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Abstract: IoT devices frequently generate large volumes of streaming data and in order to take
advantage of this data, their temporal patterns must be learned and identified. Streaming data
analysis has become popular after being successfully used in many applications including forecasting
electricity load, stock market prices, weather conditions, etc. Artificial Neural Networks (ANNs)
have been successfully utilized in understanding the embedded interesting patterns/behaviors in the
data and forecasting the future values based on it. One such pattern is modelled and learned in the
present study to identify the occurrence of a specific pattern in a Water Management System (WMS).
This prediction aids in making an automatic decision support system, to switch OFF a hydraulic
suction pump at the appropriate time. Three types of ANN, namely Multi-Input Multi-Output
(MIMO), Multi-Input Single-Output (MISO), and Recurrent Neural Network (RNN) have been
compared, for multi-step-ahead forecasting, on a sensor’s streaming data. Experiments have shown
that RNN has the best performance among three models and based on its prediction, a system can be
implemented to make the best decision with 86% accuracy.

Keywords: sensor analytics; flowmeter; internet of things (IoT); real-time data; Artificial Neural
Network (ANN); MSA forecasting

1. Introduction

The internet of thing (IoT) refers to sensing and collecting data from different devices about
everyday physical phenomena [1]. IoT has gained wide popularity due to its huge market in various
sectors such as healthcare, security, home automation, etc. To make an IoT system smart and artificially
intelligent, data serves as a fuel which is generated by various sensors and devices within the system.
Various data analytic techniques could be applied to these data to form strategic courses of action.
One of the most widely used analytical techniques is time series analysis, which is used to understand
past observations to learn an appropriate model. These models can be used not only to predict the
future values, but also to learn significant pattern/behavior embedded in the structure of the temporal
data [2]. The time series analysis has significance in many domains, such as predicting the electricity
demand, forecasting weather and stock prices, and learning about the behavior of usage analysis
including electricity, fuels, etc.

In this paper, we have studied a real-time data series to learn and identify a certain pattern
indicating interesting behavior. Learning these behaviors can lead us to make smart decisions at the
appropriate time to maximize the performance of a system deployed in a home or any other scenario.
In the next subsection, we have explained the target scenario in detail.
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Target Scenario

The Water Management System (WMS) is one such system which monitors and controls the
flow and reservoir of water in a home. This system primarily consists of a hydraulic suction pump
that suctions water from an outside source into an underground storage tank. A sensor flowmeter is
installed on a line which connects an outside water source with the underground tank. The flowmeter’s
task is to measure the flow of water coming into the tank through the suction pump. Since the water
availability from the outside water supply is highly unpredictable, a method is required to ensure
that the pump turns ON at the appropriate time to suction the water when available. Moreover,
the pump should not remain excessively ON as it could waste electricity, as well as air-lock the pump.
The flowmeter senses the rate of water inflow at every minute which is then sent over the internet to
the server using an Arduino board to create an online log file. The components relevant to this study
are shown in Figure 1.
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The present study deals with the flowmeter sensor that detects the ending of water in the main 
water line. The inflow of water series will henceforth be considered as a discrete time series: 𝑋(1), 𝑋(2), …, 𝑋(𝑡), where 𝑋(𝑡) refers to the volume of inflow of water taken at discrete time intervals of 
one minute. This time series typically exhibits a peculiar behavior at the time when the outside source 
runs out of the water. The behavior happens just a few minutes before the water stops as the water level 
goes through a sudden spike and then it goes down to zero. The reason for this behavior can be that the 
water pipeline is drained out of the water and due to the air intake and the resulting reduction in back 
pressure, the water flow increases for few minutes, and then it falls to zero. For the sake of simplicity, 
we will refer to this behavior as the Ending-Marker (EM) in this paper and it is depicted in Figure 2. 
The behavior is observed many times in the series whenever the water is about to end in the main line. 
Our objective in this study is that if this behavior could be learned by a model, then the best time to turn 
OFF the suction pump can be predicted. This prediction is crucial not only to automate the whole 
system, but also to optimize the utilization ofresources (water storage, electricity). 

Figure 1. Depiction of key components of WMS.

The present study deals with the flowmeter sensor that detects the ending of water in the main
water line. The inflow of water series will henceforth be considered as a discrete time series: X(1),
X(2), . . . , X(t), where X(t) refers to the volume of inflow of water taken at discrete time intervals of
one minute. This time series typically exhibits a peculiar behavior at the time when the outside source
runs out of the water. The behavior happens just a few minutes before the water stops as the water
level goes through a sudden spike and then it goes down to zero. The reason for this behavior can be
that the water pipeline is drained out of the water and due to the air intake and the resulting reduction
in back pressure, the water flow increases for few minutes, and then it falls to zero. For the sake of
simplicity, we will refer to this behavior as the Ending-Marker (EM) in this paper and it is depicted in
Figure 2. The behavior is observed many times in the series whenever the water is about to end in the
main line. Our objective in this study is that if this behavior could be learned by a model, then the best
time to turn OFF the suction pump can be predicted. This prediction is crucial not only to automate
the whole system, but also to optimize the utilization ofresources (water storage, electricity).
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While there are various algorithms and statistical techniques such as Auto Regressive (AR),
Auto Regressive Moving Average (ARIMA), etc. to analyze temporal data [3], these statistical
techniques work best when the data has a linear structure or can be converted to a linear structure.
ANN are known for learning from imprecise and complex data which may contain interesting patterns
and important trends. Learning these patterns and trends is a very complex task because it requires
an analytic technique which is flexible enough to capture the dynamicity of the system. ANN is a
technique which is not only adaptive, data-driven, and self-organizing, but also has the capability to
learn the dynamic nature of the problem using real-time analysis [4]. The streaming data used in this
study is the inflow of water measured by the flowmeter sensor. It has wide-ranging randomness in its
magnitude, making predication a challenging task. It also has temporal variations and dependencies
which need an algorithm that can adapt to temporal behaviors. Moreover, it is also non-linear
in structure, making it impossible to use a well-known statistical technique to analyze temporal
data. Hence, these aspects found in the sensor data under study have made the ANN algorithm an
appropriate choice for the problem at hand.

In this study, three types of ANN are investigated for multi-step-ahead (MSA) forecasting and
their performances are compared for predicting the underlying behavior in the flowmeter data.
These models are explained briefly in the next section (Section 2.1). As a feasibility study, we have
initially applied single-step-ahead forecasting on a synthetic dataset (Section 2.3) which we created
and is of a similar nature as the flowmeter data. The synthetic data was used as a proof of concept to
determine the applicability of the ANN model in learning behavioral patterns in the data stream.

The rest of the paper is organized as follows. Section 2 presents the technical background of
our study, a brief overview of other relevant work, and a preliminary analysis applied to synthetic
data. Section 3 describes the approach and the model used in this study, while Section 4 presents
the experiments, results, and discussion. Finally, Section 5 concludes the work by summarizing the
main findings.

2. Background and Preliminary Analysis

2.1. Technical Background

The models studied in this work are Multi-Input Single-Output (MISO), Multi-Input Multi-Output
(MIMO), and Serial Propagated/Recurrent Neural Networks (RNNs) [5]. All three models treat the
temporal data as time series X(1), X(2), . . . , X(t), where the values till time t are used to predict
X(t + 1) to X(t + m), where m > 1. A brief introduction of these models is given below.
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2.1.1. MIMO

For MSA, MIMO models are considered to be the most common and the simplest approach [6].
In this approach, a single neural network is created where the input layer contains the neurons equal
to the size of the sliding window and the output layer contains the neurons equal to the step-ahead
predicted values (m). A typical structure of MIMO is shown in Figure 3. Since a single network is
created for all outputs, the weights are learned in a way to optimize a multi-objective function which
optimizes all outputs. The training time is also larger than a single-step-ahead forecasting network
because there is a larger number of weights.
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2.1.2. MISO

In this type of ANN, multiple independent networks are created which are equal to the number
of outputs. Each network is trained to produce a single output which makes such models useful for
parallel computation [7], where the data volume is huge. A typical structure of the MISO network is
shown in Figure 4. Since every network’s weights are optimized according to one output only, this not
only increases the accuracy, but also reduces the learning time. Each individual network has a lower
number of weights between the hidden and the output layer than the MIMO network. The collective
time of training of all independent neural networks is much higher than that of MIMO. Another
drawback is that the predictive performance of the network decreases as we increase the value of m.
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2.1.3. RNN

In RNN, also known as the serial propagated network, m multiple neural networks of identical
structures are created where each of these networks is a single-step-ahead predictor to produce m
predictions respectively. These networks are combined to form one single network in such a way
that the output of the previous network is fed as the input to the next network. They are similar
to MISO but have the advantage of using previous outputs in making future predictions. Figure 5
shows the structure of RNN. The feedback loops in an RNN make it possible to exhibit dynamic
temporal behavior. The main concern of this model in MSA forecasting is that the noise or the error
is also multiplied and propagated to successive predictions. If the data has lots of pattern variations
and fluctuations, then this can lead to larger errors which multiply as the future steps are increased.
This problem can be dealt with to a certain extent by using a proper threshold of errors at the output
level to prevent them from propagating to the next prediction.
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2.2. Literature Review

This section presents a brief literature review to explore the application of the various types of
ANN in real-time forecasting. To analyze and forecast the temporal data, statistical methodologies
like Autoregressive Integrated Moving Average (ARIMA) have been used to fit the class of linear
time series models [8]. The restriction of linearity has been addressed by many researchers and, as a
result, various variations of ARIMA models have been proposed [9]. However, each of the proposed
models has its own set of limitations. ANN is another algorithm which has been studied as an alternate
approach to model the non-linear relationships in data [10]. This technique is not only capable of
learning the non-linear structures, but also of learning the underlying complex pattern from the data.
In [11], besides researching the uses of ANN in non-linear models, the authors also highlighted the
important developments in real-time data forecasting by ANN. There have been various studies
where ANN is applied successfully to analyze the real-time data in domains such as electricity load
forecasting [12–14], stock price prediction [15,16], commodity price prediction [17], etc., as explained
further below.

In [12], the authors used the combination of clustering and the Bayesian Neural Network (BNN)
for short term load forecasting of electricity. K-Means clustering was used to identify the most
appropriate training data to forecast an hour-ahead value, whereas BNN was used as a forecasting
model. The results obtained using BNN claimed to have the highest accuracy compared to several
other models. Similarly, there is another study which forecasts hourly load data, using ANN on the
basis of real-time data [13]. The researchers not only used the past load information, but also used the
meteorological factors including humidity level, temperature, air pressure, wind speed, and visibility
to predict the next hour load and the results showed improvement in terms of the performance.
Electric load forecasting was also accomplished via Fuzzy Neural Networks (FNN) [18], where three
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different weight learning algorithms were used to learn the network. The study not only forecasts the
peak-load and average-load, but also provides a high-level understanding of the neural network by
converting an expert system into a Neural Network (NN). Whereas, in [14], the authors have studied
the theoretical basis of the BP (back propagation) neural network and used it to conduct short-term
power load forecasting.

ANN has also been used largely in stock price predictions. In [15], pattern recognition is studied
on stocks temporal data and ANN has shown promising results in stock price prediction and pattern
recognition. In another study [16], a combination of ANN and ARIMA is used to study the stock prices.
Here, the authors not only predicted the price indices, but also made an effort to learn the behavioral
pattern in temporal data.

In [17], the price of crude palm oil (Soy bean oil) has been predicted using ANN, where the data
was comprised of the historical price of Soy bean oil and the currency exchange rate. Here, the authors
have studied the performance of the model by changing the network structure to get the best results.

ANN has applications in many other areas of time series data prediction. A group of researchers
proposed a design to use distributed computing power for training multiple time series and studied
various machine learning algorithms for time series prediction [19]. They used Hidden Markov Models
(HMM) for short term dependencies like temperature and the Recurrent Neural Network for long term
dependencies like wind speeds. Neural networks have also been successfully used for analyzing the
traffic time series [20] and predicting the traffic in one direction of the road segment. A feed forward
neural network was used which takes the traffic data of the last few days to predict the next day
traffic volume.

There are various studies where ANN has been successfully used for monitoring and controlling
the resources in a smart home [21]. We have also used various ANN techniques to learn the behavior
of streaming values of water inflows in a smart home. The novelty of our work is the application of
ANN to learning the unknown patters that are often found in a sensor’s data and to use this in making
a predictive system for automated decision making. In this methodology, we evaluated different
models’ performance on the basis of the lowest MSE and then used this model to automate a decision
process in a smart home. To the best of our knowledge, this is the first use of ANN for the purpose
of analyzing the streaming data of water inflow to automate a water management system in a smart
home or building.

2.3. Preliminary Analysis Using Synthetic Data

To determine whether ANN can be used for the purpose as specified in Section 1, we initially
created a series of synthetic data f (i) for testing the applicability of ANN. The f (i) mimics, under
controllable parameters, the known characteristics of the EM which are exhibited by X(t) and
are created as follows. The dashed line in Figure 6, referred to as the baseline x(i), indicates the
deterministic expected behavior of the EM. To make the EM randomized with controllable parameters,
we have introduced random fluctuations y(i) in the EM. The baseline, along with one realization of
the fluctuations, is shown as the solid line in Figure 6. The different stages of EM have been depicted
as stage A, stage B, and stage C. Stage A consists of n data points where n is a uniformly distributed
number between 1 and 30. Stage B and stage C consist of four data points each. The randomization is
done by adding a uniformly distributed random value (y) ranging from −1.5 to +1.5 to the baseline.
Hence, the equation is:

f (i) = x(i) + y(i)

x(i) =


Baseline Values

2 − stage A
8 − stage B
1− stage C

∣∣∣∣∣∣∣∣∣
Length

1− 30 (n)
4
4


y(i) = UDist. ∈ [−1.5, +1.5] (1)
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The pattern of Figure 6 was repeatedly created with a series of non-repeating random values to
generate 12,000 time intervals. Normalization of f (i) was done using Equation (2) to ensure that the
data was in the range between 0 and 1. A sample series of normalized synthetic points f N(i) is shown
in Figure 7.

f N(i) =
f (i)
M

, where M = Max f (i) ∀i (2)
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The synthetic flow data is taken to be the time series f N(1), . . . , f N(i) format to predict the next
value f̂ (i + 1), where previous p values of the data stream shall now be used. As given in Equation (3):

f̂ (i + 1) = h1,p( f ((i), f (i− 1), . . . , f (i− p + 1)), where p = number o f previous values used (3)

The initial model h1,p() is the single-step ANN model used for single-step-ahead prediction. It is
very simple in terms of its structure, having one hidden layer of five neurons, where the purpose is to
test its predictive power on synthetic data. Multiple experiments were then performed with different
values of p, varying from 3 to 51, to determine the most suitable value referred to as p*. The selection of
p* was based on an analysis of Mean Squared Error (MSE), as plotted in Figure 8. The error is defined
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as the difference of actual flow and the predicted flow, i.e., f N(i)− f̂ (i + 1). In this figure, it can be
seen that the maximum drop in MSE is at p = 6 (MSE = 0.025). It should also be noted that the MSE
does not decrease much beyond p = 6 and in fact, beyond 24, it starts to increase, most likely due to
over-fitting. Since the complexity also increases with an increase in p, the most suitable value for p is
chosen as p* = 6.
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Next, the actual synthetic data values ( f N(i)) and predicted values f̂ (i), using a p* value of six,
are analyzed to study the performance of the ANN model on the test data. Figure 9 contains the plot
of actual versus predicted values for synthetic test data.
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If we analyze the graph in Figure 9, we can see that the first point where the flow value reaches a
sudden high value is always missed and cannot be predicted. This misprediction at this initial point is
quite understandable since this sudden rise is a random behavior and could happen at any time in the
series. But after this initial rise, the model is relatively accurate in predicting the remaining portion
of the pattern. In particular, the model does not miss the point where the values suddenly drop to
zero. This sudden drop is predicted quite accurately. Table 1 shows the MSE corresponding to each
of the three stages. As expected, stage B can be seen to have the highest MSE, which is due to the
understandable misprediction of the first point of sudden rise. Hence, accumulation of this magnitude
of error has given the largest MSE to stage B predictions.
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Table 1. MSE corresponding to each stage.

Stages MSE

Stage A 0.010358
Stage B 0.102454
Stage C 0.009227

This experiment of ANN with a synthetic controlled data set has proven that an ANN can be
used to efficiently learn and predict repeating behaviors in a data stream. To apply ANN to the actual
flowmeter data series, we now carry out a more in-depth analysis of three types of ANN with complex
structures and different parameters in the next section.

3. System Model

3.1. Overall System Description

Having now understood the effectiveness of using ANN, we now apply models on real-world
flowmeter data. The actual flowmeter data contained a record entry for every minute, where each entry
contained the date, time, and amount of inflow of water. For this analysis, only the rate of water inflow
variable is used, denoted as g(t), with t being the integer values denoting the time variable in minutes.
The data series, shown in Figure 2 and also discussed in Section 1, had shown a specific pattern that
existed in the flowmeter data and was marked by the dashed circle labeled as EM. Our target is now to
learn and predict this pattern and decide on its basis, the controlling of the suction pump (ON/OFF).
To accomplish this task, we now go through a two-stage process. In the first stage, three types of ANN
are applied to the flowmeter’s data for forecasting future flow and the best one is selected based on the
MSE performance. In the second stage, a Decision Support System s(t) is constructed which decides
either to keep the suction pump ON or turn it OFF based on m-step ahead predicted values. Since the
output of ANN will be directing the decision, a single-step-ahead prediction is not sufficient to make
this decision. To make an informed decision, an MSA prediction is needed which gives an m-step
prediction of the future flow where m is now greater than 1. We refer to the m-step-ahead model
using p previous values as hm,p(t). For this purpose, several experiments were separately conducted
to determine the optimum value of m. A value of m less than three was not found to be sufficient
to make a decision and a value more than three caused a larger error accumulation, leading to an
incorrect decision (This can be further proved by Figure 15b,c where the two-step and three-step ahead
predictions are shown, respectively). Hence, a value of m = 3 was found to be appropriate. Hence,
the m-step-ahead prediction is given by Equation (4), where gN(t) is the normalized value of g(t), as in
Equation (2).

ĝ(t + r) = hr,p(t) = hr,p
(

gN(t), gN(t− 1), . . . , gN(t− p + 1)
)

, where r = 1, 2, . . . , m (4)

To implement the second stage of the process, a threshold value of l(t), denoted as Tf, needed to
be selected because the decision model, s(t), is based on its value. The criteria used in s(t) were as
follows: if all three predicted values are below Tf , then the decision is to turn the pump OFF, else, it is
left ON for the next reading, as given in the equation below.

s(t) =

{
1 (pump ON),i f ĝ(t + 1), . . . , ĝ(t + m) ∀ > Tf

0 (pump OFF),Otherwise
(5)

At every reading, the predicted values are compared against a threshold value Tf and the decision
is made until the pump shuts OFF. The complete cycle till the pump is turned OFF is shown in Figure 10.
Here, we represent gT(t) as training data.
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3.2. ANN Model

As a first step, the data was preprocessed by dealing with type errors and missing values and it
was normalized using Equation (2), as mentioned in Section 2.3. Later, it was converted in the form
of time series for different values of p (lags), where p = number of previous values. As done for the
synthetic data, the flowmeter series was converted into many lagged datasets using p from 2 till 12
and the most suitable p was selected by plotting MSE against the number of previous values (p) graph.
The structure of the ANN model, for all types (MIMO, MISO, RNN), contained an input layer having
neurons equal to the number of lags (p) in the dataset. The range [2,12] is selected because the EM
pattern, which we are trying to detect, comprises four to five data points at its maximum. In addition,
increasing the neurons at the input layer increases the network complexity, which effects the overall
performance. The output layer contains neurons equal to m, the MSA predictions, which in this study
is set to be three for the reasons discussed above. As far as the hidden layers and hidden neurons are
concerned, there are two possible ANN architectures. The first model is the one which uses a single
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hidden layer, while the other is the one in which multiple hidden layers are used. It has been shown
in the literature that a single hidden layer with a larger number of neurons reduces complexity and
hence is preferred to the more complex multi hidden layered model [22]. Hence, the former approach
is used in our paper. The number of hidden neurons (Nh) is selected by the rule of thumb, which states
that the number of hidden neurons should be in the range of the number of output neurons (No) and
the number of input neurons (Ni) [22]. This was further confirmed in separate experiments when the
model was over-fitted with a higher number of hidden neurons and under-fitted with a lesser number.
Hence, we can calculate the number of hidden neurons according to Equation (6). The number of
hidden neurons calculated for each value of p is given in Table 2.

Nh =

⌈
(Ni + No)

2

⌉
(6)

Table 2. Number of hidden neurons used with respect to every Lags/inputs of ANN.

p (Lags/Number of Inputs) Nh (Number of Hidden Neurons)

2 3
3 3
4 4
5 4
6 5
7 5
8 6
9 6

10 7
11 7
12 8

The ANN models require the determination of Learning Rate (LR), which should be low enough
so that the model converges to something useful and high enough so that the training time can be
minimized. To determine the optimum value of LR, we kept the other parameters of our model
constant and used multiple values of LR to train the model and obtain corresponding MSE. We then
plot the MSE against corresponding LR, as shown in Figure 11. The optimal value of LR can then be
found by the graph where MSE is minimum and is shown to be 0.03, which is henceforth used in
our models.
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The Back-propagation algorithm with gradient descent is used for learning weights while the
Sigmoid function is used for activation as they are the most commonly used techniques in ANN [22,23].
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For training the ANN, K-fold cross validation is used since it has been suggested in the literature that
K-fold is an ideal choice for small datasets [24] Here, we have used K-fold with a value of k = 5.

Three models of ANN, that is, MISO, MIMO, RNN, as described earlier in Section 2.1, are tested
and are shown in Figure 12a–c, respectively.

Figure 12. (a) MISO for three outputs; (b) MIMO with three outputs; (c) RNN model (unrolled) for
three outputs.

4. Experiments, Results, and Discussion

We now determine the most suitable value of p based on the graph of MSE plotted against
each lag p and by the analysis of percentage decrease in MSE as p increases. Figure 13 shows the
graph of MSE vs. p. A suitable choice of p (p*) value is based on a trade-off between reducing
MSE vs. increasing the complexity of the network. As, we increase p, the MSE decreases; however,
the complexity also increases. A larger value of p requires larger numbers of neurons at the input layer,
which in turn requires a larger number of weights in the neural network. The weights are learned in



Sensors 2018, 18, 1711 13 of 20

an iterative manner, so the larger the number of weights needed, the more time and space is required
for convergence, hence, increasing the time and resource complexity of the system.
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Table 3 shows the relative reduction in MSE as p is increased on a step by step basis. It may be
noted that as p is increased, the percentage decrease in MSE at each stage keeps on reducing. Since each
increase in p also increases the complexity of the system, we heuristically chose p = 5, where the
reduction in error is 1.98%, while the subsequent increase in p will only decrease the percentage error
by 1.2%, as shown in the last column of Table 3.

Table 3. MSE of every model for corresponding p and change in MSE as p increase.

p MSE(MISO) MSE(MIMO) MSE(RNN) Average MSE Change in Percentage

2 0.009312 0.009648 0.009143 0.009368 —
3 0.008903 0.009359 0.009082 0.009114 2.71%
4 0.008661 0.008836 0.008719 0.008739 4.12%
5 0.008521 0.008615 0.008561 0.008566 1.98%
6 0.008381 0.008543 0.008456 0.00846 1.23%
7 0.008387 0.008443 0.008449 0.008426 0.39%
8 0.008138 0.008456 0.008274 0.008289 1.6%
9 0.008196 0.008458 0.008324 0.008326 −0.44%

10 0.008211 0.008202 0.008222 0.008212 1.37%
11 0.008202 0.008131 0.008273 0.008202 0.12%
12 0.008133 0.007735 0.008216 0.008028 2.12%

The comparative analysis of models MIMO, MISO, and RNN can also be seen in Figure 13.
MIMO generally performed the worst as it has the largest MSE for each value of p; however, it is not
very different from the other two models. Similarly, MISO and RNN have very close results, but MISO
generally outperformed RNN. To analyse the performance of these models more closely and deeply,
these experiments have been run again with varying learning iterations. Initially, 10,000 epochs were
used to train the model. The models were then tested between 5000 to 40,000 epochs to see the effect of
a longer training time on every model. The other parameters were kept the same while p = 5 was used
for the input layer. The results are shown in Figure 14.

From Figure 14, it is clear that there is almost a constant performance by MIMO after 10,000
epochs; showing no change in the MSE as the training time progresses. As far as the MISO and RNN
are concerned, both show a very similar performance between 10,000 and 30,000 epochs. However,
after 30,000 epochs, there is a slight drop in MSE for RNN, giving the notion that if the algorithms are
trained for a longer period of time, then RNN may slightly outperform the other models for this dataset.
However, the difference above may not be statistically significant and all three techniques continue
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to be subsequently analysed in the remaining experiments. Next, their respective observations and
predictions for one-step–ahead, two-step-ahead, and three-step-ahead are analysed in Figure 15a–c,
respectively. The sudden rise (stage B) in water level is less and less predictable in one, two, and
three step-ahead predictions, respectively. However, the subsequent behaviour (stage C) is predictable
with a reasonable accuracy even in three-step-ahead predictions. It can also be seen that MISO and
RNN have almost similar predictions for one-step-ahead predictions, which is intuitively correct
since there is no difference in both models for this category. Their performance, however, differs for
two-step-ahead and three-step-ahead predictions since RNN utilizes the previous predictions for the
next prediction. Hence, overall RNN has performed better than MISO and MIMO when considering
the collective performance of all three outputs.
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An analysis of the predictions by RNN and MISO for all possible combinations reveals that
both of these models have a similar performance. Ideally, a large difference in performance was
expected with RNN because of the advantage that it uses the previous outputs to make the next
predictions. But a close analysis has revealed that the same advantage is the reason for not displaying
a remarkable difference when compared to MISO. This can be explained by the graph in Figure 16.
Here, the magnitude indicated by circle E is the error amount in predicting the sudden rise in water
flow, which in turn is propagated back to the network as an input to determine the next output.
This accumulation of error in multi-step-ahead predictions lowers the anticipated performance of the
model. This sudden rise in water flow is an unpredictable behaviour since its occurrence is random
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and can happen at any point in time. What is predictable, however, is that after going through a
sudden rise, the water stays there for one or two readings, and then it goes down to zero. Hence,
this explains why even though RNN is the overall best performer, it does not outperform MISO to the
extent expected. It may be noted that the above behaviour has been partly subsequently predicted by
the RNN model, as marked by the circle C in Figure 16. At point t = 5, the actual flow is 0.96, and at
point t = 6, it is 0.2. The prediction by ANN at point 5 is 0.5, but at point 6, it predicted that the flow
would not continue to stay high and would fall to zero, regardless of the fact that it is high in the most
recent readings. Hence, it was correct in learning the pattern and making a prediction close to the
actual value of 0.2.Sensors 2018, 18, x FOR PEER REVIEW  15 of 20 
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Once the models are learned, they can potentially be used as a decision support system to decide
the state of the suction pump. The system would take p = 5 five most recent readings of the flowmeter
sensor, apply RNN to it, predict m = 3 future outputs, and suggest a state of the pump. If all three
predicted outputs are below the threshold (Tf) value, then the pump would be turned OFF; otherwise,
it would be kept ON until the next reading. The same procedure will be repeated for every reading
until the pump is turned OFF by the system or by an external source. To evaluate the performance
of this system, 100 cases from the flowmeter data series are extracted. The series exhibit four distinct
types of behaviours, labelled as categories, which are listed in Table 4. The count of each case is
also shown. Please note that the count of each category does not necessarily reflect the frequency of
occurrence of each category and this factor is not relevant to the result.

Table 4. Description and details of categories in cases of flowmeter data.

Categories Description Count Correct Decision

Category 1 The cases where the EM was observed and water flow stopped.
(The correct decision should be to shut off the pump). 49 OFF

Category 2 The cases where the data had a similar type of EM but the water flow
did not stop. (The correct decision should be to keep the pump ON). 18 ON

Category 3
The cases where the EM was not observed at all and water flow had
random fluctuations. (The correct decision should be to keep the
pump ON).

23 ON

Category 4 The cases where the EM was not observed but water flow stopped
anyway. (The correct decision should be to shut off the pump). 10 OFF

Total 100
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All the three models, along with their ensemble (a combination of MIMO, MISO, and RNN),
were tested to find the model which gives the best accuracy along with other performance measures.
The ensemble model is a committee model which uses the voting mechanism for prediction [25–27].
If the majority votes for the ON state, it predicts ON and if the majority votes for the OFF state,
it predicts OFF. As explained earlier, the values predicted by these models are compared against a
threshold value Tf which needs to be determined. The most appropriate value of (Tf) was based on a
combination of two factors: (i) a judgment of what is an appropriate level of flow; and (ii) determination
of the accuracy of the decision support system for which several values were tested, including 0.01,
0.025, 0.05, 0.075, and 0.1. For each value of Tf, the corresponding accuracies are given in Table 5.
After an analysis of these two factors, it was found that the most appropriate value of Tf was 0.075,
which further can be confirmed by Table 5, as it gives the maximum accuracy. Next, the performances
of all the models using Tf = 0.075 are given in Table 6.

Table 5. Accuracies corresponding to each Tf.

Tf Accuracy

0.01 42.00%
0.025 42.00%
0.05 81.00%

0.075 86.00%
0.1 82.00%

Table 6. Performance measures by all the models where Tf is kept at 0.075.

Models Accuracy Precision Recall F-Measure

MIMO 82% 85.30% 69.05% 76.32%
MISO 82% 83.33% 71.43% 76.92%
RNN 86% 91.20% 73.81% 81.58%

Ensemble 84% 88.24% 71.43% 79%
Best 86%(RNN) 91%(RNN) 74%(RNN) 82%(RNN)

Finally, the models were evaluated using the usual performance measures such as accuracy,
precision, recall, and F-measure. Their equations are given below, where TP = true positive, TN = true
negative, FP = false positive, and FN = false negative.

Accuracy =
(TP + TN)

(TP + FN + FP + TN)

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)

F−measure =
2TP

(2TP + FP + FN)

We have used the ON state of the pump as the positive class, while the OFF state is the negative
class. In this study, FP is more critical than the FN measure because it represents those situations where
the decision was taken to keep the pump ON whereas it should have been turned OFF. Similarly, TN is
more critical than TP as it represents those situations where the pump should have been turned OFF
and the same is suggested by the model. As shown in Table 6, RNN has outperformed all other models
including the ensemble model in all of the performance measures. It gives 86% accuracy, 91% precision,
74% recall, and 82% F-measure values. A case representative of each, TP, TN, FP, and FN, is shown in
Figure 17. For example, Figure 17b shows the TN scenario where both the actual and predicted values
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fall below the threshold and hence, the prediction is accurate. On the other hand, Figure 17d depicts
the scenario where predicted values fall below the threshold and the actual values, while being quite
low, are above the threshold. Hence, this falls under the case of FN predictions.Sensors 2018, 18, x FOR PEER REVIEW  17 of 20 
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& predicted decisions are OFF); (c) FP (Actual decision is OFF & predicted decision is ON); and (d)
(Actual decision is ON & predicted decision is OFF) FN are shown where X1, X2, X3, X4, and X5 are
the inputs; A1, A2, A3 are actual values; and P1, P2, P3 are the three-step-ahead predicted outputs.
The dotted straight line at 0.075 is the Tf for decision.

We now summarize the performance of RNN for each category in Table 7. Category 1 contains
the cases having the peculiar behaviour which were referred to as EM. The model was applied to
49 such cases where the model has achieved more than 97% accuracy, indicating that the model is
able to locate the correct time to switch off the pump in 97% of the cases. Similarly, the model has a
good accuracy for Categories 3 and 4, exhibiting 95.65% and 70% accuracy, respectively. However,
it has a low accuracy of 55.56% for Category 2 cases, where the pattern is observed but the water flow
does not stop. However, the low accuracy in this category is not of significance since the frequency of
occurrence of category 2 cases is quite rare (please see footnote 1). In such cases, the ideal decision
should have been to keep the pump ON, which our model misses more than 40% of the time. This is
also understandable, since the sample that we extracted from the flowmeter data to train the model is
mainly comprised of Category 1 cases. This was due to the reason that we were primarily interested in
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predicting the best time to shut off the pump. Hence, based on the above analysis, it can be seen that
the RNN model has exhibited a good performance by multiple performance metrics to show its power
of capturing the EM and making a successful automatic system based on its prediction.

Table 7. Details of decisions made by RNN for each category.

Category No. of Cases No. of Correct Decisions No. of Incorrect Decisions Percentage of Correct Decision

1 49 48 1 97.95%
2 18 10 8 55.56%
3 23 21 2 91.67%
4 10 7 3 70%

Total 100 86 14
Percentage 86% 14%

In retrospect, it may be noted that there could be a simpler technique to shut-off the hydraulic
suction pump using a fixed threshold time value, which shuts off the pump if there is no water flow
below a threshold value for a certain period of time. However, using such a simple technique would
clearly not be optimal and would result in an excessive ON time for the pump, thus wasting energy
and degrading the performance of the system.

5. Conclusions

IoT enhances the quality of life by connecting the digital world to the real world via utilizing
various sensors in everyday objects. These sensors sense streams of data, which in turn may contain
behaviors of special interest (i.e., the EM behavior in this study). It may be noted that no assumption
has been made in our model that requires previous knowledge of the pattern to train our proposed
model using the Artificial Neural Network (ANN). The raw data from the sensors after necessary
pre-processing was fed into our model. We have not explicitly used any parameters pertaining to
the EM pattern in learning the parameters of our network. Thus, our model was capable of learning
the patterns and predicting the future with specific prior knowledge of a specific pattern. However,
the occurrence of a pattern which was learnable by our system allowed the system to have a better
accuracy in predicting the future. This, in turn, helped in making an autonomous system to manage
resources in a smart home/building.

While the specific parameters that have been used in the system have to a certain extent been
both data-driven and heuristically determined, we believe that these parameters will continue to
provide accurate predictions for the life of the system. The basis of our belief is drawn from the fact
that the period from which the data has been selected covers a very wide period of about twelve
months. However, the general applicability of this model to be used as an autonomous system is
intended to be further explored in the future by expanding the dataset to cover subsequent independent
epochs. This is expected to further confirm the model’s general applicability. It is suggested that
these explorations to better incorporate the changes in the behavior of the system are updated in the
model after a certain period (e.g., annually) to update the learning process. This process, if introduced,
will require fine-tuning of the model on an occasional basis by incorporating any changes in the
behavior of the data over a longer period of time.

This research found the Artificial Neural Network (ANN) to be useful in recognizing such
behavior in real-time data. Three models of ANN, namely MIMO, MISO, and RNN, were applied for
three-step-ahead predictions of a flowmeter’s data series. Among these models, RNN was found to
have the best performance. It was then used to make an automated decision support system to decide
upon the appropriate state of the suction pump. The model was evaluated using 100 cases of different
categories, where it was found to provide 86% accuracy, suggesting that a decision based on such a
model can make the correct decisions 86% of the time.

In the future, this work may be extended to extract rules from neural networks as these rules can
give further insight into the behavior.
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2. Ivanović, M.; Kurbalija, V. Time Series Analysis and Possible Applications. In Proceedings of the 2016 39th
International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, Croatia, 30 May–3 June 2016.

3. Mahalakshmi, G.; Sridevi, S.; Rajaram, S. A Survey on Forecasting of Time Series Data. In Proceedings
of the International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE),
Kovilpatti, India, 7–9 January 2016.

4. Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art.
Int. J. Forecast. 1998, 14, 35–62. [CrossRef]

5. Chang, F.-J.; Chiang, Y.-M.; Chang, L.-C. Multi-step-ahead neural networks for flood forecasting.
Hydrol. Sci. J. 2007, 52, 114–130. [CrossRef]

6. Campolo, M.; Soldati, A.; Andreussi, P. Artificial neural network approach to flood forecasting in the River
Arno. Hydrol. Sci. J. 2003, 48, 381–398. [CrossRef]

7. Chang, L.-C.; Chang, F.-J. An efficient parallel algorithm for LISSOM neural network. Parallel Comput. 2002,
28, 1611–1633. [CrossRef]

8. Box, G.E.; Tiao, G.C. Intervention analysis with applications to economic and environmental problems. J. Am.
Stat. Assoc. 1975, 70, 70–79. [CrossRef]

9. Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003,
50, 159–175. [CrossRef]

10. Hsu, K.-L.; Gupta, H.V.; Sorooshian, S. Artificial Neural Network Modeling of the Rainfall-Runoff Process.
Water Resour. Res. 1995, 31, 2517–2530. [CrossRef]

11. Allende, H.; Moraga, C.; Salas, R. Artificial neural networks in time series forecasting: A comparative
analysis. Kybernetika 2002, 38, 685–707.

12. Ghofrani, M.; Carson, D.; Ghayekhloo, M. Hybrid Clustering-Time Series-Bayesian Neural Network
Short-Term Load Forecasting Method. In Proceedings of the North American Power Symposium (NAPS),
Denver, CO, USA, 18–20 September 2016.

13. Huang, Q.; Li, Y.; Liu, S. Hourly Load Forecasting Model Based on Real-Time Meteorological Analysis.
In Proceedings of the 2016 8th International Conference on Computational Intelligence and Communication
Networks (CICN), Tehri, India, 23–25 December 2016.

14. Niu, D.; Shi, H.; Li, J. Research on Short-Term Power Load Time Series Forecasting Model Based on BP
Neural Network. In Proceedings of the 2010 2nd International Conference on Advanced Computer Control
(ICACC), Shenyang, China, 27–29 March 2010.

15. Guo, X.; Liang, X.; Li, X. A Stock Pattern Recognition Algorithm Based on Neural Networks. In Proceedings
of the Third International Conference on Natural Computation 2007 (ICNC 2007), Haikou, China, 24–27
August 2007.

16. Rathnayaka, R.M.K.T.; Seneviratna, D.; Jianguo, W. A Hybrid Statistical Approach for Stock Market
Forecasting Based on Artificial Neural Network and ARIMA Time Series Models. In Proceedings of the 2015
International Conference on Behavioral, Economic and Socio-cultural Computing (BESC), Nanjing, China,
30 October–1 November 2015.

17. Kanchymalay, K.; Sallehuddin, R.; Salim, N. Time Series Based Forecasting for Crude Palm Oil Price Utilizing
Neural Network Algorithms. In Proceedings of the 2017 6th ICT International Student Project Conference
(ICT-ISPC), Skudai, Malaysia, 23–24 May 2017.

http://dx.doi.org/10.1109/MCE.2016.2640718
http://dx.doi.org/10.1016/S0169-2070(97)00044-7
http://dx.doi.org/10.1623/hysj.52.1.114
http://dx.doi.org/10.1623/hysj.48.3.381.45286
http://dx.doi.org/10.1016/S0167-8191(02)00166-7
http://dx.doi.org/10.1080/01621459.1975.10480264
http://dx.doi.org/10.1016/S0925-2312(01)00702-0
http://dx.doi.org/10.1029/95WR01955


Sensors 2018, 18, 1711 20 of 20

18. Dash, P.K.; Ramakrishna, G.; Liew, A.C.; Rahman, S. Fuzzy neural networks for time-series forecasting of
electric load. IEE Proc. Gener. Transm. Distrib. 1995, 142, 535–544. [CrossRef]

19. Horelu, A.; Leordeanu, C.; Apostol, E.; Huru, D.; Mocanu, M.; Cristea, V. Forecasting Techniques for Time
Series from Sensor Data. In Proceedings of the 2015 17th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 21–24 September 2015.

20. Raeesi, M.; Mesgari, M.S.; Mahmoudi, P. Traffic Time Series Forecasting by Feedforward Neural Network:
a Case Study Based on Traffic Data of Monroe. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40,
219–223. [CrossRef]

21. Nivine, A.; Shahrour, I.; Younes, R. Smart Building: Use of the Artificial Neural Network Approach for
Indoor Temperature Forecasting. Energies 2018, 11, 395.

22. Panchal, G.A.G.; Kosta, Y.P.; Panchal, D. Review on methods of selecting number of hidden nodes in artificial
neural network. Int. J. Comput. Theory Eng. 2011, 3, 332–337. [CrossRef]

23. Sharma, B.; Venugopalan, P.K. Comparison of neural network training functions for hematoma classification
in brain CT images. IOSR J. Comput. Eng. 2014, 16, 31–35. [CrossRef]

24. Yadav, S.; Shukla, S. Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets
for Quality Classification. In Proceedings of the 2016 IEEE 6th International Conference on Advanced
Computing (IACC), Bhimavaram, India, 27–28 February 2016.

25. Seni, G.; Elder, J.F. Ensemble Methods in Data Mining: Improving Accuracy through Combining Predictions;
Morgan & Claypool Publishers: San Rafael, CA, USA, 2010.

26. Frayman, Y.; Rolfe, B.F.; Webb, G.I. Solving Regression Problems Using Competitive Ensemble Models.
In Australian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2002.

27. Wichard, J.D.; Ogorzałek, M. Time Series Prediction with Ensemble Models. In Proceedings of the 2004 IEEE
International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/ip-gtd:19951807
http://dx.doi.org/10.5194/isprsarchives-XL-2-W3-219-2014
http://dx.doi.org/10.7763/IJCTE.2011.V3.328
http://dx.doi.org/10.9790/0661-16123135
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background and Preliminary Analysis 
	Technical Background 
	MIMO 
	MISO 
	RNN 

	Literature Review 
	Preliminary Analysis Using Synthetic Data 

	System Model 
	Overall System Description 
	ANN Model 

	Experiments, Results, and Discussion 
	Conclusions 
	References

