
sensors

Article

A Neural Network Approach for Building
An Obstacle Detection Model by Fusion
of Proximity Sensors Data

Gonzalo Farias 1,* ID , Ernesto Fabregas 2 ID , Emmanuel Peralta 1, Héctor Vargas 1,
Gabriel Hermosilla 1, Gonzalo Garcia 3 ID and Sebastián Dormido 2 ID

1 Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile;
emmanuel.peraltah@gmail.com (E.P.); hector.vargas@pucv.cl (H.V.); gabriel.hermosilla@pucv.cl (G.H.)

2 Departamento de Informática y Automática, Universidad Nacional de Educación a Distancia,
Juan del Rosal 16, 28040 Madrid, Spain; efabregas@bec.uned.es (E.F.); sdormido@dia.uned.es (S.D.)

3 Radar Research and Innovations, 11702 W 132nd Terrace, Overland Park, KS 66213, USA;
garciagarreton@hotmail.com

* Correspondence: gonzalo.farias@pucv.cl; Tel.: +56-(32)-2273673

Received: 20 December 2017; Accepted: 21 February 2018; Published: 25 February 2018

Abstract: Proximity sensors are broadly used in mobile robots for obstacle detection. The traditional
calibration process of this kind of sensor could be a time-consuming task because it is usually done
by identification in a manual and repetitive way. The resulting obstacles detection models are usually
nonlinear functions that can be different for each proximity sensor attached to the robot. In addition,
the model is highly dependent on the type of sensor (e.g., ultrasonic or infrared), on changes in light
intensity, and on the properties of the obstacle such as shape, colour, and surface texture, among others.
That is why in some situations it could be useful to gather all the measurements provided by different
kinds of sensor in order to build a unique model that estimates the distances to the obstacles around
the robot. This paper presents a novel approach to get an obstacles detection model based on the
fusion of sensors data and automatic calibration by using artificial neural networks.

Keywords: proximity sensors; automatic calibration; neural networks

1. Introduction

Obstacle avoidance is one of the main challenges for any practical design in robotics.
Many approaches to face this problem can be found in the literature. Some of them use optical sensors
and computer vision for general purpose object detection tasks [1–3]. In particular, proximity sensors
are a widely-implemented solution for obstacle detection and collision avoidance in mobile robotics.
These sensors are normally located around the robot in order to detect and avoid objects when it
navigates in a dynamic environment [4–6].

The proximity sensors are able to detect the presence of nearby objects without physical contact,
providing an estimation of the distance to the obstacles. Commonly, this kind of sensor emits
electromagnetic fields (e.g., infrared light) or sound pulses (e.g., ultrasonic), in order to detect changes
in the field or returned signal [7]. For this reason, the surface properties of the objects have an important
influence on the estimation of the distance. The other aspect that has to be taken into account is the
time response of the sensor because the distance is estimated based on this value.

The infrared (IR) and ultrasonic (US) sensors are the most extensively used in robotics due to
their low cost and fast time response, which make them an attractive option for real-time object
detection [8]. These sensors use different technologies to estimate the distance to an object. On the

Sensors 2018, 18, 683; doi:10.3390/s18030683 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2186-4126
https://orcid.org/0000-0003-4478-6626
https://orcid.org/0000-0001-9968-960X
https://orcid.org/0000-0002-2405-8771
http://dx.doi.org/10.3390/s18030683
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 683 2 of 18

one hand, IR sensors use light of wavelength in the range of 760 nm (IR spectrum) for sensing the
reflected light intensity. On the other hand, US sensors use a high-frequency sound wave (40 kHz) in
order to detect the returning pulses (echo) [9]. IR sensors are used to measure short distances (around
0.1 to 1.5 m) with a narrow (line) beam shape, while US sensors are used to measure long distances
(around 0.15 to 6.5 m) with a conical beam shape. The width of the beam is a function of the surface
area, frequency, and type of transducers [9,10].

In both cases, the distance estimation depends greatly on what the object is made of. For example,
since the IR sensors are a vision-based measurement, the colour of the object and the environment
light condition could affect their outcome [11,12]. On the other hand, because of the US sensors are
sound-based, they are useful for transparent objects and able to work under poor lighting conditions,
but this kind of sensors is much more sensitive to mirror-like surfaces, and the measurement can be
affected by environmental parameters such as temperature, humidity, ambient noise, among others [8].
A more detailed description of this issue can be found in [9], where the authors make an analysis of the
influence on the behaviour of both sensors for different types of materials such as: cardboard, paper,
sponge, wood, plastic, rubber and tile.

Despite the popularity of proximity sensors, they need to be carefully calibrated before using
since the measured distance between the robot and the obstacle is relative. A deficient calibration can
produce significant errors in the distance estimation, and therefore, the performance of the obstacle
avoidance algorithm is poor. If the sensors are included with the mobile robot, the manufacturer
usually gives a model to convert raw data into distance, however such model provides an average
performance of the distance estimation since this built-in model is not tuned for each sensor. Thus,
in order to increase the accuracy of the distance estimation, the traditional method of calibration for
a suitable distance model, turns frequently into a manual and time-consuming process [13].

Fusion of different kind of sensors is a fast developing area of research that shows many examples
in the literature through the integration of multiple sensors [14,15]. Thus, the integration of the
information supplied by US and IR sensors can be a natural extension of previous works in order
to provide reliable distance measurements for robot navigation by using these proximity sensors,
because the advantages of one sensor compensate for the disadvantages of the other. The fusion of
sensors can be implemented by using fuzzy logic [16], neural networks [17–19], Kalman filtering [20],
or support vector machines among other solutions [14]. Although we can find examples of sensor
fusion for robot navigation in the literature, many of the them show only theoretical results [20,21]
or quite ad hoc experiments [16–18], or they mix the distance model with the collision avoidance
algorithm [17,19,22], implying that work on scientific experimental validation of sensor fusion methods
for robot navigation still needs further research.

This paper presents a novel approach for modelling the distance to obstacles using the data
provided by two types of proximity sensors. The proposed approach is applied on the fusion of IR
and US sensor of the very popular Khepera IV robot [23]. Our approach also provides an automatic
way to obtain and calibrate the model for distance estimation to obstacles by using artificial neural
networks. After obtaining an accurate distance to the objects it is possible to use any kind of collision
avoidance algorithm to perform a successful navigation of the robot in a dynamic environment.
In order to validate the proposed approach, the results section of the paper provides real experiments
of obstacle avoidance with a comparison between the traditional calibration method (provided by the
manufacturer) versus the developed approach by using the same collision avoidance algorithm.

The remainder of the paper is organized as follows: Section 2 describes the traditional sensors
calibration method and its drawbacks; Section 3 presents the novel method of automatic smart
calibration of the sensors; Section 4 presents some results and experiments obtained with the developed
method in comparison with the traditional calibration method; and finally, Section 5 shows the main
conclusions and future work.

Sensors 2018, 18, 683 3 of 18

2. Traditional Calibration of Proximity Sensors

The traditional calibration method of proximity sensors is a manual repetitive process. It consists
in placing some objects around the robot and measuring the raw values given by the sensors
(usually voltages). With this values, a model of the sensors is built using a conventional identification
method. The result of this procedure are the coefficients of the model (linear or nonlinear) that
calculates the distances to the objects using the voltage of the sensors as inputs. Usually the same
model is used for all the sensors of the same type, but in practice, not all the sensors work identically
and this can introduce erroneous values.

To carry out the traditional calibration process in the laboratory, two Khepera IV robots [23] are
used. Khepera IV is a mobile robot that has been designed for indoor pedagogical purposes and brings
numerous features, for example, a colour camera, WI-FI and Bluetooth communications, an array of
8 infrared sensors (IR) for obstacle detection (2 mm to 20 cm) and 5 ultrasonic (US) sensors for long
range object detection (20 cm to 40 cm), etc. Figure 1 represents the distribution and the ranges of the
proximity sensors in the Khepera IV robot.

Figure 1. Khepera IV robot sensors distribution.

The IR sensors (red colour) are distributed every 45◦ around the robot (form 1 to 8). While the US
sensors (green colour) are distributed every 45◦ in the front half of the robot (1, 2, 3, 7 and 8).

Figure 2 shows the set up configuration in the laboratory to carry out the calibration. To start the
process, the robot is placed at the center of a “calibration carpet”. Plastic obstacles of different colours
conforming a wall concentric to the robot sensors are used to measure their values.

Figure 2. Setup for the traditional calibration method.

Sensors 2018, 18, 683 4 of 18

The robot stores 20 values per sensor and then the obstacles are displaced 1 cm over its radius.
The process is repeated from 1 cm to 40 cm for all the sensors. If the distance is less than 40 cm the
process is repeated. Otherwise, the data stored in the robot is sent to the PC to calculate the mean
value for each sensor/distance. Then, the values are linearly interpolated. Figure 3 shows the flow
diagram with the steps to carry out this process. The blocks represented in green colour are related to
the robot. The blocks represented in orange colour are related to the PC. And, the pink colour blocks
are related to the manually action taken by the user.

Version February 19, 2018 submitted to Sensors 5 of 21

Figure 3. Flow diagram of the traditional calibration procedure

Move

Obstacles

Distance = d

d=1cm
Robot Initial

Position

Store Sensors

Data and

Distance

d=d+1cmd<40?

Sensors Mean

for each

Distance

Interpolation

and Sent to

the Robot

no

yes

Figure 4. Robot 1 and 2 IR sensors values vs. distance

0 5 10 15 20 25 30 35 40

Distance [cm]

0

100

200

300

400

500

600

700

800

900

1000

1100

R
a
w

 v
a
lu

e

Robot 1

IR1

IR2

IR3

IR4

IR5

IR6

IR7

IR8

0 5 10 15 20 25 30 35 40

Distance [cm]

0

100

200

300

400

500

600

700

800

900

1000

1100

R
a
w

 v
a
lu

e

Robot 2

IR1

IR2

IR3

IR4

IR5

IR6

IR7

IR8

Figure 5 shows the results of the previous process for the 5 US sensors of Robot 1 and 2. As can be109

seen, in both cases for distance values less than 20cm the results are not good. But, for values greater110

than 20cm, the results are almost linear. Note that like in the previous case, the values from the sensors111

in both robots are different, despite the fact that they are the same type of sensor.112

Following the traditional method the next step is to calculate the model of both type of sensors with113

the obtained values. Note that the model for each kind of sensor is different. You can obtain a model114

that combine these two models into one, like in [24].115

In the resulting model, for values less than 20cm the model of the IR sensors is used and for values116

grater than 20cm the US model is used. Note that if you need more accuracy, you can obtain a different117

model for each combination of US and IR on each robot. This is a heavy work because you need to do118

this process manually in a repetitive way for each robot/sensor if you want to obtain accurate models for119

all sensors.120

Figure 3. Flow diagram of the traditional calibration procedure.

Figure 4 shows the results of the previous process for the IR sensors: on the left side, the raw
values from the sensors for the Robot 1; and on the right side, the raw values of the Robot 2. As can
be seen, the sensors have a nonlinear behaviour for distance values less than 20 cm and the values
are different for same sensor/distance (note that all these sensors are of the same type). For distance
values greater than 20 cm the behaviour is almost the same. That is why it is important to uses the IR
sensors only to measure distances less than 20 cm.

0 5 10 15 20 25 30 35 40

Distance [cm]

0

100

200

300

400

500

600

700

800

900

1000

1100

R
a
w

 v
a
lu

e

Robot 1

IR1

IR2

IR3

IR4

IR5

IR6

IR7

IR8

0 5 10 15 20 25 30 35 40

Distance [cm]

0

100

200

300

400

500

600

700

800

900

1000

1100

R
a
w

 v
a
lu

e

Robot 2

IR1

IR2

IR3

IR4

IR5

IR6

IR7

IR8

Figure 4. Robots 1 and 2 IR sensors values vs. distance.

Figure 5 shows the results of the previous process for the 5 US sensors of Robots 1 and 2. As can
be seen, in both cases for distance values less than 20 cm the results are not good. But, for values
greater than 20 cm, the results are almost linear. Note that like in the previous case, the values from
the sensors in both robots are different, despite the fact that they are the same type of sensor.

Sensors 2018, 18, 683 5 of 18

0 5 10 15 20 25 30 35 40

Distance [cm]

0

20

40

60

80

100

120

140
R

a
w

 v
a
lu

e

Robot 1

US1

US2

US3

US4

US5

0 5 10 15 20 25 30 35 40

Distance [cm]

0

20

40

60

80

100

120

140

R
a
w

 v
a
lu

e

Robot 2

US1

US2

US3

US4

US5

Figure 5. Robots 1 and 2 US sensors.

Following the traditional method the next step is to calculate the model of both type of sensors
with the obtained values. Note that the model for each kind of sensor is different. You can obtain
a model that combine these two models into one, like in [24].

In the resulting model, for values less than 20 cm the model of the IR sensors is used and for
values grater than 20 cm the US model is used. Note that if you need more accuracy, you can obtain
a different model for each combination of US and IR on each robot. This is a heavy work because
you need to do this process manually in a repetitive way for each robot/sensor if you want to obtain
accurate models for all sensors.

As was mentioned before, the results of the manual calibration shows that the information of the
sensor must be fused to detect obstacles in the entire range (from 0 cm to 40 cm) in front half of the
robot. While in the half back of the robot the obstacles can only be detected from 0 cm to 20 cm.

Figure 6 shows the mean value and the standard deviation of the sensors measurements for the
Robot 1. On the left side are represented these values for the IR sensors. As can be seen, for short
distances (between 2 cm and 15 cm) there are appreciable differences between the raw values of the
sensors for the same distance. Which means that the use of the same model for each sensor may cause
erroneous measurements in this range. For distances greater than 20 cm the differences are smaller.

0 5 10 15 20 25 30 35 40

Distance [cm]

0

200

400

600

800

1000

1200

R
a
w

 v
a
lu

e
s

Mean and Standard Deviation of IR Sensors

Mean value and Standard Deviation

20 25 30 35 40

Distance [cm]

-10

0

10

20

30

40

50

R
a
w

 v
a
lu

e
s

Mean and Standard Deviation of US Sensors

Mean value and Standard Deviation

Figure 6. Mean and Standard Deviation of the IR and US sensors of Robot 1.

Sensors 2018, 18, 683 6 of 18

On the right side of Figure 6, the values of the US sensors are shown. As can be seen, for distances
between 20 cm and 26 cm there are appreciable differences between the raw values of the sensors for
the same distance. For distances greater than 27 cm the differences are smaller.

Next section presents the main contribution of this work: An automatic smart method to carry
out the calibration of the sensors based on data and using an artificial neural network.

3. Automatic Smart Calibration Method

As was explained before, the traditional calibration is a manual and repetitive process that can
be heavy depending of the accuracy that you need to obtain from the model of your sensors. In this
section the novel automatic method based on data and using artificial neural networks is proposed.

3.1. Platform Used in the Laboratory

The method needs to obtain the absolute position of the robot each step execution. This task is
carried out by the platform presented in [25], which is a previous work of the authors. This platform
implements an IPS (Indoor Positioning System) to locate the robot. Figure 7 shows the architecture of
the platform whose components are the following: (a) A personal computer (PC) with the Ubuntu
Linux operating system that executes the software tools (Swistrack [26,27] and Monitor Module);
(b) a PlayStation 3 (PS3) USB camera (fixed to the ceiling) connected via USB to the PC (The images
of this camera are processed by Swistrack to obtain the position of the robot); (c) a Wi-Fi Router
that communicates the Khepera IV robot with the PC; (d) an IP camera to show the performance of
the experiments.

Figure 7. Hardware and software components of the platform.

3.2. Automatic Smart Calibration Method

The method consists of constructing the model of the proximity sensors automatically. For this,
some obstacles are placed in known locations in the workspace. Then the robot navigates through the
workspace storing the values from the proximity sensors. With the known positions of the obstacles
and the information provided by the sensors of the robot, a neural network is built offline based on this
data. The resulting model gets the raw values from the sensors as input and provides as output the
distance to the obstacles around the robot. Note that this method needs to know the absolute position
of the robot during the experiment.

The method consist of the following steps:

Sensors 2018, 18, 683 7 of 18

1. Set up of the workspace: A square shaped wall (80 cm) is placed in the Arena. The robot is placed
in the center of the square with a known orientation. Note the model will work until 40 cm.
The robot starts to move implementing the Braitenberg algorithm [28] to avoid the obstacles.
Figure 8 shows the aerial view of the set up.

Figure 8. Set up of the workspace.

2. Data acquisition: The robot stores the data of the sensors (S1, S2, ..., Sn) and the time during its
movement. On the other hand, the PC stores the position of the robot (coordinates and orientation)
and also the time during the experiment. At the beginning of the process the time in the PC and
the robot starts in 0. But the sample time is different for both because they run independently.
Which means that the acquired data must be synchronized in time by interpolation.

After the experiment finishes, the data of the robot is copied to the PC. Since the time stored
in the robot and in the PC are not coincident this data needs to be adjusted and synchronized.
This process is carried out of a code developed in MATLAB to do this task. Figure 9 shows an
example of the data stored in the robot and in the PC.

Figure 9. Data stored in the robot and in the PC.

Sensors 2018, 18, 683 8 of 18

3. Data conditioning and synchronization: The data is adjusted by liner interpolation of the time,
using Equation (1):

X (t) =
(

X(T1)−X(T0)
T1−T0

)
∗ (t− T0) + X (T0)

Y (t) =
(

Y(T1)−Y(T0)
T1−T0

)
∗ (t− T0) + Y (T0) , T0 < t ≤ T1

θ (t) =
(

θ(T1)−θ(T0)
T1−T0

)
∗ (t− T0) + θ (T0)

(1)

where T0 and T1 are the initial and final time of the position data where the interpolation is made.
t is the time that is evaluated which corresponds with the data of the sensors. X (t), Y (t) and θ (t)
are the pose of the robot in time t. Figure 10 shows the results of this process, where the data of
the robot sensors and the robot positions are merged.

Figure 10. Robot and PC data merged.

Once the position of the robot is obtained, it is necessary to obtain the positions of all sensors
for each robot position. The positions of the sensors only depend on the pose of the robot.
Using Equation (2) this position can be calculated.

{
Xsn = radiusrobot ∗ cos (anglesn + θrobot) + Xrobot
Ysn = radiusrobot ∗ sin (anglesn + θrobot) + Yrobot

(2)

Figure 11 represents the distances from the sensors to the walls (yellow colour). The black solid
lines are the walls. The blue circle is the robot, the small rectangles are the sensors and the blue
arrow represents the orientation of the robot. The dashed lines represent the detection directions
of the senors. The dashed circle (40 cm of radius) represents the maximum detection range of
the sensors.

The distance from each sensor to the walls is calculated by the intersection points (red) between the
detection direction lines and the walls. Equation (3) shows how the coordinates of the intersection
point P(Xm;Ym) are calculated for sensors 1, 2 and 3.

{
Xm = 40

Ym =
(

Yrobot−Ysn
Xrobot−Xsn

)
∗ (Xm − Xsn) + Ysn

(3)

For sensors 7 and 8 is the same process only changing the axis because in this case the intersection
is with the wall x = 40. Having these intersection points the distances and the angles are easily
calculated by Equation (4). Finally the obtained data is filtered.

θm = atan
(

Yrobot−Ym
Xrobot−Xm

)

dm =
√
(Xsn − Xm)

2 + (Ysn −Ym)
2

(4)

Sensors 2018, 18, 683 9 of 18

Figure 11. Distance from the sensors to known obstacles (walls).

4. Artificial Neural Network (ANN): With the calculated values and the raw data of the sensors,
an ANN is built using the Neural Network Toolbox 9.0 of MATLAB [29], to obtain the model.
Figure 12 shows a representation of the ANN implemented based on Levenberg-Marquardt
method [30].

Version February 19, 2018 submitted to Sensors 10 of 21

Figure 11. Distance from the sensors to known obstacles (walls)

For sensors 7 and 8 is the same process only changing the axis because in this case the intersection
is with the wall x=40. Having these intersection points the distances and the angles are easily
calculated by equations 4. Finally the obtained data is filtered.

θm = atan
(
Yrobot−Ym
Xrobot−Xm

)

dm =
√
(Xsn −Xm)

2 + (Ysn − Ym)2
(4)

4. Artificial Neural Network (ANN): With the calculated values and the raw data of the sensors, an180

ANN is built using the Neural Network Toolbox 9.0 of MATLAB [29], to obtain the model. Figure181

12 shows a representation of the ANN implemented based on Levenberg-Marquardt method [30].182

Figure 12. Artificial Neural Network implemented

...
...

...

S1

S2

S3

S13

H1

H2

H20

D1

D8

Input Layer Hidden Layer Output Layer

The input layer receives the 13 raw values (S1−S13) of the sensors (8 IR + 5 US). While the hidden183

layer has 20 neurons (H1 −H20) with the Hyperbolic Tangent as activation function. The output184

Figure 12. Artificial neural network implemented.

The input layer receives the 13 raw values (S1–S13) of the sensors (8 IR + 5 US). While the hidden
layer has 20 neurons (H1–H20) with the Hyperbolic Tangent as activation function. The output
layer has 8 neurons with the Identity as activation function. The outputs (D1–D8) are distances to
the obstacles in the positions of the sensors (every 45◦ around the robot). The training was carried
out with the 70% of the acquired data, the validation with another 15% and the testing with the
remaining 15%. Note that the parameters of the ANN (number of neurons in the hidden layer
and activation functions) have been determined empirically by trial and error after multiple tests.

Sensors 2018, 18, 683 10 of 18

5. Testing the resulting model: Figure 13 shows a test developed in the workspace where the model
was obtained. The sequence of images shows the displacement of the robot through the scenario.
The black lines are the walls of the square (80 cm by 80 cm). The red small line represents the
position and orientation of the robot. The performance of the models is drawn around the robot:
(a) Blue lines: are the real distances to the obstacles (less than 40 cm and calculated with the
intersection process described before); (b) Green lines: are the results of the the ANN model,
taking and fusing the raw inputs from the sensors and providing the 8 distances; and (c) Red
lines: are the distances to the obstacles with the traditional calibration method.

Figure 13. Images sequence of a test in the workspace.

As can be seen, all the models have different behaviors for different situations. The better results
are obtained in general for distances less than 30 cm. But there are appreciable differences between
the results of the half front part of the robot and the back half. This is due to the fact that the
back part of the robots does not have US sensors. Even so, these results are more than acceptable
compared with the majority of existing obstacle avoidance methods, and based on the maximum
velocity of this robot and its steering characteristics.

Table 1 shows the Mean Absolute Percentage Error (MAPE) of the previous tests with respect to
the real distances. The rows represent the distances (D1–D8) to the obstacles from the position of
the sensors. The columns represent the results for both models (Artificial Neural Network (ANN)
and Traditional (Trad)) for Robots 1 and 2.

Sensors 2018, 18, 683 11 of 18

Table 1. Mean Absolute Percentage Error for both models and robots.

MAPE (%)

Robot 1 Robot 2

ANN Trad ANN Trad

D1 55.77 54.33 30.45 38.49
D2 67.06 79.01 25.56 40.09
D3 66.64 76.20 21.05 29.24
D4 50.71 66.46 12.68 23.44
D5 44.35 51.74 9.50 17.17
D6 47.61 51.12 11.76 21.54
D7 46.29 56.80 21.68 39.24
D8 58.09 55.37 32.03 42.45

In all the cases, the smallest error values are represented in bold. As can be seen, the results for
both robots are different. In the case of Robot 2 the traditional method shows worse results than the
ANN method. In the case of Robot 1, the behavior is similar to the previous one. Only distances
1 and 8 present worse results. In general, for both cases the ANN model presents better results than
the traditional model.

Figure 14 shows the flow diagram of the developed method. The block related to the robot are
represented in green colour. The orange colour represents the blocks related to the PC. Note that the
ANN model is obtained offline with the acquired data by the robot and by the PC. After that the model
is implemented in the robot. The model gets the raw values from the sensors and gives the distances
to the objects in the 8 directions where the sensors are located in the robot.

Version February 19, 2018 submitted to Sensors 12 of 21

Table 1 shows the Mean Absolute Percentage Error (MAPE) of the previous tests with respect to204

the real distances. The rows represent the distances (D1-D8) to the obstacles from the position of205

the sensors. The columns represent the results for both models (Artificial Neural Network (ANN)206

and Traditional (Trad)) for robots (Robot 1 and 2).207

Table 1. Mean Absolute Percentage Error for both models and robots

MAPE (%)

Robot 1 Robot 2

ANN Trad ANN Trad

D1 55,77 54,33 30,45 38,49

D2 67,06 79,01 25,56 40,09

D3 66,64 76,20 21,05 29,24

D4 50,71 66,46 12,68 23,44

D5 44,35 51,74 9,50 17,17

D6 47,61 51,12 11,76 21,54

D7 46,29 56,80 21,68 39,24

D8 58,09 55,37 32,03 42,45

In all the cases, the smallest error values are represented in red colour. As can be seen, the results208

for both robots are different. In the case of Robot 2 the traditional method shows worse results than209

the ANN method. In the case of Robot 1, the behavior is similar to the previous one. Only distances 1210

and 8 present worse results. In general, for both cases the ANN model presents better results than the211

traditional model.212

Figure 14. Flow diagram of the developed calibration procedure

Robot

Navigates

through

Workspace

Robot Initial

Position
Workspace Setup

Robot Store

Sensors Data

PC Store

Robot Positions
t<5min?

Download

Robot

Data to PC

Data

Conditioning
ANN Training

Put ANN

in Robot

no

yes

Figure 14 shows the flow diagram of the developed method. The block related to the robot are213

represented in green colour. The orange colour represents the blocks related to the PC. Note that the214

ANN model is obtained offline with the acquired data by the robot and by the PC. After that the model215

Figure 14. Flow diagram of the developed calibration procedure.

Note that this method has been developed for the Khepera IV robot. The properties of the robot
and platform have a direct influence in the performance of the method. But it does not mean that the
method cannot be implemented in other robots/platforms that use proximity sensors to estimate the
distance to obstacles. To do that, one important element to be taken into account is the use of an indoor
positioning system which gives the absolute position of the robot in running time. Other important
aspect is the location of the sensors around the robot. This configuration has to be considered when
the distances from each sensor to the walls (see Figure 11) are calculated by using Equations (2)–(4).

Sensors 2018, 18, 683 12 of 18

4. Experiment of Position Control with Obstacles Avoidance

This experiment is titled position control or point stabilization of a differential wheeled mobile
robot. This problem has been widely studied mainly from an automatic control perspective [31].
The objective of the experiment is to drive the robot from the current position C(xc, yc) and orientation
(θ) to the target point Tp(xp, yp). Figure 15 shows a representation of the variables involved in
this experiment.

Figure 15. Position control problem.

Figure 16 shows the feedback control loop block diagram of this experiment but in this case,
including the obstacle avoidance algorithm and the model obtained with the developed method.

Version February 19, 2018 submitted to Sensors 14 of 21

Figure 16. Block diagram of the position control problem

Compare Control Law OAA

ANN or Trad Model

S1-S13

Motors

Position Sensor

Tp d
α

ν
ω

D1-D8

ν’
ω’

x, y, θ

C

ω = ωmaxsin (θe) (6)

The block OAA represents the Obstacle Avoidance Algorithm, in this case: Braitenberg algorithm237

[33], in which the robot’s sensors are tied directly to the motor controls and motor speeds respond to the238

sensor input directly. The Model block represents the developed algorithm which obtains the distances239

to the obstacles (D1 - D8) from the raw data of proximity sensors (S1 - S13). If no obstacle is detected,240

the output velocities of the block OAA are the same as its inputs (ν, ω).241

The Braitenberg algorithm [28] creates a weighted matrix that converts the sensor inputs into motor
speeds. This matrix is a two-dimensional array with the number of columns corresponding to the number
of obstacle sensors (8) and the number of rows corresponding to the number of motors (2). The weights
of the matrix are determined empirically depending on the location of the sensors in the robot.The 8
sensors of the Khepera IV robot are numbered clockwise beginning with the front sensor. Equation 7
represents the mentioned matrix where, for example, the term WLS1 represents the weight of the sensor
S1 in the speed of the left motor. Equation 8 represents the raw data of the proximity sensors at each
time.

W =

(
WLS1 WLS2 . . . WLS8

WRS1 WRS2 . . . WRS8

)
(7)

S =
(
S1 S2 . . . S8

)T
(8)

With these matrices, the velocities for each motor are calculated as is shown in Equation 9. Where
(Smax) represents the maximum value of the sensor output.

νL,R = W ∗ (1− (S/Smax)) (9)

Figure 17 shows the top view of the set-up of the scenario to carry out two experiments where the242

elements are the following: a) red arrows represent the starting points and orientation of the robot; b)243

green circle represents the target point for both cases; and c) obstacles are walls (white colour) and244

cylinders (blue/red colours).245

Figure 18 shows the results of both experiments with the ANN and Traditional models. The red lines246

and circles are the obstacles. In both cases, the robot begins the experiment starting at point 1 (cyan247

Figure 16. Block diagram of the position control problem.

The block Compare calculates the distance (d) and the angle α to the target point (Tp) from
the current position of the robot (C). The block Control Law tries to minimize the orientation error,
θe = α− θ, and at the same time, to reduce the distance to the target point (d = 0) by manipulating the
control signals (linear velocity (ν) and angular velocity (ω) of the robot). Equations (5) and (6) show
the implementation of this control law based on [32].

ν =

νmax if |d| > Kr

d
(

νmax
Kr

)
if |d| ≤ Kr

(5)

Sensors 2018, 18, 683 13 of 18

ω = ωmaxsin (θe) (6)

The block OAA represents the Obstacle Avoidance Algorithm, in this case: Braitenberg
algorithm [28], in which the robot’s sensors are tied directly to the motor controls and motor speeds
respond to the sensor input directly. The Model block represents the developed algorithm which
obtains the distances to the obstacles (D1–D8) from the raw data of proximity sensors (S1–S13). If no
obstacle is detected, the output velocities of the block OAA are the same as its inputs (ν, ω).

The Braitenberg algorithm [28] creates a weighted matrix that converts the sensor inputs into
motor speeds. This matrix is a two-dimensional array with the number of columns corresponding to
the number of obstacle sensors (8) and the number of rows corresponding to the number of motors (2).
The weights of the matrix are determined empirically depending on the location of the sensors in the
robot.The 8 sensors of the Khepera IV robot are numbered clockwise beginning with the front sensor.
Equation (7) represents the mentioned matrix where, for example, the term WLS1 represents the weight
of the sensor S1 in the speed of the left motor. Equation (8) represents the raw data of the proximity
sensors at each time.

W =

(
WLS1 WLS2 . . . WLS8

WRS1 WRS2 . . . WRS8

)
(7)

S =
(

S1 S2 . . . S8

)T
(8)

With these matrices, the velocities for each motor are calculated as is shown in Equation (9).
Where (Smax) represents the maximum value of the sensor output.

νL,R = W ∗ (1− (S/Smax)) (9)

Figure 17 shows the top view of the set-up of the scenario to carry out two experiments where the
elements are the following: (a) red arrows represent the starting points and orientation of the robot;
(b) green circle represents the target point for both cases; and (c) obstacles are walls (white colour) and
cylinders (blue/red colours).

Figure 17. Scenario for obstacle avoidance experiments.

Figure 18 shows the results of both experiments with the ANN and Traditional models. The red
lines and circles are the obstacles. In both cases, the robot begins the experiment starting at
point 1 (cyan circle) and it must reach the target point 2 (green circle). The small blue points represent

Sensors 2018, 18, 683 14 of 18

the position of the robot during the experiment for the traditional calibration model (Trad), while the
small red points represent the position of the robot for the developed method (ANN).

In both cases the robot reaches the target point avoiding the obstacles that it finds on its way.
As can be seen, the behavior of the robot with the ANN model has better performance than with the
traditional model. These differences show that you can use the functions provided by the manufacturer
or calibrate the sensors manually using the traditional method. In both cases you need to take into
account that your obstacle avoidance algorithm can be working correctly for the values of distances
that it is receiving. However, the real problem is that the sensors can be providing erroneous values
due to bad calibration or the use of a poorly tuned model for all the sensors.

-100 -50 0 50 100

X[cm]

-100

-80

-60

-40

-20

0

20

40

60

80

100

Y
[c

m
]

1

2

Traditional Model

ANN Model

-100 -50 0 50 100

X[cm]

-100

-80

-60

-40

-20

0

20

40

60

80

100

Y
[c

m
]

2

1

Traditional Model

ANN Model

Figure 18. Obstacles avoidance experiment results for Robot 2.

Table 2 shows the Mean Absolute Percentage Error (MAPE %) of these experiments presented in
Figure 18. The columns represent the following: (Exp) the number of the experiment, (Method) the
model, (MAPE) the mean values of the distance errors (from D1 to D8) and (Time) the time to reach
the target point.

Table 2. Results of three experiments for both models.

Exp Method MAPE (%) Time (s)

1 Trad 83.9 59.4
1 ANN 65.5 50.8

2 Trad 88.8 60.4
2 ANN 58.4 51.3

The results represented in bold indicate the smallest values of the errors and time. As can
be seen, for all experiments the ANN model presents less mean error than the traditional model.
In addition, in both experiments the robot reaches the target point in less time, which means that
the robot describes a smoother and more direct path to the target point due to better detection and
avoidance of the obstacles.

Additionally, Figure 19 shows the angular velocity of the robot in the second experiment (right side
of Figure 17) for both models: blue line represents the traditional model; and red line represents the
ANN model.

Sensors 2018, 18, 683 15 of 18

0 10 20 30 40 50 60 70 80

Time [s]

-4

-3

-2

-1

0

1

2

3

4
V
e
l
o
c
i
t
y

[
r
a
d
/
s
]

Angular Velocity

Traditional Model

ANN Model

Figure 19. Angular velocities.

As can be seen, for the same experiment, with the ANN model the angular velocity has less
oscillations than with the traditional model. Due to better detection and avoidance of the obstacles,
the behavior of the robot is smoother because it can avoid the obstacles in a better way with less
direction changes. Because it reaches the target point first, that means that the trajectory is more
efficient. Figure 20 shows the linear velocities for the same experiments and models.

0 10 20 30 40 50 60 70 80

Time [s]

0

2

4

6

8

10

12

V
e
l
o
c
i
t
y

[
c
m
/
s
e
g
]

Linear Velocity

Traditional Model

ANN Model

Figure 20. Linear velocities.

In the case of the linear velocities, also the ANN model has less oscillations and it becomes zero
first. This means that the robot reaches the target point faster than with the traditional model and with
a more constant velocity.

5. Conclusions

The most common proximity sensors in mobile robotics are the US and IR sensors. They are
widely used for obstacle detection without physical contact. But they introduce uncertainties in the
measurements due to their mode of operation: they need a feedback signal that depends on the surface

Sensors 2018, 18, 683 16 of 18

of the object and the ambient conditions. Another important issue for these sensors is the calibration
of their outcomes. Usually one has to obtain a model that converts the raw measurements provided
by the sensors in distances. The method for building this model is a repetitive and lengthy process
that usually is done manually. Moreover, the obtained model cannot provide the same distance even
for two sensors of the same type (due to the uncertainties introduced by the surfaces of the objects).
That is why in some situations it could be useful to gather all measurements provided by different
sensors and combine them in order to get an accurate model to estimate the distances to the obstacles
around the robot.

This paper presents a novel approach to get an obstacle detection model based on the combination
of sensor data. The method is automatic and based on data using machine learning. The method
implements an artificial neural network to obtain the model of the sensors. The model receives the
raw values from the 13 sensors (8 IR + 5 US) and provides the distances to the obstacles around the
robot (8 values). This means that the method combines the information from both kinds of sensors and
builds a unique model for obstacle distances.

The developed method has been designed for the Khepera IV robot in an indoor environment
with an IPS to obtain its absolute position in running time. Although it has been designed for these
characteristics, this method can be implemented to different platforms. The fundamental points that
have to be taken into account are the indoor positioning system and the location of the sensors around
the robot.

To show the performance of the developed model, some results are provided and discussed.
The experiment of position control with obstacles avoidance based on the Braitenberg algorithm was
selected. To test it, two different scenarios were used for this experiment. In addition, the velocity of
the robots was analyzed in both cases. The comparison between the traditional and the developed
method shows the improvement in the results.

This method is undoubtedly an advance in the calibration of proximity sensors because it
eliminates the traditional laborious method and provides better results. Future works are related to
the implementation of this method in other platforms with other kinds of robots and sensors.

Acknowledgments: This work has been funded by the Chilean Ministry of Education under the Project
FONDECYT 1161584, and the National Plan Project DPI2014-55932-C2-2-R of the Spanish Ministry of Economy
and Competitiveness and funds from the Universidad Nacional de Educación a Distancia of Spain (UNED).

Author Contributions: Emmanuel Peralta designed and developed the platform and the work with the sensors
of the robot, performed the experiments and analyzed the results. Ernesto Fabregas collaborated in the
development of the platform and wrote the manuscript. Gonzalo Farias, Héctor Vargas and Gabriel Hermosilla
performed the theoretical conception and planning of the system. Gonzalo Garcia revised the manuscript with
Sebastián Dormido.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, W.; Zelinsky, G.; Samaras, D. Real-time Accurate Object Detection using Multiple Resolutions.
In Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil,
14–21 October 2007; pp. 1–8.

2. Ren, C.L.; Chun, C.L. Multisensor Fusion-Based Concurrent Environment Mapping and Moving Object
Detection for Intelligent Service Robotics. IEEE Trans. Ind. Electr. 2014, 61, 4043–4051.

3. Kaijen, H.; Nangeroni, P.; Huber, M.; Saxena, A.; Ng, A.Y. Reactive grasping using optical proximity sensors.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan,
12–17 May 2009; pp. 2098–2105.

4. Almasri, M.; Alajlan, A.; Elleithy, K. Trajectory Planning and Collision Avoidance Algorithm for Mobile
Robotics System. IEEE Sens. J. 2016, 12, 5021–5028.

5. Alajlan, M.; Almasri, M.; Elleithy, K. Multi-sensor based collision avoidance algorithm for mobile robot.
In Proceedings of the IEEE Long Island Systems, Applications and Technology Conference (LISAT),
New York, NY, USA, 1 May 2015; pp. 1–6.

Sensors 2018, 18, 683 17 of 18

6. Almasri, M.; Elleithy, K.; Alajlan, A. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.
Sensors 2016, 16, 24.

7. Webster, J.G.; Halit, E. Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal,
and Radiation Measurement, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017.

8. Mustapha, B.; Zayegh, A.; Begg, R. Ultrasonic and infrared sensors performance in a wireless obstacle
detection system. In Proceedings of the 1st International Conference on Artificial Intelligence, Modelling
and Simulation (AIMS), Kota Kinabalu, Malasya, 3–5 December 2013; pp. 487–492.

9. Adarsh, S.; Kaleemuddin, S.M.; Bose, D.; Ramachandran, K.I. Performance comparison of Infrared
and Ultrasonic sensors for obstacles of different materials in vehicle/robot navigation applications.
In Proceedings of the IOP Conference Series: Materials Science and Engineering, Bangalore, India,
14–16 July 2016; pp. 1–7.

10. Shrivastava, A.K.; Verma, A.; Singh, S.P. Distance Measurement of an Object or Obstacle by Ultrasound
Sensors using P89C51RD2. Int. J. Comput. Theory Eng. 2010, 64, 64–68.

11. Mohd Rusdy, Y.; Anuar, M.K.; Syahrim, N.; Anwar, N. Effect of glittering and reflective objects of different
colours to the output voltage-distance characteristics of sharp GP2D120 IR. Int. J. Electr. Power Eng. 2012,
2, 6–10.

12. Benet, G.; Blanes, F.; Simó, J.E.; Pérez, P. Using infrared sensors for distance measurement in mobile robots.
Robot. Auton. Syst. 2002, 40, 255–266.

13. Paunović, I.; Todorović, D.; Božić, M.; Ðord̄ević, G.S. Calibration of ultrasonic sensors of a mobile robot.
Serbian J. Electr. Eng. 2009, 3, 427–437.

14. Fung, M.L.; Chen, M.Z.; Chen, Y.H. Sensor fusion: A review of methods and applications. In Proceedings
of the 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017;
pp. 3853–3860.

15. Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the state-of-the-art.
Inf. Fusion 2013, 14, 28–44.

16. Martens, S.; Gaudiano, P.; Carpenter, G.A. Mobile robot sensor integration with fuzzy ARTMAP.
In Proceedings of the Intelligent Control (ISIC) joinly with IEEE International Symposium on Computational
Intelligence in Robotics and Automation (CIRA), Gaithersburg, MD, USA, 17 September 1998; pp. 307–312.

17. Guanshan, H. Neural Network Applications in Sensor Fusion for a Mobile Robot Motion. In Proceedings
of the WASE International Conference on Information Engineering (ICIE), Qinhuangdao, China,
14–15 August 2010; pp. 46–49.

18. Akkaya, R.; Aydogdu, O.; Canan, S. An ANN based NARX GPS/DR System for Mobile Robot Positioning
and Obstacle Avoidance. J. Autom. Control 2013, 1, 6–13.

19. Barton, A.; Volna, E. Control of autonomous robot using neural networks. In Proceedings of the
International Conference of Numerical Analysis and Applied Mathematics (ICNAAM), Rhodes, Greece,
19–25 September 2016; p. 070002.

20. Safari, S.; Shabani, F.; Simon, D. Multirate multisensor data fusion for linear systems using Kalman filters
and a neural network. Aerosp. Sci. Technol. 2014, 39, 465–471.

21. Myat, S.N.; Hla, M.T. Implementation of Multisensor Data Fusion Algorithm. Int. J. Sens. Sens. Netw. 2017,
5, 48–53.

22. Kam, M.; Zhu, X.; Kalata, P. Sensor fusion for mobile robot navigation. Proc. IEEE 1997, 85, 108–119.
23. KTeam. Khepera IV User Manual. 2015. Available online: http://ftp.k-team.com/KheperaIV/UserManual/

(accessed on 2 October 2017).
24. De Silva, O.; George, K.M.; Raymond, G.G. An ultrasonic and vision-based relative positioning sensor for

multirobot localization. IEEE Sens. J. 2015, 15, 1716–1726.
25. Fabregas, E.; Farias, G.; Peralta, E.; Sánchez, J.; Dormido, S. Two Mobile Robots Platforms for

Experimentation: Comparison and Synthesis. In Proceedings of the 14th International Conference on
Informatics in Control, Automation and Robotics (ICINCO), Madrid, Spain, 26–28 July 2017; pp. 439–445.

26. Correll, N.; Sempo, G.; De Meneses, Y.L.; Halloy, J.; Deneubourg, J.L.; Martinoli, A. SwisTrack: A tracking
tool for multi-unit robotic and biological systems. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Beijing, China, 9–15 October 2006; pp. 2185–2191.

http://ftp.k-team.com/KheperaIV/UserManual/

Sensors 2018, 18, 683 18 of 18

27. Lochmatter, T.; Roduit, P.; Cianci, C.; Correll, N.; Jacot, J.; Martinoli, A. Swistrack—A flexible open source
tracking software for multi-agent systems. In Proceedings of the Intelligent Robots and Systems (IROS),
Nice, France, 22–26 September 2008; pp. 4004–4010.

28. Yang, X.; Patel, R.V.; Moallem, M. A fuzzy—Braitenberg navigation strategy for differential drive mobile
robots. J. Intell. Robot. Syst. 2006, 47, 101–124.

29. Mathworks. MATLAB Neural Network Toolbox 9.0. 2017. Available online: https://es.mathworks.com/
help/nnet/index.html (accessed on 2 October 2017).

30. Çelik, O.; Teke, A.; Yıldırım, H.B. The optimized artificial neural network model with Levenberg-Marquardt
algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. J. Clean. Prod.
2016, 116, 1–12.

31. Kuhne, F.; Lages, W.F.; Da Silva, J.G. Point stabilization of mobile robots with nonlinear model predictive
control. In Proceedings of the IEEE International Conference Mechatronics and Automation (ICMA),
Niagara Falls, ON, Canada, 29 July–1 August 2005; pp. 1163–1168.

32. González Villela, V.J.; Parkin, R.; López Parra, M.; Dorador González, J.M.; Guadarrama Liho, M.J. A wheeled
mobile robot with obstacle avoidance capability. Ing. Mec. Tecnol. Desarro. 2004, 5, 159–166.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://es.mathworks.com/help/nnet/index.html
https://es.mathworks.com/help/nnet/index.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Traditional Calibration of Proximity Sensors
	Automatic Smart Calibration Method
	Platform Used in the Laboratory
	Automatic Smart Calibration Method

	Experiment of Position Control with Obstacles Avoidance
	Conclusions
	References

