memory and a BMP183 atmospheric pressure sensors that provides reference 
pressure measurements. Anchors are powered from the external power supply. 
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Figure 5. Anchor node/reference node architecture and assembled anchor node board. 

The principal task of the anchor node is a measurement of UWB packets time of arrival. The 
internal functions of DW1000 transceiver are used for this purpose. The chip measures time of 
arrival with 15.65 ps resolution. Moreover, it is able to initiate packet transmission at precisely 
predefined moments. Both functionalities are crucial in implementation of transmission schedule 
presented in Section 4.1. 

WiFi interface is used to transmit measurement results to the system controller (Figure 6). 
Anchor node retransmits results obtained from the tag, acceleration components (aX, aY, aZ) and 
atmospheric pressure pT. It also transmits atmospheric pressure measured by the anchor (pA) and 
time of arrival (TOA) values measured for packets sent by the tag (TOAT) and the reference anchor 
node (TOAR1 and TOAR2).  

 
Figure 6. Measurement results transmitted in the system.  

The anchor node configuration data (e.g., network addresses, identifiers, and radio link 
parameters) are stored in the node’s flash memory. Modification of flash content is possible over 
WiFi or USB links.  

3.5. System Controller 

The system controller is a computer that performs a central role in the monitoring system. The 
data flow and data processing in the controller are illustrated in Figure 7. Data from packets received 
over WiFi link are passed to two processing blocks. In the first one, MEMS results (acceleration and 
pressure) are used for gait parameters evaluation and fall detection. Results of analysis and raw 
measurement data are available to external systems via interface. Access to raw data allow for 
implementation of other gait recognition or fall detection algorithms.  
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Figure 7. Data processing in the system controller. 

Received time of arrival values are processed in the TOA processing function (Section 4.1). 
Resulting TDOA values along with extracted gait parameters are the input data to the positioning 
algorithm described in Section 4.3. Coordinates of monitored person are available to external 
systems over interface block. USB or Ethernet interfaces can be used for that purpose. 

4. Algorithms 

4.1. TDOA Determination and Correction Method 

Proposed system architecture implies a specific transmission scheme of packets between the 
devices. An exemplary transmission scenario involving the tag (T), the anchor node (ANn) and the 
reference anchor node (RN) is presented in Figure 8.  

Transmission is initialized by the tag, which sends first packet (T), and received by anchor 
nodes, which record the time of reception of the packet. The reference anchor, after waiting for a 
fixed period (TD), transmits its own packet (R1). It is received by anchor node ANn. Moreover, the 
reference anchor sends another packet (R2) after some predefined time TR, which is received by 
ANn as well.  

  
Figure 8. Exemplary transmission scheme. 

Times tPTRN and tPTANn are unknown propagation times between the tag and the reference node 
and anchor node, respectively. Time tPRANn is the propagation time between the reference node and 
the anchor node, which is known since anchors are stationary at fixed positions. TD is the period of 
time between the reception of the tag’s packet in the reference node and transmission of its own 
packet; TR is reference period; and TDANn and TRANn are real time intervals between the received 
packets in the anchor node ANn. 

In Figure 8, propagation time between the tag and the anchor node ANn is as follows: 
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௉்஺ே௡ݐ = ܦܶ − ஺ே௡ܦܶ + ௉்ோேݐ + ௉ோ஺ே௡ݐ + ஽ோோேݐ + ஽்ோேݐ + ஽ோ஺ே௡ோݐ −  ஽ோ஺ே௡் (1)ݐ

where tDRRN and tDTRN are, respectively, unknown internal reception and transmission delays 
introduced in the reference node (they are strictly related to the DW1000 chip); and tDRANnT and 
tDRANnR are internal reception delays introduced in the anchor node ANn, when measuring time of 
arrival of the packets coming from the tag and the reference node, respectively. 

Anchor node measures TDANn period. Result of measurement (TDMANn) depends on the internal 
clock oscillator frequency offset. ܶܯܦ஺ே௡ = ஺ே௡(1ܦܶ + ߳஺ே௡) (2) 

where 	߳஺ே୬ is relative clock frequency error in anchor node ANn. 
To reduce oscillator impact on measurement results, the reference period measurement is 

performed in the anchor. The measured reference period equals to: ܴܶܯ஺ே௡ = ܴܶ஺ே௡(1 + ߳஺ே୬) = ܴܶ(1 + ߳஺ே୬) (3) 

Therefore, ܶܦ஺ே௡ = ஺ே௡ܯܴܴܶܶ  ஺ே௡ (4)ܯܦܶ

None of the internal reference node delays have impact on the reference period measurements 
because packets related to the reference period are sent from the same node.  

Clock frequency errors affect also generation of the reference period in the reference anchor: ܴܶ = ܴܶ௣(1 + ߳ோ) (5) 

where TRp is predefined reference period value, set in the reference anchor node; and ߳ோ is relative 
clock frequency error in the reference anchor node. 

Reference period measurement performed in the anchor node is used.  
Finally, time interval between packets, with respect to measured values, is as follows: ܶܦ஺ே௡ = ܴܶ௣(1 + ߳ோ)ܴܶܯ஺ே௡  ஺ே௡ (6)ܯܦܶ

Positioning algorithm implemented in the system utilizes TDOA values. TDOA value for the 
anchors ANn and ANm is equal to: ܶܣܱܦ௠௡ = ௉்஺ே௠ݐ −  ௉்஺ே௡ (7)ݐ

From Equation (1), the TDOAmn equation can be written as: ܶܣܱܦ௠௡ = ஺ே௠ܦܶ − ஺ே௡ܦܶ + ௉௠௡ݐ +  ஽ா௅௠௡ (8)ݐ

where ݐ௉௠௡ = ௉ோ஺ே௡ݐ − ஽ா௅௠௡ݐ ௉ோ஺ே௠ (9)ݐ = ஽ோ஺ே௡ோݐ − ஽ோ஺ே௡்ݐ − ஽ோ஺ே௠ோݐ +  ஽ோ஺ே௠் (10)ݐ
Component tPmn corresponds to propagation time difference between reference anchor node 

and ANn and ANm anchors. Delays related component tDELmn groups internal anchors delays. Its 
value is close to zero if the delays are similar. Finally, the measured TDOA is equal to: TDOA୫୬ = ܴܶ௣(1 + ߳ோ)ܴܶܯ஺ே௠ ஺ே௠ܯܦܶ − ܴܶ௣(1 + ߳ோ)ܴܶܯ஺ே௡ ஺ே௡ܯܦܶ + t୔୫୬ + tୈ୉୐୫୬ (11)

Accuracy of TDOA determination mainly depends on accuracy of propagation times between 
the reference anchor and other anchor nodes determination and on internal anchors’ delays. Impact 
of the relative reference clock frequency error is small because difference between TMANm and TMANn 
periods is usually in the order of tens of nanoseconds. 
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4.2. Gait Parameters Determination 

The system allows determining basic gait parameters of the localized person, which are step 
period, step length and heading. These parameters are computed based on acceleration 
measurements and previously calculated localizations. The acceleration is measured at a rate higher 
than rate of position determination which depends on TDOA availability. Each packet sent by the 
tag carries a few acceleration results. It allows determining step parameters with greater accuracy. 
The accelerometer used in the tag device measures acceleration in three perpendicular axes. The tag 
does not contain any additional sensors such as gyroscopes and magnetometers so it is not possible 
to accurately translate measured accelerations to system’s coordinates. Therefore, gait parameters 
are determined based on acceleration magnitude. Gait parameters evaluation algorithm is illustrated 
in Figure 9.  

  
Figure 9. Acceleration measured for a sequence of six steps. Detected peaks and valleys are marked 
with green and red dots respectively. False step detections, which would occur for a simple threshold 
algorithm, are marked with red crosses. 

Gait parameters evaluation is conducted with a few samples delay. It allows using more 
advanced step detection algorithm than a simple threshold detection. The proposed step detection 
procedure begins with locating peaks and valleys in the registered acceleration signal. To lower the 
probability of false step detection, only the peaks above certain level are considered. The algorithm 
analyses samples preceding localized peak. A sample for which the fixed step detection threshold 
was exceeded is treated as the moment of step’s start. The first located valley following the analysed 
peak is treated as step’s end. Such analysis allows determining step’s start more precisely and 
minimize the number of false step detection, which would occur for basic threshold detection 
algorithms (marked with red crosses). 

The times of step’s start and end are recorded and used to determine gait parameters. The step 
period is calculated every time the step is detected and is averaged with the previous value using 
moving average. Step length and direction of movement are calculated based on the number of steps 
taken and the covered distance estimated from the computed person’s localizations. 

The idea of heading estimation is presented in Figure 10. Heading is estimated based on a few 
previously computed localizations using linear regression. The proposed approach assumes that the 
trajectory of persons movement for the analysed sets of points is close to the straight line. Given that 
the system’s update rate is relatively high, and elderly persons do not tend to rapidly change 
movement direction, such approximation seems to be justified. Linear regression method allows 
calculating the parameters of a line, which represents movement trajectory. In the algorithm, instead 
of those parameters, heading direction is defined with θ, which is an angle between the obtained line 
and Y-axis. 
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Figure 10. The illustration of heading estimation. 

4.3. Positioning Algorithm 

The positioning algorithm used in the system combines TDOA values obtained with the system 
infrastructure with the results of acceleration measurements conducted by the tag. The workflow of 
the algorithm is presented in Figure 11. 

 

(a) (b)

Figure 11. Localization algorithms workflow scheme: (a) basic Extended Kalman Filter utilizing 
TDOA measurement results; and (b) localization algorithm used in the system. 

In the basic EKF algorithm [33], a localized person is modelled as a system, which state is 
described with his coordinates and velocity.  

xk = ൣx y vxvy൧T (12)

The single iteration of EKF (Figure 11a) consists of two phases: prediction, where a current state 
of a system is predicted based on the value obtained in the previous iteration and persons movement 
model typically comprising basic equations of motion and measurement update; and correction, 
where predicted value is corrected based on TDOA results obtained from the system.  

In the prediction phase of the EKF algorithm, person movement is modelled as a uniform linear 
motion with constant velocity between the analysed points. The first prediction phase is described 
by the following equations: 

xොk(-)(1) = Fxොk-1(+) (13)

Pk(-)(1) = FPk-1(+)FT+Qk
(1) (14)

where xො
kቀ-ቁ(1) , 	P

kቀ-ቁ(1) 	 and xොk-1(+),	Pk-1(+) are predicted state vector value and state vector from previous 

filter iteration with corresponding covariance matrices; F  is state transition matrix containing 
equations of motion; and Qk

(1) is process noise covariance matrix, the value of which is chosen in 
accordance with Discrete White Noise Acceleration Model (DWNA) [34].  

The algorithm used in the system (Figure 11b) is a modification of EKF. The major novelty with 
respect to basic EKF is the introduction of another, parallel prediction phase. In the additional step 
based prediction block, localized person’s movement is modelled as a sequence of steps, which is 
described by step period Ts, step length Ls and heading direction θ. Gait parameters determination 
is described in Section 4.2. Equations comprising step based prediction phase are as follows: 
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where xො
kቀ-ቁ(2)  is the state vector predicted based on gait parameters analysis and P

kቀ-ቁ(2)  is a 

corresponding covariance matrix, ΔT is the position refresh period equal to 160 ms. Localized 
person’s predicted position is obtained by adding to the previously computed position a translation 
resulting from the step taken by the user. If during gait parameter analysis no step was detected, it is 
assumed that the person is still and no translation is added. 

State vector values obtained from both prediction phases are combined in the way similar to 
that in Kalman Filter. The covariances of predicted vectors are analysed and the most probable state 
vector value is estimated [35]. The obtained predicted state vector is then corrected with TDOA 
values at measurement update phase. 

hk(xk)=ሾTDOA1(xk) ⋯ TDOAn(xk)ሿ (17)

Kk=Pk(-)Hk
T൫HkPk(-)Hk

T+Rk൯-1
 (18)

xොk(+)=xොk(-)+ Kk ቀzk-hk൫xොk(-)൯ቁ (19)

Pk(+)=൫I-KkHk
T൯Pk(-) (20)

The corrected state vector is a linear combination of the predicted value and a measurement 
innovation, which is a difference between TDOA measurement results zk and corresponding TDOA 

values calculated for the predicted tag location hk ൬xොkቀ-ቁ൰. The weight, with which measurement 

results are taken into account, is specified by Kalman gain Kk , which is calculated based on 
measurement matrix Hk, which is a linearization of hk(xk) and measurement covariance matrix Rk. 
The number of used TDOA results varies and depends on their availability. The corrected state 
vector value is a final result of the algorithm and is used as input data in next iterations. 

4.4. Fall Detection Algorithm 

Fall detection algorithm utilizes information on changes of acceleration and atmospheric 
pressure recorded by sensors embedded in the tag. Algorithm development was preceded by the 
preliminary experiments performed using the test setup described in Section 5.2. A typical 
acceleration magnitude and atmospheric pressure changes are shown in Figure 12. Similar signals 
were also presented by other researchers (e.g., [25,36]). 

Before the fall, the acceleration magnitude is close to 10 m/s2. The first peak (at 2.5 s) is caused 
by the test manikin release mechanism. Next, a free-fall starts. During this phase, acceleration 
magnitude decreases. Hitting the ground results in significant acceleration peak, followed by a few 
secondary peaks. Starting free fall phase is also seen in the atmospheric pressure graph. After the 
fall, when manikin lies down, pressure stabilizes at higher value, acceleration returns to the value 
before the fall.  

Fall detection algorithm is presented in Figure 13. It continuously operates on acceleration and 
pressure data stored in ring buffers. Free fall detection is achieved by the cross correlation of 
acceleration and a function, the shape of which corresponds to acceleration changes during free fall.  

xොk(-)(2)  =	xොk-1(+)+ሾsinθ cosθ 0 0ሿTLsΔT/ sܶ  (15)

Pk(-)(2) = Pk-1(+)+Qk
(2) (16)
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Figure 12. Acceleration and atmospheric pressure variations during the fall (experimental data). 

 
Figure 13. Fall detection algorithm. 

The following algorithm parameters were used during algorithm tests: 

• acceleration magnitude threshold ath was set to 30 m/s2; 
• ring buffer shift (n) equal to 1.5 s; and 
• pressure change Δp equal to 10 Pa. 

5. System Tests 

5.1. Positioning System Tests 

5.1.1. Test Site 

Test campaign was carried out in the Institute of Radioelectronics and Multimedia Technology 
laboratory rooms and two fully furnished flats. The results collected in one of the flats, as more 
representative for considered system application, are presented in this section. The flat is composed 
of small rooms, and is located in panel building constructed of pre-fabricated, pre-stressed concrete. 
The test system consisted of seven anchor nodes and one reference anchor. The aim of the test was to 
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determine positioning and tracking accuracy. Two kinds of tests were carried out: tests in static 
positions and tracking of a moving person. 

5.1.2. Static Tests 

The test scenario consisted in placing the tag on the tripod at different test points and recording 
a few hundred calculated positions at each location. Positioning error (bias) is defined as the 
distance between test point and the point corresponding to median x and y coordinate values. 
Circular Error Probability (CEP), referring to the radius of a circle in which assumed percentage of 
results is located, was chosen as a precision measure. The 68th and 95th percentiles were used for 
CEP calculation. 

Results of positioning are presented on the flat layout (Figure 14). Calculated locations are 
marked with small green dots. Red diamonds representing the test points are linked with points 
corresponding to calculated mean positions (coordinates are equal to mean x and y values). Bias 
expressed in meters is shown on the yellow background. CEP values for 68th percentile (also in 
meters) are presented on blue background.  

 
Figure 14. Positioning errors and Circular Error Probabilities (CEP) at particular test points. 

The empirical Cumulative Distribution Functions (CDF) corresponding to positioning errors 
and CEP coefficients are shown in Figure 15. Positioning bias is lower than 0.65 m in 80% of test 
points. The precision for 80% of the analysed points is high: CEP does not exceed 0.16 m. 

The obtained results demonstrate that quality of positioning results depends not only on the 
availability of the signals, but also on their quality. The use of radio signals allows placing anchor 
nodes in different rooms. Therefore, in most tests, the system worked in Non Line Of Sight (NLOS) 
conditions. In such case, the signal travelled along different paths, penetrated through walls, and 
underwent multiple reflections, refractions, and diffractions. All these phenomena greatly affected 
the received signal as well as the positioning accuracy. 
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Figure 15. Empirical Cumulative Distribution Functions (CDF) of positioning errors and CEP 
coefficients. 

In the considered flat, the signal had to pass a number of walls made of reinforced concrete. Big 
signal attenuation resulted in precision deterioration. Significant shifts in obtained positions were 
observed in cases where direct path components of transmitted signals were blocked, e.g., by 
mirrors (two wardrobes with doors fitted with large mirrors were installed in the flat). 

Another factor having an impact on system performance is location of anchor nodes, which was 
a compromise between requirements resulting from localization algorithm needs and flat interior 
design. 

5.1.3. Person Tracking 

The tag was attached to the belt worn by the person. The route was marked on the floor, and the 
person walked along the predefined path. Tracking error is characterized by the distance from 
obtained point to the closest point of the path. Tracking errors are presented as the empirical 
Cumulative Distribution Function (CDF). Results of tracking the person moving from one of rooms 
to the kitchen and back are shown in Figure 16.  

 
Figure 16. Tracking results obtained with Extended Kalman Filter (EKF) using Time Difference of 
Arrival (TDOA) values and proposed algorithm exploiting fusion of TDOA and gait parameters 
(modified EKF). 

To check proposed algorithm (modified EKF) efficiency, obtained results were compared with 
results from algorithm utilizing only TDOA values (EKF-TDOA). The proposed solution resulted in 
much better path reconstruction. It can especially be seen at the end of the paths, where the localized 
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person was turning around. The use of the novel algorithm allowed suppressing negative effects 
caused by rapid changes of anchor visibility during person’s turnaround. Observations are 
confirmed by Empirical CDF graphs shown in Figure 17. More than 95% of obtained locations show 
deviation from the line smaller than half a meter. 

 
Figure 17. Empirical CDF of tracking error for all tested algorithms. 

5.2. Fall Detection Tests 

Fall detection test consisted of the use of a rescue manikin [37] as a substitute to falling person. 
The manikin’s 66 kg weight is distributed according to human weight distribution chart. Due to 
articulated joints, its behaviour during the fall is similar to a human’s. Manikins have been used by 
other researchers for fall detection testing [24,38]. The recorded acceleration signals are similar to 
real life signals (e.g., [36,39]). Use of the manikin for fall investigation is an interesting alternative to 
tests performed by (usually young) volunteers. It does not require additional safety measures like 
mattresses or head and limbs shields, which have an impact on obtained results.  

During tests, the system tags were attached to different parts of manikin’s body. The manikin 
was lifted using electric winch and then released by burning out polyamide cord. The photograph of 
the test site and exemplary attachment of system tags are shown in Figure 18. 

 
(b)

 
(a) (c)

Figure 18. Manikin on the test site (a); and tags attached to the: wrist (b); and waist (c). 

0 0.5 1 1.5 2 2.5

trajectory error [m]

0

0.2

0.4

0.6

0.8

1

TDOA

RSS-TDOA



Sensors 2017, 17, 2092  18 of 21 

 

Each fall resulted in change of acceleration magnitude and increase in atmospheric pressure by 
several Pa. Exemplary changes of acceleration magnitude during the fall recorded for several falls 
are shown in Figure 19.  

 
Figure 19. Acceleration magnitude versus time during 20 falls: (a) tag attached to the manikin waist; 
and (b) tag attached to the wrist.  

During the test campaign, the falls from standing and kneeing positions were investigated. In 
both cases, the acceleration and atmospheric pressure graphs were similar (the pressure change was 
lower). Performed test scenarios correspond to cases where the person is falling limply. Similar 
acceleration and pressure changes were observed during real falls reported in [23,34,36]. 

The system operated correctly during the test, all sensors results were recorded. The fall 
detection algorithm was tested using 40 data records. Only in one case, it did not detect the fall. 
Analysis or recorded samples shown that in one case the acceleration did not reach the required 
30 m/s2 threshold. Acceleration magnitude maxima are shown in Figure 20. 

 
Figure 20. Acceleration magnitude maxima achieved during tests. 

6. Conclusions 

The article contains a description of the UWB system intended for elderly persons monitoring. 
The system delivers information on person’s localization, parameters of his gait and information on 
detected falls. These data can be used in algorithms intended for evaluation of elderly person 
behaviour or detection of illness symptoms, e.g., wandering of dementia patients. The system also 
provides access to raw data that can be useful for development of customized algorithm.  

There are a few novel solutions implemented in the system. Wireless communication between 
anchor nodes and wireless anchors synchronization simplify system installation and exploitation. 
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The system tag energy consumption is reduced due to selection of energy efficient MEMS sensors. A 
new positioning algorithm fusing acceleration and TDOA was proposed. 

The system was built and tested. Localization functionalities were tested in static and dynamic 
conditions tests. Results obtained in a typical flat confirmed sub-meter accuracy and precision in 
both kinds of tests. Fall detection algorithm was tested at a specially designed site with the use of 
rescue manikin. It proved that the system allows detecting fall events with high certainty. 

Results of system investigation proved that developed UWB monitoring system can be 
successfully used in AAL applications.  
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