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Abstract: Elderly care at home is a matter of great concern if the elderly live alone, since unforeseen
circumstances might occur that affect their well-being. Technologies that assist the elderly in
independent living are essential for enhancing care in a cost-effective and reliable manner. Elderly
care applications often demand real-time observation of the environment and the resident’s activities
using an event-driven system. As an emerging area of research and development, it is necessary to
explore the approaches of the elderly care system in the literature to identify current practices for
future research directions. Therefore, this work is aimed at a comprehensive survey of non-wearable
(i.e., ambient) sensors for various elderly care systems. This research work is an effort to obtain
insight into different types of ambient-sensor-based elderly monitoring technologies in the home.
With the aim of adopting these technologies, research works, and their outcomes are reported.
Publications have been included in this survey if they reported mostly ambient sensor-based monitoring
technologies that detect elderly events (e.g., activities of daily living and falls) with the aim of facilitating
independent living. Mostly, different types of non-contact sensor technologies were identified, such as
motion, pressure, video, object contact, and sound sensors. Besides, multicomponent technologies
(i.e., combinations of ambient sensors with wearable sensors) and smart technologies were identified.
In addition to room-mounted ambient sensors, sensors in robot-based elderly care works are
also reported. Research that is related to the use of elderly behavior monitoring technologies
is widespread, but it is still in its infancy and consists mostly of limited-scale studies. Elderly
behavior monitoring technology is a promising field, especially for long-term elderly care. However,
monitoring technologies should be taken to the next level with more detailed studies that evaluate
and demonstrate their potential to contribute to prolonging the independent living of elderly people.
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1. Introduction

Worldwide, the total number of elderly people is growing more rapidly compared to other age
groups [1]. Consequently, the share of older persons is increasing almost everywhere. In 2015, one out
of eight people worldwide was aged 60 years or over. By 2030, one out of six people will be in this
age group globally. Furthermore, elderly people will outnumber children aged 0–9 years by 2030.
By 2050, they may outnumber adolescents and youths aged 10–24 years. The aging process is more
advanced in high-income countries. Japan has the most-aged population by far. In 2015, 33% of the
population was aged 60 years or over. Regarding elderly population, Japan is followed closely by
Germany (28%), Italy (28%), and Finland (27%). Therefore, the pace at which the world population
is aging is increasing over time. By 2030, older persons are anticipated to account for substantially
more than 25% of the populations in Europe and Northern America, 20% in Oceania, 17% in Asia,
and 6% in Africa. As shown in Figure 1, the elderly population (aged 60 years or more) will increase
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faster as a percentage of the total population than the population of ages 15–59 years. If the trend
continues, there will not be enough people to take care of the elderly in the distant future. Hence,
assisted living technologies will be needed in the future to take care of elderly people and help them to
live independently.
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Figure 1. Percentages of persons of different ages in the world in different years [1].

Between the years 2015 and 2030, the global population aged 60 years or over is predicted to
grow from 901 million to 1.4 billion [1]. By 2050, it is predicted to have more than doubled in size
relative to 2015, to nearly 2.1 billion. The number of people in the world who are aged 80 years or
over is growing even faster. Projections indicate that in 2050, the number of people who are aged
80 years or over will be 434 million. This is more than triple the number in 2015, when there were
125 million people aged 80 years or over. Figure 2 shows the projected world population range between
2000 and 2050 for the people aged 60 years or over. Similarly, Figure 3 shows the projected world
population range between the years 2000 and 2050 for people aged 80 years or over. A major challenge
in handling an aging population is the effective delivery of healthcare services. Also, personal care
of elderly people is a matter of great concern for their relatives, especially when they stay alone in
the home and unforeseen circumstances may occur that affect their well-being. Hence, solutions are
required to manage the complex care demands and to satisfy the necessities of elderly people for
prolonged living in their own homes. Elderly people also have great risk of falling [2]. One of the
major problems in handling this complex care is that resources are becoming scarcer day by day [3,4].
Through recent advances in sensor and communication technologies, monitoring technologies have
become an important solution for achieving a robust healthcare system that can help elderly people
live independently for a longer time [5,6].

Sensors 2018, 18, x FOR PEER REVIEW  2 of 30 

 

in Africa. As shown in Figure 1, the elderly population (aged 60 years or more) will increase faster as 
a percentage of the total population than the population of ages 15–59 years. If the trend continues, 
there will not be enough people to take care of the elderly in the distant future. Hence, assisted living 
technologies will be needed in the future to take care of elderly people and help them to  
live independently. 

 
Figure 1. Percentages of persons of different ages in the world in different years [1]. 

Between the years 2015 and 2030, the global population aged 60 years or over is predicted to 
grow from 901 million to 1.4 billion [1]. By 2050, it is predicted to have more than doubled in size 
relative to 2015, to nearly 2.1 billion. The number of people in the world who are aged 80 years or 
over is growing even faster. Projections indicate that in 2050, the number of people who are aged  
80 years or over will be 434 million. This is more than triple the number in 2015, when there were  
125 million people aged 80 years or over. Figure 2 shows the projected world population range 
between 2000 and 2050 for the people aged 60 years or over. Similarly, Figure 3 shows the projected 
world population range between the years 2000 and 2050 for people aged 80 years or over. A major 
challenge in handling an aging population is the effective delivery of healthcare services. Also, 
personal care of elderly people is a matter of great concern for their relatives, especially when they 
stay alone in the home and unforeseen circumstances may occur that affect their well-being. Hence, 
solutions are required to manage the complex care demands and to satisfy the necessities of elderly 
people for prolonged living in their own homes. Elderly people also have great risk of falling [2]. One 
of the major problems in handling this complex care is that resources are becoming scarcer day by 
day [3,4]. Through recent advances in sensor and communication technologies, monitoring 
technologies have become an important solution for achieving a robust healthcare system that can 
help elderly people live independently for a longer time [5,6]. 

 
Figure 2. Numbers of persons (millions) aged over 60 years in the world in different years [1]. 

61.7

12.3

1.7

57.2

21.5

4.5

54

28.3

8.4

15-59 60+ 80+

2015 2050 2100
60

7.
1

42
.4

31
9.

5

14
7.

3

97
.8

90
0.

9

64
.4

50
8

17
6.

5

15
2

14
02

.4

10
5.

4

84
4.

5

21
7.

2

23
5.

4

20
92

22
0.

3

12
93

.7

24
2 33

5.
9

W O R L D A F R I C A  A S I A  E U R O P E  A M E R I CA

2000 2015 2030 2050

Figure 2. Numbers of persons (millions) aged over 60 years in the world in different years [1].
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Figure 3. Numbers of persons (millions) aged over 80 years in the world in different years [1].

Among the researchers of smart elder care systems, Celler et al. proposed one of the pioneering
telemonitoring systems for remotely determining the functional health status of an elderly person [7].
The system could passively observe interactions between elderly people and their living environment
over a long time. The elderly behavior monitoring system used magnetic switches to record movement
in rooms, infrared sensors to detect activities, and sound sensors to determine the types of activities.
Thus, it was possible for the system to respond to any activity that was outside normal activity patterns.
Other technologies emerged in the following decades that focused on monitoring elderly behaviors
such as daily activities and fall detection. However, an overview of non-wearable ambient sensor-based
systems would be valuable for analyzing the increasingly complicated care demands of elderly people.

1.1. Surveys on Ambient Assisted Living

Several surveys have been conducted on sensors for ambient assisted living systems [8–16].
A recent survey by Al-Shaqi et al. aimed at providing a thorough review of the ambient sensor systems
that are utilized in many assisted living environments [8]. The authors found that all the frameworks
focused on activity monitoring for assessing immediate risks rather than identifying long-term risks
in elderly care. In another survey [9], the authors proposed a classification of the activities of elderly
people in smart home scenarios. In the survey, they also classified sensors that are ideal for the detection
of activities.

Another survey, which was compiled by Alam et al. [10], provided a review of some smart home
projects that are related to three desired services: comfort, healthcare, and security. The review also
described several important components of the systems: sensors, multimedia systems, communication
protocols, and algorithms. Rashidi and Mihailidis [11] also surveyed ambient assisted living
technologies for elderly care. They summarized tools and technologies of smart homes, assistive
robotics, and e-textile sensors. In the survey, the authors also tried to explore healthcare applications
that focus on algorithms for modeling elderly behaviors in smart homes. Salih et al. [12] presented
an ambient-intelligence-assisted healthcare monitoring review, in which they mostly described works
that are based on wireless sensor networks technologies with applications. Furthermore, they discussed
several data mining techniques for ambient sensor monitoring of patients with chronic diseases and
elderly people. Peetoom et al. [13] analyzed current studies that are related to daily activity and
significant event monitoring of the elderly. Their identified five main sensors types: motion, body-worn,
pressure, camera, and sound sensors. Additionally, they discussed the outcomes of adopting these
sensor-based technologies for prolonging independent living of elderly people. Khusainov et al. [14]
proposed a survey on real-time human wellness annotation. They also analyzed different algorithmic
techniques on the data of different sensors to find an effective way of addressing the demands
of assisted living. The survey was focused on multiple tasks, such as sensor types, frameworks,
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data collection, processing, and analysis. Avci et al. [15] surveyed inertial sensor-based activity
recognition methods for healthcare and well-being. Although the work is nicely arranged in line with
main techniques that are found in behavior monitoring systems, it only focused on inertial sensors.
Bulling et al. [16] gave a detailed outline of human activity recognition but, similarly, focused on
inertial sensors. The results of all these studies indicate very positive effects of health or behavior
monitoring technologies on both residents and caregivers. Furthermore, among the research surveys
that are related to different aspects, some fundamental issues (e.g., proper sensor selection) regarding
the necessity and adaptability of elderly people have not been reported. Table 1 lists various sensors
that are used in ambient assisted living and their types, characteristics, and approximate costs. The data
in the table are as reported in [8].

Table 1. Ambient assistive living sensors, their types, characteristics, and costs, from [8].

Sensor Type Characteristics Cost ($)

Magnetic switch Ambient The binary-status-providing sensors are easily installable. They are
mainly used to detect the opening of doors, windows, etc. 5 ± 0.75

Temperature sensor Ambient The continuous-data-providing sensors detect the temperature of the
ambient environment. 9 ± 2

Photosensor Ambient The sensors detect illuminance and provide continuous data. 5 ± 1.25

Pressure pad sensor Ambient The sensors provide continuous pressure measurement at any surface. 25 ± 5

Water flow sensor Ambient The sensors continuously measure the flow of water in taps or showers. 24 ± 3

Infrared motion sensor Ambient The binary-status-providing sensors detect motion in the coverage area. 35 ± 2

Force sensor Ambient Detects movement and falls 33 ± 5

Smoke sensor Ambient The binary-status-providing sensors detect smoke in the environment. 18 ± 6

Biosensor Wearable The sensors monitor vital signs and require professional adjustment.
They are difficult to install. 180.00 ± 5.00

According to Table 1, the wearable sensors are difficult to install on the body and require
professional adjustments [17]. However, wearable sensor-based systems basically include various types
of on-body sensors that can measure important parameters such as acceleration, velocity, magnetic
forces, heart rate, body temperature, oxygen saturation, respiration rate, electrocardiogram, etc.
The obtained signals can be communicated via a wired or wireless system to a central node for
further processing. A wearable sensor-based healthcare system may consist of an extensive variety
of components including sensors, wearable materials, actuators, wireless communication module (s),
processing unit, user interface, and advanced algorithms for data processing and decision making.
On the other hand, the ambient sensors are embedded into daily environments, which is in contrast to
wearable body sensors. Ambient sensors usually collect various type of data to model the events or
activities of the smart home users and to anticipate their necessities to maximize their quality of life [18].

1.2. Ambient Assisted Living Projects

During the last few decades, many researchers have tried to carry out smart home projects [19–26].
For instance, GatorTech [19] is an earlier smart home project that was developed at the University of
Florida. The project adopted various ambient sensors to provide several services to the users, such as
voice and behavior recognition. The CASAS project [20] was a smart home project that was carried
out at Washington State University in 2007. It was a multi-disciplinary project for developing a smart
home using different types of sensors and actuators. The researchers in the project adopted machine
learning tools for user behavior analysis. They focused on creating a lightweight design that could
be easily set up without further customization. SWEET-HOME was a French project on developing
a smart home system that was mostly based on audio technology [21]. The project aimed at three
key goals, which included the development of an audio-based interactive technology that gives users
complete control over the home environment. The Markov Logic Network has been a prominent
approach in research on smart homes for context-aware decision processes for coping with uncertain
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events that are predicted from sensor data [22]. In [24], several ambient sensors such as cameras and
microphones were combined to recognize elderly activities (e.g., lying, sitting, walking, standing,
cycling, running, and ascending and descending stairs). In [25], the authors suggested a smart assistive
living environment for facilitating the prolonged stay of elderly people at home. Sensors were installed
in the smart home to provide continuous data to a server. Extracting and analyzing the data using
machine learning tools helped execute the diagnosis and decision-making process for caregivers and
clinical experts. However, the smart home projects provide many datasets [26]. Some of them are still
publicly available for smart home researchers.

The ambient sensors that are used for elderly care can be placed in different locations in a smart
home to monitor human behavior or health status. Figure 4 shows a sample schematic setup of
a smart apartment for behavior monitoring of an elderly person based on different ambient sensors.
Some frequently used sample sensors are shown in different places in the apartment. Other sensors
can be installed, such as environmental sensors, for measuring temperature, humidity, etc. Figure 5
shows the major domains for ambient sensor-based elderly monitoring: target events, sensors, features,
and machine learning.
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1.3. Privacy and Sensitive Data Protection

Sensor-driven smart elderly health care is based on collaboration between humans and technology,
where machines provide substantial support using decision support systems [27,28]. The rights and
legitimate concerns of the elderly must be balanced with the requirements of efficiently functioning
healthcare systems. Thus, it is very important to determine the legal obligations that may arise from
privacy and personal data collection issues. An elderly healthcare project mainly involves the collection,
storage, and transmission of health data.

The right to privacy is strictly connected to personhood and personal rights. Every person has
the right to decide what and when monitoring data can be shared with other persons [29]. This right
is connected to personal freedom and the building of identity. Currently, this right is at risk due
to massive technological advancements. The technological options for monitoring have expanded
enormously, especially technologies for constant monitoring of our activities, i.e., what we do and
where we go. The connections between objects and persons allow for the constant monitoring of people.
Besides, the data collection of sensors for monitoring physiological parameters (e.g., blood pressure,
heartbeat, body temperature), behavior, and emotions generates confusion as to whether people are
still able to live autonomous and free lives [30]. Thus, privacy protection is essential.

Personal data are data that relate to an individual person, who is either identified or identifiable.
The primary aims are the protection of the data holder and the provision of available services to the
data holder. Health-related data are data that concern all aspects of health, including physical and
psychological data. Health care services require personal and sensitive data to be stored within secure
information systems. Then, the data can be made available to medical professionals, users, or the user’s
relatives. It is crucial to ensure that the rights of the user are protected. These technologies expose the
user to serious threats, which require privacy and data protection. However, these technologies play
an important role in solving the problems that they create, while enhancing technological practices
with the legal necessities of privacy and personal data protection [31].

1.4. Article Searching Method

The search of the related research works was done in PubMed, IEEE Xplore, ScienceDirect, Web of
Science, and Google Scholar. During the search, some necessary key terms were used such as “ambient
sensors”, “elderly”, “aged”, “daily activities”, “environmental monitoring”, “independent living”,
“smart home”, “ambient assisted living technology”, “behavior monitoring”, “activity recognition”,
and “in-home monitoring” with both “AND” and “OR” connectives. The search was further extended
by combining the individual sensors with the key terms. The articles that considered only wearable
sensors for assisted living were ignored. However, some works were considered where wearable
sensors were combined with ambient sensors.

1.5. Contribution and Organization of the Paper

Sensor-based surveys have mostly focused on wearable sensors or have sometimes combined them
with ambient sensors to facilitate independent living of the elderly. The data collection process using
wearable sensors is usually easier than that using ambient sensors. However, restrictions regarding
wearing the sensors on body could discourage the elderly people from adopting them. Furthermore,
there is a high possibility that some wearable sensors can generate an uncomfortable feeling during
long-term skin attachment (e.g., electrodes on the skin). Hence, wearable sensor-based technologies
that are used to help elderly people live independently may face a high risk of rejection, especially at
home. In contrast, external or ambient sensors should be highly accepted by the elderly. However,
it is important to verify that the sensors collect accurate data from a distance. Moreover, wearable
sensors may require professional adjustments on the body to collect accurate data, which indicates that
a complex process may be necessary for installing the sensors. Hence, considering the drawbacks of
wearable sensors, reliable ambient sensors are expected to be an appropriate choice for helping elderly
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people live independent lives. The main contribution of this survey is the identification of research
works in which mostly ambient sensors are used to obtain data from users, especially elderly users.
In addition to providing references to ambient-sensor-related works, we include a summary of each
work, as reported in Tables 2–10. The works are organized in the tables in alphabetical order of the last
name of the first author. Therefore, this survey should be helpful for researchers who are working on
ambient assisted living technology development to help elderly people live independent lives.

The rest of the paper is organized as follows: Section 2 includes basic descriptions of different
ambient sensors and the research works that are based on them. Section 3 discusses different challenges
for ambient-sensor-based projects. Finally, Section 4 presents the conclusions of the survey.

2. Ambient Sensors in Elderly Care

The concept of sensing arises in the smart home, in which various types of sensors/devices
are integrated into everyday objects. Infrastructure in the smart home is connected by network
technologies for gathering contextual information such as vital signs and behavioral information of the
elderly via the sensors. The most common approaches for elderly monitoring in smart homes are based
on machine vision. However, other sensors (e.g., motion, radar, object pressure, and floor vibration
sensors) are also used for elderly health and behavior monitoring. In this section, we will summarize
the works that apply these sensors to monitor elderly behavior or health status in recent research.

2.1. Passive Infrared (PIR) Motion Sensors

Many research works have applied passive infrared (PIR) motion sensors to detect the movements
of individuals. PIR motion sensors are installed on walls or ceilings of the homes of elderly people to
continuously collect motion data that are related to predefined activities in the scope of the sensors.
PIR motion sensors are usually heat-sensitive. The sensors detect the presence of users in rooms by
utilizing the changes in temperature. PIR motion sensors are used in different places to detect different
types of events, such as stove use, room temperature, use of water, and opening of cabinets. Motion
data are collected and transmitted to the caregivers of a user through a base station. Then, the collected
data are interpreted for analysis of trends to detect changes in daily activities. They can also be
analyzed to identify potential changes in health status. Thus, PIR sensors can be used to recognize
patterns in daily activities and generate alerts if deviations occur. The sensors can be adopted for
various applications in smart homes, such as detecting the degree of activity and detecting falls or
other significant events. In most cases, monitoring technologies are combined for more than one aim,
such as detecting daily activities along with significant events. Besides, PIR motion sensors can also be
applied to analyze gait velocities, user location, time out of the home, sleeping patterns, and activities
at night. Table 2 lists research works that were conducted based on PIR sensors [32–55].

2.2. Video Sensors

The most commonly used ambient sensors for eldercare are video sensors. Many research works
have been carried out in ambient assistive living using video cameras for various applications, such as
locating residents and recognizing their activities in their homes. Cameras are installed on the walls or
ceilings to detect activity through background subtraction, body shape extraction, feature analysis,
and machine learning. Among many applications, video monitoring technology has mostly been used
to detect activities of daily living and falls or other significant events. Table 3 lists several research
works that were conducted based on video cameras [56–98].

2.3. Pressure Sensors

Pressure sensors are applied to detect the presence of residents on chairs or in bed. They can
be used to detect sit-to-stand transfers and stand-to-sit transfers. Three articles are reported in this
work that applied pressure sensors in smart homes [99–101]. Given that all three articles focused on
detecting transitions from sit-to-stand and from stand-to-sit, determining the transfer duration was the



Sensors 2018, 18, 2027 8 of 31

main outcome. Determining the maximum force on grab bars was also discussed. Table 4 lists some
works that were conducted based on pressure sensors [99–101].

2.4. Sound Sensors

For sound recognition, sensors such as microphones are utilized to detect different events such
as daily activities, e.g., the sound that is generated while handling dishes or during the falling of an
object or person. In the articles that are listed in Table 5, the detection of activities of daily living, along
with significant events such as falls, was the main target of the monitoring [102–109].

2.5. Floor Sensors

Sensing of floors plays an important role in the development of sensing environments with low
invasiveness. Floor sensors can make the sensing layer invisible to the user, as the floor appears to
be a traditional floor. They can be applied in various practical areas, including private and public
environments. For instance, smart buildings can use floor sensors to detect the presence of people to
automatically control the switches of the lighting and heating systems. In smart eldercare systems,
floor sensors can be used to detect emergency situations such as falls. They can also be adopted for
counting people and monitoring crowd movements during public events. Articles that explain various
applications that use only floor sensors are listed in Table 6 [110–112].

2.6. Radar Sensors

Among different ambient sensors, the Doppler radar is attractive because it can detect and
measure any movement in the presence of stationary clutter in the background. It achieves better
perception of elderly people compared to vision-based sensors since it can penetrate strong obstacles
such as furniture items and walls. Furthermore, it does not raise privacy issues for in-home monitoring
and avoids the inconvenience of wearable devices [96]. In addition, Doppler radar can be used for
the detection of human cardiopulmonary motion, which could provide a promising approach to
overcoming the problems of false triggers. Articles that analyzed various applications of radar sensors
are reported in Table 7 [113–117].

2.7. Combined Ambient Sensors

Some works combined more than one monitoring technology, such as accelerometers combined
with video cameras and PIR sensors. Combinations of the multiple types of sensor technologies were
very frequent and diverse in nature. The most popular combination was PIR motion sensors and video
cameras. The next most frequent was a combination of pressure and PIR sensors. Using different types
of ambient sensors together, improvements in quality of life were achieved within different target
groups, such as residents and caregivers. The use of multicomponent ambient sensor technologies
increased the sense of safety, which helped to postpone the institutionalization. Although an increase in
quality of life was observed for the residents and caregivers, the growth was not substantial. However,
a significant growth was noticed in the hours of informal care. Table 8 lists research works that were
conducted by combining different ambient sensors [118–133].

2.8. Combined Ambient and Wearable Sensors

There have been many research works on elderly healthcare that are based on wearable sensors,
as wearable sensors can provide more accurate information on elderly health status (e.g., heartbeat,
respiration, muscle movements, and blood flow). For prolonged independent living, elderly people
may not be inclined to use body-worn sensors. Hence, we focus on mostly ambient-sensor-based
works in this survey. However, some research works that utilized both wearable and ambient sensors
have been reported here, as shown in Table 9 [134–144].
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Table 2. Summary of research works that use passive infrared motion sensor technology.

Research Authors
(Year) Target Research Techniques Results

Alwan et al. [32]
(2005)

Recognition of activities
of daily living

The work used the following approaches: Rule-based recognition of activities (e.g., eating and showering);
Fifteen on/off switches in different places, such as the microwave oven and different doors; Binary
features (on/off) were used for rule-based recognition of activities of daily living; More than five weeks of
activity monitoring; Subjects were provided portable personal digital assistant (PDA) devices for
recording ground truth data.

91% sensitivity;
100% specificity.

Austin et al. [33]
(2011) Gait analysis The work used Gaussian mixture modeling on motion sensor data for three years of residence monitoring

of different people. 95% accuracy.

Austin et al. [34]
(2011) Gait analysis The authors applied Gaussian-kernel-based probability density functions for three years of monitoring of

two elderly subjects.
The approach detects abrupt changes in gait function
and slower variations of gait velocity over time.

Barger et al. [35]
(2005)

Recognition of activities
of daily living

The work described probabilistic mixture model raw motion sensor data for recognition of different
activities. Subjects were monitored for 65 days. Then, results were accumulated. The project utilized of
a set of low-cost motion sensors. Two types of evaluations were performed: work and off-days.

The motion sensor data were grouped into 139 clusters.
The experimental results showed that there were some
frequent clusters that occurred consistently over time
with low classification uncertainty.

Celler [36] (1995) Recognition of activities
of daily living

It was a pilot project with five months of monitoring the functional health status of the elderly at home.
Parameters that are sensitive to changes in health were continuously recorded.

The project explained the technical functionality for
monitoring the functional health status of the elderly in
the smart home.

Cook &
Schmitter-Edgecombe

[37] (2009)

Recognition of activities
of daily living The work adopted Markov models for modeling daily activities. 98% accuracy.

Dalal et al. [38]
(2005)

Recognition of activities
of daily living

The work adopted rule-based recognition based on correlation algorithms. Each elderly person was
monitored for 37 days.

91% sensitivity;
100% specificity.

Demongeot et al.
[39] (2002)

Recognition of activities
of daily living The authors applied mostly threshold features for rule-based recognition. Only analytical studies were performed, rather than

reporting accuracies of proposed approaches.

Fernandez-Llatas
et al. [40] (2010)

Recognition of activities
of daily living Simple rules were applied to an ongoing project to focus on various daily activities.

The work was only an analysis of an ongoing project,
which was carried out to test different approaches
without reporting any specific results.

Franco et al. [41]
(2010)

Recognition of activities
of daily living

The work used circular Hamming distance based on temporal shift, which was applied to monitor elderly
persons for 49 days.

Different days were considered to explain the
functionality.

Glascock & Kutzik
[42] (2006)

Recognition of activities
of daily living

The work applied Gaussian mixtures to model human activities. The study was performed on two field
sites, where elderly monitoring was carried out for a half a year and a full year. 98% reliability.

Glascock & Kutzik
[43] (2000)

Recognition of activities
of daily living

Multiple activities were annotated based on specific software to monitor behavior. Elderly monitoring
was performed for 12 days.

The functionality of the behavior monitoring system
was elaborated for different days. It can be used in
eldercare centers to obtain temporal information based
on behavioral variations.

Hagler et al. [44]
(2010) Gait recognition A simulation study was performed on gait analysis in a predefined laboratory setting. 98.9% accuracy.

Hayes et al. [45]
(2004)

Recognition of activities
of daily living

A Gaussian-kernel-based approach was described that was based on probability density functions for
describing walking in-home. Eight weeks of monitoring of walking was carried out. 98.1% accuracy.
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Table 2. Cont.

Research Authors
(Year) Target Research Techniques Results

Kaye et al. [48]
(2010)

Recognition of activities
of daily living and gait

For an average of 33 months, different types of sensors were installed in the homes of 265 elderly people.
Different metrics were assessed, such as total daily activity, time out of the home, and walking speed.
Participants were also assessed yearly with questionnaires, physical examinations, and
neuropsychological tests.

Elderly people left their homes twice a day on average
for approximately 208 min per day. Average in-home
walking speed was 61.0 cm/s. They spent 43% of days
on the computer for an average of 76 min per day.

Lee et al. [49]
(2007)

Recognition of activities
of daily living

A behavioral monitoring system was developed for elderly people who are living alone. The
PIR-sensor-based in-house sensing system could detect the motion of an elder and send the data to a
database. In addition, a web-based monitoring system was developed for remote monitoring of the
elderly by caregivers. The system was installed in nine elderly homes for three months.

86.6% accuracy.

Noury & Haddidi
[50] (2012)

Recognition of activities
of daily living

A simulator was proposed that focuses on human activities based on presence sensors in the smart home
for elderly healthcare. Previously recorded real activity data were used to build a mathematical model
that was based on HMMs for producing simulated data series for various scenarios. In addition, similarity
measurements were obtained between real and simulated data.

99.91% accuracy.

Shin et al. [51]
(2011)

Recognition of activities
of daily living

Several sensors were installed in different places in a smart home to monitor abnormal activity patterns.
Observations were made for 51 and 157 days. 90.5% accuracy.

Tomita et al. [52]
(2007)

Recognition of activities
of daily living A case study was performed for two years of elderly monitoring in smart homes. 91% recommendation.

Virone [53] (2009) Recognition of activities
of daily living

It was a simulated case study in which a pattern recognition model for daily activity monitoring was
tested. Activity deviation was also considered during activity monitoring. 98% accuracy.

Wang et al. [54]
(2012)

Recognition of activities
of daily living

Activity pattern deviations were considered for early detection of health changes. Dissimilarities among
different activity density maps were computed to automatically determine changes in activity patterns.
Elderly subjects were monitored for one, four, and three months.

Dissimilarities among activity density maps were in the
range of 0.30–0.52.

Willems et al. [55]
(2011)

Recognition of activities
of daily living

A pilot study was performed to examine potential effects of activity monitoring on users and formal and
informal caregivers. The study was performed based on the observations from two years of monitoring.
Various questionnaires were used to assess quality of life and health status.

The functionality of the system was illustrated in detail.
After the assessment, no significant variations were
found based on the client questionnaires.
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Table 3. Summary of research works that use video sensor technology.

Research Authors
(Year) Purpose Characteristics Outcomes

Abidine et al. [56]
(2015)

Recognition of activities
of daily living

The work proposed principal component analysis, independent component analysis, and linear discriminant analysis
features with weighted support vector machines. The work also applied the features with other machine learning
algorithms such as conditional random fields.

94% accuracy.

Aertssen et al. [57]
(2011)

Recognition of activities
of daily living

Motion information was extracted using motion history images and analyzed to detect three different actions for
elderly people: walking, bending, and getting up. Shape deformations of the motion history images were investigated
for different activities and used later for comparison in-room monitoring.

94% accuracy.

Auvinet et al. [58]
(2008) Fall detection One of the authors of the work performed the falls on a mattress in a laboratory. The work mainly focused on post-fall

phase. Twenty-two fall events were recorded for the experiments.
Analytical study of the proposed design
was done rather than reporting accuracy.

Auvinet et al. [59]
(2011) Fall detection The authors first recorded a dataset of videos from eight different cameras installed around the room where falls were

simulated with the help of a neuropsychologist. For testing, some fake falls were also recorded. 100% accuracy.

Belshaw et al. [60]
(2011) Fall detection

Two in-home fall trials were done in two real living rooms. For each trial, the users performed simulated falls and real
daily living behaviors for seven days. For the second trial, the users were instructed to simulate falls only and 11
simulated falls were done for seven days.

100% sensitivity; 95% specificity.

Belshaw et al. [61]
(2011) Fall detection An annotated training set was designed with fall or no-fall. For experiments, three office rooms were set for recording

training and testing videos of simulated falls over the course of three weeks. 92% sensitivity; 95% specificity.

Berlin & John [62]
(2016)

Recognition of activities
of daily living

Harris corner-based interest points and histogram-based features were applied with deep neural networks to recognize
different human activities. The dataset consisted of six types of different activities: shake hands, hug, kick, point,
punch, and push.

95% accuracy.

Brulin et al. [63]
(2012)

Activity posture
recognition Fuzzy rules were applied to recognized different kind of postures: sitting, lying, squatting, and standing. 74.29% accuracy.

Chen et al. [64]
(2016)

Recognition of activities
of daily living

Action graph of skeleton-based features were extracted and applied with maximum likelihood estimation. Twenty
different actions with 557 sequences were tried. The experiments included the cross-subject test where half of the
subjects were applied for training and the rest for testing. The experiments were repeated 252 times with different folds.

96.1% accuracy.

Chia-Wen &
Zhi-Hong [65]

(2007)
Fall detection

The authors recorded a total of 78 videos for fall detection where 48 were used for training and 30 for testing. They
focused on three feature parameters (i.e., the centroid of a silhouette, the highest vertical projection histogram, and the
fall-down duration) to represent three different motion types (i.e., walk, fall, and squat).

86.7% sensitivity; 100% specificity.

Du et al. [66]
(2015)

Recognition of activities
of daily living

Skeleton data was extracted by sub networks and then applied with hierarchical bidirectional recurrent neural network.
More than 7000 images were used to determine the postures from different activities such as undetermined, lying,
squatting, sitting, and standing.

100% accuracy.

Foroughi et al. [67]
(2008)

Fall and activities of daily
living recognition

The authors applied best-fit approximation ellipse of silhouette, histograms, and temporal variations of head position
features to represent daily activities and falls. Fifty subjects were used to record 10 activities five times each
for experiments.

97% accuracy.

Huang et al. [68]
(2016)

Recognition of activities
of daily living

Lie group features were extracted and applied with Lie group network for different human activity recognition. The
experiments included the largest 3D activity recognition dataset consisted of more than 56,000 sequences from 60
different activities performed by 40 different subjects.

89.10% accuracy.

Krekovic et al. [69]
(2012) Fall detection The fall detection system consisted of background estimation, moving object extraction, motion feature extraction, and

finally, fall detection. Dynamics of human motion and body orientation were focused. The small data set was built. 90% accuracy.

Lan et al. [70]
(2015)

Recognition of activities
of daily living

Dense activity trajectory was developed using histogram of oriented gradients and histogram of optical flow features
to apply with support vector machines. The proposed method was validated on four different challenging datasets:
Hollywood2, UCF101 and UCF50, and HMDB51.

94.4% accuracy.
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Table 3. Summary of research works that use video sensor technology.

Research Authors
(Year) Purpose Characteristics Outcomes

Li et al. [71] (2016) Recognition of activities
of daily living

Vector of locally aggregated descriptor features were applied to analyze deep dynamics of the activities and later
combined with deep convolutional neural networks. The proposed approach was tried on a public dataset of 16
different activities.

90.81% accuracy.

Li et al. [72] (2012) Fall detection

The experimental dataset used in the work consisted two kinds of activities: falls and non-falls. The subjects were
trained by nursing collaborators to act falling like an elderly. The first dataset was recorded in a laboratory where a
mattress was used to fall on. The dataset consisted on 240 fall and non-fall videos (i.e., 120 for each). The second
dataset was recorded in a realistic environment in four different apartments where each subject performed six falls on a
mattress.

100% sensitivity; 97% specificity.

Lee & Mihailidis
[73] (2005) Fall detection

Trials for experimental analysis were done in a fake bedroom setting. The room consisted of a bed, a chair, and random
bedroom furniture. The subjects were asked to complete five scenarios, which generated a total of 315 tasks consisting
of 126 falls and 189 non-falls.

77% accuracy.

Lee & Chung [74]
(2012) Fall detection Kinect depth camera with a laptop was installed to record a total 175 videos of different fall scenarios in indoor

environments. 97% accuracy.

Leone et al. [75]
(2011) Fall detection

A geriatrician provided instructions for the simulation of falls which were performed using crash mats and knee or
elbow protectors. A total amount of 460 videos were simulated of which 260 were falls. Several activities of daily living
were stimulated other than falls to evaluate the ability of discriminating falls from activities of daily living.

97.3% sensitivity; 80% specificity.

Mirmahboub et al.
[76] (2013) Fall detection The experimental dataset consists of 24 scenarios. In each scenario, a subject performed activities such as falling, sitting

on a sofa, walking, and pushing objects. All activities were performed by one subject with different dresses. 95.2% accuracy.

Mo et al. [77]
(2016)

Recognition of activities
of daily living

Robust features were automatically extracted from body skeletons. The features were then applied with deep
convolutional neural networks for modeling and recognition of 12 different daily activities. 81.8% accuracy.

Nyan et al. [78]
(2008) Fall detection A total of 20 sets of data were recorded for different activities such as forward fall, backward fall, sideways fall, fall to

half-left, and fall to half-right. Subjects were also asked to simulate activities of daily livings. 100% accuracy.

Peng et al. [79]
(2014)

Recognition of activities
of daily living

Space-time interest points, histogram of oriented gradients, and histogram of optical flow features were applied with
support vector machines. The proposed approach was tried on three different realistic datasets: UCF50, UCF101, and
HMDB51.

92.3% accuracy.

Peng et al. [80]
(2014)

Recognition of activities
of daily living

Robust dense trajectories were encoded with stacked Fisher kernels and applied with support vector machines for
activity recognition. The approach was tried on three large datasets collected from different sources such as YouTube. 93.38% accuracy.

Rougier et al. [81]
(2011) Fall detection Shape matching technique was applied was used to track a silhouette from a video sequence. Then, Gaussian mixture

model was used for fall detection. 100% accuracy.

Shahroudy et al.
[82] (2015)

Recognition of activities
of daily living

Robust features were extracted using histogram of oriented gradients and histogram of optical flows. The features
were then applied with support vector machines. The method was evaluated on three datasets: MSR-DailyActivity,
MSR-Action3D, and 3D-ActionPairs dataset.

81.9% accuracy

Shi et al. [83]
(2016)

Recognition of activities
of daily living

Three sequential deep trajectory descriptors were tried with deep recurrent neural networks and convolutional neural
networks for efficient activity recognition. The approach was tried on three datasets: KTH, HMDB51, and UCF101. 96.8% accuracy.

Shieh & Huang
[84] (2012) Fall detection

Subjects were requested to perform different events of falls and non-falls. The non-fall events include walking, running,
sitting, and standing. The fall events include slipping, tripping, bending and fainting in any directions. In the
experimental analysis, a total of 60 and 40 videos were used for non-fall and fall, respectively.

90% accuracy.
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Table 3. Summary of research works that use video sensor technology.

Research Authors
(Year) Purpose Characteristics Outcomes

Simonyan &
Zisserman [85]

(2014)

Recognition of activities
of daily living

Optical flow based temporal streams were applied with deep convolutional neural networks to model different human
activities. The method was tried on two different datasets of benchmarks where it showed competitive performance
with the state of the art methods.

88.0% accuracy

Uddin. [86] (2017) Recognition of activities
of daily living

Body parts in the depth images were first segmented based on random forests. Then, body skeletons were obtained
from the segmented body parts. Furthermore, the robust spatiotemporal features were extracted and applied with
hidden Markov models. The approach was tried on a public dataset of 12 human activities to check its robustness.

98.27% accuracy.

Uddin et al. [87]
(2017) Recognition of gaits Spatiotemporal features were extracted using local directional edge patterns and optical flows. Then, deep

convolutional neural networks were applied on them for normal and abnormal gait recognition. 98.5% accuracy.

Uddin et al. [88]
(2017)

Recognition of activities
of daily living

Body parts were segmented to get skeletons in the depth images based on random features and forests. Furthermore,
spatiotemporal features were extracted based on the skeleton joint position and motion in consecutive frames. The
body limbs were represented in spherical coordinate system to obtain person independent body features. Finally, the
features were applied with deep convolutional neural networks on a public activity dataset of 12 different activities.

98.27% accuracy.

Veeriah et al. [89]
(2015)

Recognition of activities
of daily living

Normalized pair-wise angles, offset of joint positions, histogram of the velocity, and pairwise joint distances were
applied with differential recurrent neural network. The approach was applied to recognize activities in two public
datasets: MSR-Action3D and KTH.

93.96% accuracy.

Wang et al. [90]
(2014)

Recognition of activities
of daily living

Local occupancy patterns were applied to obtain depth maps. Fourier temporal pyramid was used for temporal
representations of activities. Finally, the features were applied on support vector machines to characterize 12 different
activities in a public dataset.

97.06% accuracy.

Wang et al. [91]
(2016)

Recognition of activities
of daily living

Weighted hierarchical depth motion maps were applied on three-channel deep convolutional neural networks. The
method was applied on four different public datasets: MSRAction3D, MSRAction3DExt, UTKinect-Action, and
MSRDailyActivity3D.

100% accuracy.

Wang et al. [92]
(2015)

Recognition of activities
of daily living

Pseudo-color images on three-channel deep convolutional neural networks were utilized to recognize activities on four
public datasets (i.e., MSRAction3D, MSRAction3DExt, UTKinect-Action, and MSRDailyActivity3D) where it achieved
the state-of-the-art results.

100% accuracy.

Wang et al. [93]
(2015)

Recognition of activities
of daily living

Skeleton-based robust features were applied with support vector machines. The approach was evaluated on two
challenging datasets (i.e., HMDB51 and UCF101) where it outperformed the conventional approaches. 91.5% accuracy.

Willems et al. [94]
(2009) Fall detection

Grayscale video processing algorithm was applied to detect falls in the video. Background subtraction, shadow
removal, ellipse fitting, and fall detection were done based on fall angle and aspect ratio. Finally, fall confirmation was
done considering vertical projection histograms.

85% accuracy.

Yang et al. [95]
(2017)

Recognition of activities
of daily living

Low-level polynormal was assembled from local neighboring hypersurface normal and then aggregated by super
normal vectors with linear classifier. The proposed method outperformed other traditional approaches on four public
datasets: MSRActionPairs3D, MSRAction3D, MSRDailyActivity3D, and MSRGesture3D.

100% accuracy.

Yu et al. [96] (2012) Fall detection Simulating postures, activities, and falls in a laboratory setting. 97.08% accuracy.

Zhen et al. [97]
(2016)

Recognition of activities
of daily living

Space-time interest points with histogram of oriented gradient features were encoded with various encoding methods
and then applied with support vector machines. The methods were tried on three public datasets: KTH, UCF-YouTube,
and HMDB51.

94.1% accuracy.

Zhu et al. [98]
(2016)

Recognition of activities
of daily living

Co-occurrence features of skeleton joints were extracted and applied with deep recurrent neural networks with long
short-term memory. The proposed method was validated on three different benchmark activity datasets: SBU kinect
interaction, HDM05, and CMU.

100% accuracy.
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Table 4. Summary of research works that use pressure sensor technology.

Research Authors
(Year) Purpose Characteristics Outcomes

Arcelus et al. [99]
(2009A)

Sit-to-stand transfer
detection

Pressure sensor arrays were installed in a bed and floor. Then, pressure information
over time was analyzed. The motion of the center of pressure was observed in the
wavelet domain to determine whether a transfer occurred.

Older adults generated shorter sit-to-stand durations of approximately 2.88 s.

Arcelus et al. [100]
(2009B)

Sit-to-stand and
stand-to-sit transfer

detection.

Pressure sensors were installed in the toilet on the armrests of the commode.
Clinical parameters were successfully obtained from several stand-to-sit and
sit-to-stand transfers. Elderly people were included in the experiments as subjects.

Clinical parameters were successfully obtained for characterizing sit-to-stand
and stand-to-sit transfer sequences. Older adults took longer and used less
force in both cases.

Arcelus et al. [101]
(2010)

Sit-to-stand and
stand-to-sit transfer

detection in bedroom
and toilet.

The work focused on the analysis of sit-to-stand and stand-to-sit transfers that were
performed by the occupant in the bedroom and bathroom. Pressure sensors were
installed in a bed and the grab bars of a toilet commode. Then, clinical feature
extraction was performed to determine a warning level.

The clinically relevant features that were obtained from both bed-exits and
grab bar usage showed differences between healthy adults and those with
impaired mobility. The functionality of the proposed system in keeping track
of potential warning signs was demonstrated.

Table 5. Summary of research works that use sound sensor technology.

Research Authors
(Year) Purpose Characteristics Outcomes

Fleury et al. [102]
(2008)

Walking,
bending, and sitting

recognition
The work proposed stimulating activities in a laboratory setting. The case study considered one day of monitoring. 100% accuracy.

Khan et. al [103]
(2015) Fall detection

The proposed research work developed a fall detection system based on acoustic signals collected from elderly people while performing their
normal activities. The authors constructed a data description model using source separation technique, Mel-frequency cepstral coefficient,
and support vector machine to detect falls. The dataset used in the work consisted of 30 fall activities and 120 non-fall activities.

100% accuracy

Li et al. [104]
(2010) Fall detection The proposed work presented an eight-microphone circular array for person tracking and fall detection. For the sound classification, the authors

applied Mel-frequency cepstral coefficients. Main design features of the array were obtained by utilizing a simulation toolbox in MATLAB. 100% accuracy

Li et al. [105]
(2011)

Fall detection and
localization

The authors proposed an approach for improving the accuracy of acoustic fall detection based on sliding window position and duration in data.
The authors found that by positioning the window at the starting position of the signal, the highest sound source localization performance was
achieved. This work applied the Hilbert transform by using a finite impulse response filter on the signals.

100% accuracy.

Popescu et al.
[106] (2008) Fall detection Five different types of falls were targeted for experiments. A nurse was assigned to direct the subjects during the recording sessions of falls. The

experimental dataset consisted of six different sessions with 23 falls in total. 100% accuracy.

Popescu &
Mahnot [107]

(2009)
Fall detection The proposed work investigated a one-class classifier that required only examples from one class (i.e., fall sounds) for training. Then, fall detection

was carried out based on that training. 100% accuracy.

Vacher et al. [108]
(2011)

Recognition of
activities of daily

living

The work proposed Gaussian mixture models and support vector machines for daily activity recognition. The system also tried to recognize
significant events rather than daily activities. 92% accuracy.

Zhuang et al. [109]
(2009) Fall detection The author presented a fall detection system that used only the audio signal of the microphone. The system modeled each fall segment using a

Gaussian mixture model super vector. A support vector machine was combined with the model supervisors to classify audio segments into falls. 64% accuracy.
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Table 6. Summary of research works that use floor sensor technology.

Research Authors
(Year) Purpose Characteristics Outcomes

Alwan et al. [110]
(2006) Fall detection

The authors used dummies of humans to simulate original fall events. The experimental tests of falls were performed on concrete floors. A dummy
was used to emulate the scenario of a person falling while attempting to get out of a chair. Another dummy was used to emulate the scenario of a
person falling with upright position. The experiments were repeated three times with the same dummies.

100% accuracy.

Lombardi et al.
[111] (2015) Movement detection

A data model was proposed for storing and processing floor data. The proposed approach focused on estimating the center of floor pressure based
on the widely used biomechanical concept of ground reaction force. Some practical tests on a real sensing floor prototype were attempted. The
novel approach outperformed the traditional background subtraction schemas for the correct detection and tracking of people.

97% accuracy.

Serra et al. [112]
(2014) Footstep recognition

An easy-to-install and unobtrusive smart flooring system was proposed based on piezoelectric polymer floor sensors. The smart flooring system
was utilized for efficient human footsteps recognition based on the Pearson product–moment correlation coefficient between the testing and
reference signals for similarity calculation.

99% accuracy.

Table 7. Summary of research works that use radar sensor technology.

Research Authors
(Year) Purpose Characteristics Outcomes

Forouzanfar et al.
[113] (2017)

Event recognition,
such as breathing and

human motion

The work proposed a methodology for classifying different events, such as breathing. Many time- and
frequency-domain features were derived from radar signals. Then, linear discriminant analysis was performed to
reduce the dimension of the candidate feature set. Finally, Bayesian classifiers were used to detect the target events.

Breathing: 90% accuracy.
Motion: 93% accuracy.

Kim and
Toomajian [114]

(2016)
Gesture recognition

The work applied a deep convolutional neural network for hand gesture recognition using micro-doppler
signatures. Ten different hand gestures were recognized using short-time fast Fourier transform features of the
radar signals.

93.1% accuracy.

Lien et al. [115]
(2016) Gesture recognition

The work utilized a millimeter-wave radar to develop a novel, robust, high-resolution, and low-power gesture
sensing technology. The overall system consisted of radar design principles, high-temporal-resolution hand
tracking, a hardware abstraction layer, a radar chip, interaction models, and gesture vocabularies. The system can
track gestures at 10,000 frames per second.

98% accuracy.

Rui et al. [116]
(2017)

Walking speed
estimation

The paper proposed an algorithm for estimating the walking speed of a human using a doppler radar system. The
system was designed with the aim of passive gait assessment of elderly people. Furthermore, the work analyzed
zero-crossing periods of the radar signals in the time domain to improve the dynamics of the gait signature.

97% accuracy.

Wan et al. [117]
(2014) Gesture recognition

A gesture recognition system was proposed, which was based on portable smart radar sensors with high accuracy
for differentiating different types of hand and head movements. The authors adopted principle component analysis
in the time and frequency domains to analyze two different sets of gestures.

100% accuracy.
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Table 8. Summary of research works that use multiple types of ambient sensor technology.

Research
Authors (Year) Purpose Characteristics Outcomes Sensors

Alwan et al.
[118] (2006)

Recognition of
activities of daily

living

Systems for detecting activities of daily living were installed in 15
assisted living units. The reports were sent to professional caregivers
of the residents. Fifteen residents and six caregivers participated in
the system. It was a pilot study in which monitoring was performed
for three months. Quality of life was assessed using a standard
satisfaction-with-life scale instrument.

There was a high acceptance rate of the system. The approach could
be used for improved healthcare planning and detection of health
status changes.

PIR motion sensors,
stove sensor, bed
pressure sensor.

Alwan et al.
[119] (2006)

Recognition of
activities of daily

living

Activities of daily living were monitored for 26 elderly residents and
25 caregivers over four months. A standard satisfaction-with-life
scale instrument was used to assess the quality of life of the elderly
people and the caregivers.

Once four months of monitoring were finished, there was no
significant difference in the quality-of-life scores of the elderly users
and the caregivers. The system seemed to be highly acceptable.

PIR motion sensors,
stove sensor, bed
pressure sensor.

Alwan et al.
[120] (2007)

Recognition of
activities of daily

living

The purpose of the work was to assess the impact of passive health
status in assisted living. Two aspects were analyzed: the cost of care
and the efficiencies of caregivers. Activities of daily living systems
were monitored for 21 residents for over three months.

The study demonstrated that the monitoring technologies that were
used in the work significantly reduced billable interventions, hospital
days, and cost of care to players. Moreover, they had a positive
impact on professional caregivers’ efficiency.

PIR motion sensors,
stove sensor,

pressure sensors.

Ariane et al.
[121] (2012) Fall detection The proposed fall detection system was simulated by testing on

scenarios in an existing data set. 89.33% accuracy. PIR motion sensors,
pressure mats.

Bemis et al. [122]
(2008)

Recognition of
activities of daily

living

It was a case study on two residences based on seven and four
months of monitoring.

The functionality of the system in detecting activities and deviations
in patterns of activities was described.

Video monitoring,
PIR motion sensors.

Bemis et al. [123]
(2010)

Recognition of
activities of daily

living

The work reported the progress in sensors, middleware, and behavior
interpretation mechanisms, spanning from simple rule-based alerts
to algorithms for extracting the temporal routines of the users.

The functionality of the system was demonstrated. Video monitoring,
PIR motion sensors.

Celler et al. [124]
(1996)

Recognition of
activities of daily

living

The work presented a smart home monitoring system that was based
on sequences of pressure. It mainly focused on pressure transfers in
the bedroom and bathroom to check whether the motion evaluation
is in the normal range or not.

The functionality of the system was demonstrated. The system
showed encouraging results for precise fine-grained activity
monitoring systems, especially using high-precision user localization
sensors.

PIR motion sensors,
sound sensors,

temperature sensors,
light sensors,

pressure sensors.

Chung et al.
[125] (2017)

Sleep stage
classification

A novel approach was proposed for sleep stage classification using
a doppler radar and a microphone. The classification algorithm was
designed based on a standard polysomnography reference-based
database and medical knowledge of doctors and sleep technologists
at a hospital. The algorithm outperformed commercially available
products for a specific database.

100% accuracy. Doppler radar and
microphone.

Guettari et al.
[126] (2010) Localization

This work proposed a localization system that was based on
a combination of infrared sensors and sound sensors. The system
mainly used the azimuth angles of the sources. This multimodal
system improved the precision of localization compared to
a standalone system.

54% improvement was achieved using the proposed multimodal
system compared to a standalone one.

PIR motion sensors
and sound sensors.
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Table 8. Cont.

Research
Authors (Year) Purpose Characteristics Outcomes Sensors

Kinney et al.
[127] (2004)

Recognition of
activities of daily

living

It was a pilot study on 19 families for activity monitoring.
Monitoring was performed for six months.

The main advantage of the system was the ease of tracking the users.
The main disadvantage was the annoyance that was created by false
alerts. The cost was $400 to equip the home. Ninety dollars per
month was the cost of maintenance.

Video camera,
PIR motion sensors.

Lotfi et al. [128]
(2011)

Recognition of
activities of daily

living

It was a case study on two dementia patients. The first patient was
monitored for 20 days. The second patient was monitored for 18
months.

The system was used to identify abnormal behavior. The system
demonstrated satisfactory performance in identifying health status
using different ambient sensors.

PIR motion sensors,
door opening

sensors,
flood sensors.

Rantz et al. [129]
(2008) Fall detection A case study was performed for retrospective analysis of fall

detection data.
A change of health status was detected by the system but ignored by
the nurses.

Video camera, PIR
motion sensors, bed

pressure sensors,
door sensors.

Van Hoof et al.
[130] (2011)

Recognition of
activities of daily

living

It was a pilot study for daily activity monitoring and fire wandering
detection. The system was installed in the range of 8–23 months for
analysis.

Use of the proposed system improved the sense of safety and
security.

PIR motion sensors,
video camera.

Zhou et al. [131]
(2011)

Recognition of
activities of daily

living

The work tried to recognize simulated activities that were monitored
in testbed for a month. 92% precision; 92% recall. Video camera,

PIR motion sensors.

Zouba et al. [132]
(2009)

Recognition of
activities of daily

living

The authors recognized simulated activities that were monitored in
a laboratory setting. 62–94% precision; 62–87% sensitivity. Video camera,

PIR motion sensors.

Zouba et al. [133]
(2009)

Recognition of
activities of daily

living

The work was focused on monitoring simulated activities in
a laboratory setting. 50–80% precision; 66–100% sensitivity. Video camera,

PIR motion sensors.
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Table 9. Summary of research works that use ambient and wearable sensor technology.

Research
Authors (Year) Purpose Characteristics Outcomes Sensors

Aghajan et al.
[134] (2007)

Significant event
detection

A sensor network that consisted of various types of sensors was used. Based on sensor data,
event detection modalities with distributed processing were applied for smart home applications.
More specifically, a distributed vision-based analysis was carried out for the detection of the
occupant’s posture. Then, features from multiple cameras were combined via a rule-based
approach for significant event detection.

96.7% accuracy. Accelerometer sensors, video
camera, PIR motion sensors.

Bang et al. [135]
(2008)

Recognition of
activities of daily

living

An accelerometer and environmental-sensor-based approach was proposed. Conditional
probabilities were used for recognition of daily activities that combine human motion and
contacts with objects.

97% accuracy.
Accelerometer sensors,
environmental sensors,
PIR motion sensors.

Bianchi et al.
[136] (2009) Fall detection

The study was to evaluate barometric pressure along with accelerometer-based fall detection.
Signal processing techniques (e.g., signal magnitude area) and a classification algorithm (support
vector machines) were used to discriminate falls from typical daily activities.

97.5% accuracy. Accelerometer sensors and
barometric pressure sensors.

Cao et al. [137]
(2009)

Recognition of
activities of daily

living
An event-driven context-aware computing model was proposed for recognizing daily activities.

Elderly health monitoring
through the proposed system
showed the effectiveness of the
proposed model.

Video camera,
accelerometer sensors.

Hein et al. [138]
(2010)

Recognition of
activities of daily

living

A two-fold approach was described. First, sensors were selected based on interviews of elderly
people, their relatives, and caregivers. Then, based on the outcome of the interviews, a
sensor-based system was utilized to recognize different daily human activities.

Maximum 96.1% sensitivity and
90.3% specificity.

Accelerometer sensors, video
camera, PIR motion sensors,
door sensors.

Medjahed et al.
[139] (2009)

Recognition of
activities of daily

living

A fuzzy-logic-based approach was proposed for robust human activity recognition on simulated
data. 97% accuracy.

Sound sensors, PIR motion
sensors, physiological sensors,
state-change sensors.

Nyan et al. [140]
(2006) Fall detection A fall detection approach was proposed using gyroscopes. Angles from different sides were

explored for accurately modelling fall detection.
Maximum 100% sensitivity and
97.5% specificity.

Gyroscopes sensors,
video camera.

Roy et al. [141]
(2011)

Recognition of
activities of daily

living

This work proposes a framework of daily activity recognition that uses possibility theory and
description logic-based semantic modeling. Different machine learning approaches (e.g.,
Gaussian mixture models, hidden Markov models, deep belief network) were analyzed.

95% accuracy.
Pressure sensors, accelerometer
sensors, video sensors,
PIR motion sensors.

Sim et al. [142]
(2011)

Recognition of
activities of daily

living
The work applied mining of correlated patterns in activity recognition systems.

The correlated activity pattern
mining approach showed 35.5%
higher accuracy than typical
frequent mining systems.

RFID sensors, accelerometer
sensors, reed switches,
PIR motion sensors, pressure
sensors.

Srinivasan et al.
[143] (2007) Fall detection

The system applied triaxial accelerometer and motion detector sensor data in a two-step fall
detection algorithm. First, the system tried to detect falls using the normalized energy
expenditure from acceleration values. Then, falls were confirmed by considering the absence of
motion. Some thresholds and logic were used to detect falls.

100% accuracy for coronal falls
and 94.44% sagittal falls.

Accelerometer sensors,
PIR motion sensors.

Tolkiehn et al.
[144] (2011) Fall detection

The system used a 3D accelerometer and a barometric pressure sensor for robust fall detection,
along with detection of the fall direction. The basic probability-based amplitude and angular
features were obtained from accelerometer sensors. Later, a pressure threshold was used.

Maximum 89.97% accuracy for
fall prediction and 94.12% for
fall direction.

Accelerometer sensor,
barometric pressure sensor.
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2.9. Ambient Sensors in Mobile Robotic Systems

Ever since the first robot was created, researchers have been trying to integrate robots into our
daily lives. Domestic assistance has been a driving goal in the mobile robotics area, where robots
are expected to assist in daily environments. Mobile robots can be very useful for helping elderly
people live independent lives. For instance, Figure 6 shows a sample schematic setup of a smart room
for behavior monitoring of an elderly person based on different ambient sensors and a mobile robot.
Many mobile robots have been developed over decades by academics and research groups. The results
and insights that are obtained through the conducted experiments will undoubtedly shape the care
robots of tomorrow. Among all the mobile robots for elder care, several notable robots are briefly
described in Table 10 [145–155].
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Table 10. Summary of research works that use ambient sensors in mobile robotics.

Robot Characteristics Ambient Sensors

AIBO [145]
(2008)

It is a dog-like robot that is capable of facial expressions. The companion robot can
display how it feels through six emotional states: happiness, dislike, anger, love,
sadness, and surprise. It has touch sensors on the head, chin, and back. Stereo
microphones allow it to hear. The camera helps it to see and balance. It also uses
infrared, acceleration, and temperature sensors to adapt to its surroundings.

Touch sensors, video camera, distance
sensor, microphone, temperature sensor.

AILISA [146]
(2005)

It is a machine-like robot. It provides mobility aid, physiological monitoring, and
fall monitoring.

Motion sensors, wireless weight
scale sensors.

Cafero [147]
It is machine-like robot that provides helps with monitoring and recording vital
signs, telepresence, cognitive training, entertainment and reminiscence, and
scheduling activities.

Infrared sensor, camera sensor, laser
range finder, sonar sensors.

Care-O-bot
[148] (2009)

It is a human-like robot. It provides aid with walking with navigation, fetching
objects, security, monitoring health and personal safety, cleaning tasks, heating
food, telepresence, and medication reminders.

3-D time of flight cameras, stereo camera,
microphone sensor on robot head, tactile
sensors on robot hand

GiraffPlus [149]
(2014)

It is a machine-like robot with a touchscreen interface. It allows remote people (i.e.,
caregivers, family, and friends) to virtually visit an elderly person’s home, move
the robot about freely, and communicate with the elderly person through video
conferencing technology.

Passive infrared detector, electrical usage
sensor, a pressure sensor
(bed/sofa/chair), accelerometer sensor,
physiological sensors (e.g., body weight,
blood pressure, pulse rate).

Hector [150]
(2013)

It is a machine-like robot with a touchscreen interface. It provides aids for
recording daily routines, controlling the environment, cognitive training,
reminding to take medication, reviewing of daily agendas, detecting falls,
and providing help during emergency.

Kinect depth camera, web camera, fisheye
camera, microphone, IR motion sensor.

Act [151] (2008)
It is a cat-like robot. Through a camera, it can recognize objects and faces.
Microphones in it can recognize speech and the direction of the sound source.
It can also sense touch through its touch sensors.

Video camera, touch sensor, microphone.

NeCoRo [152]
(2005)

It is a cat-like fluffy robot. The tactile sensors in its head, chin, and back can sense
a stroking or patting. A microphone in its head can detect sound and the source of
the sound. A camera helps it avoid obstacles. An acceleration sensor helps it
recognize its position while spinning around.

Video camera, touch sensor, microphone,
tactile sensor, position sensor,
vision light sensor.
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Table 10. Cont.

Robot Characteristics Ambient Sensors

Paro [153]
(2016)

It is a seal-like fluffy robot that is capable of facial expressions. It can provide
company to elderly people who are living alone. It can perceive its environment
with the help of five types of sensors: temperature, tactile, light, sound, and
posture sensors. Light sensors help it to recognize light and dark. Tactile sensors
help it feel when it is being stroked or beaten. Posture sensors help it sense when it
is being held. Sound sensors help it perceive the directions of voices and words.

Light sensor, auditory (determination of
sound source direction and speech
recognition) sensor, balance sensor,
tactile sensor.

Pearl [154]
(2002)

It is a human-like robot with a head that is capable of facial expressions. It aids in
the reminding of daily agendas, guiding around the home, reminding of
appointments, telepresence, monitoring of health, and opening or closing
the refrigerator.

Navigation sensors that use a laser range-
finder, sonar sensors, microphones for
speech recognition,
stereo camera systems.

Ri-man [155]
(2007) It is a human-like machine. It aids in lifting and carrying people. Tactile sensors

MOVAID [156]
(2007)

It is machine-like robot with no head and approximately two meters tall. The robot
was designed for heating/delivering food, changing bed linen, kitchen
bench cleaning.

Ultrasound, force, camera, local
positioning, laser, infrared, and
tilt sensors.

Guido [157]
(2005)

It is a machine with the height of around one meter. This robot basically aids for
walking and navigation. Force, local positioning, and laser sensor.

HOMIE [158]
(2005)

This robot is a dog-like robot which was designed to give company to the elderly
people. It can show some emotions and also, provide entertainment and medical
attendance services.

Microphone, pressure,
and motion sensors.

Wakamaru
[159] (2006)

It is a human-like robot where the head of the robot can perform some facial
expressions. The functions of the robot include security, managing schedules,
information service, face recognition, conversation, medication reminder, and
reporting unusual situations.

Camera, ultrasonic, bumper, microphone,
and step detection sensors.

IRobiQ [160]
(2010)

It is human-like Korean robot with a static face. The height of the robot is
approximately 0.3 m. The robot helps the users with medication reminders,
cognitive training, entertainment, telepresence communication, and vital signs
monitoring.

Touch screen, microphone, infrared
sensor, ultrasonic, and camera sensors.

Ifbot [161]
(2004)

It is human-like robot with a static face and height of approximately 0.3 m.
The robot was designed for entertainment purposes, cognitive training, and basic
health monitoring.

Ultrasonic, infrared, camera, microphone,
touch, and shock sensors.

Teddy [162]
(2011)

It is a bear-like companion robot which can show different kinds of emotions via
facial expressions. Touch, microphone, and camera sensors.

Huggable [163]
(2006)

It is bear-like companion robot that shows some facial expressions. The simple
robot can give and receive hugs. To create a sensitive skin of the robot, more than
1000 touch sensors are underneath the skin of the robot.

Cameras, touch, force,
and micophone sensors.

iCat [164] (2018) It is cat-like companion robot with some facial expressions. The height of the robot
is approximately 0.4 m. Camera, microphone, and touch sensors.

3. Future Direction and Vision

It has been observed during the review that none of the reported works provide solutions to
all the areas of ambient assisted living systems that are discussed. In many works, it is assumed
that the approach is designed based on the belief that the inhabitants’ behavior is consistent every
day, with the possibility of following a broad pattern. Most of the behavior models are produced
based on deterministic models. The entertainment needs of elderly people have been mostly ignored.
Entertainment in their daily lives should boost their lifestyles and help them enjoy their lives more.
Multimedia-enabled entertainment techniques can contribute to effective treatment policy for elderly
persons with memory problems. However, more rigorous study is necessary to obtain a scientific
conclusion with proof. Considering the perspectives of elderly persons and caregivers, studies of this
kind can help identify requirements for elderly entertainment support systems, which is challenging.

Among the many challenges that are encountered in implementing elderly assistance technology
in the home, one key challenge is related to the continuous observation of the vital signs and behaviors
of elderly subjects through non-wearable ambient sensors. The challenge is related to important
factors such as durability, acceptability, communication, and power requirements of the sensors that
are installed in the smart homes. For instance, such devices should not only provide vital signs
measurements, but also deliver an assessment of the subject’s condition that is clinically correct.
The sensors also should be versatile in design, with minimum weight and skin effects. The adaptability
of different system components, such as communication protocols and subject interaction methods,
can also be considered an important factor for ambient assistive living systems. Analyzing such factors
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should help system designers provide the necessary sensors and devices based on the requirements of
elderly persons.

Ambient sensors such as a magnetic switch, temperature, photo, pressure, water, infrared
motion, force, smoke, Doppler radar, wireless surveillance camera, and sound sensors are basically
installed in several places in a smart home to acquire user data and send it to the base machine
using wireless communication for further processing. The machine then typically processes the
data via feature extraction and machine learning to decide the status of the user. The camera-based
research works that are reported here mostly discussed the features and machine learning techniques,
rather than the connectivity of the cameras. However, the depth cameras are usually connected to
a machine via a wired connection to simultaneously capture the color and depth information of the
user’s environment.

Beyond the works that have been reported in this review, other recently-developed sensors can
be investigated for more efficient eldercare. One of the prominent candidates in this regard is the
Xethru® ultra-wideband radar sensors (Novelda, Oslo, Norway) for the real-time occupancy, sleep,
and respiration monitoring of the elderly [165]. The radar in Xethru® is a complete complementary
metal–oxide–semiconductor (CMOS) radar system integrated on a single chip that is used to implement
a high-precision electromagnetic sensor. The sensor can be very useful for various practical applications
such as vital sign monitoring of elderly, personal security, environmental monitoring, industrial or
home automation. Besides, the non-intrusive Xethru® sensors can be adopted to collect relevant
data while preserving the privacy of the user. Hence, they can contribute to improve the quality of
life, personal comfort, and safety. The technology in these sensors combine the traditional sensor
functions into one such as detecting the occupancy, calculating distance, proximity, gestures. Besides,
the electromagnetic radar signals can be further explored to go through different materials such
as wall to perceive the presence in next room. Hence, Xethru® sensors seem to be very prominent
future ambient sensors to monitor users including elderly in smart homes. Besides ultra-wideband
Xethru® radar sensors, WiFi signal-based ambient devices can also be explored for elderly healthcare.
For instance, in [166], the authors proposed a WiFi signal-based respiration monitoring ambient device
where the device was installed in a bedroom to monitor a person’s sleep.

Big data seems to transform smart homes and ambient assisted living services, especially from
managerial and economic aspects. Smart healthcare projects often try to utilize consumer targeted
technology. The technology includes a set of sensors and devices for monitoring the users and
prediction of problems related to emergency cases. At the same time, the volumes of sensor data
rapidly grow which makes the data more complicated and difficult to manage. Big data from ambient
sensors rise to four key challenges [167]. Firstly, the accuracy of technologies to capture, store, distribute,
and manage the information collected. Secondly, the accessibility to the large volume of data. Thirdly,
managerial issues when individuals in the system change their roles. Finally, economic issues to be
handled due to changes in the policies and principles of healthcare systems.

Regarding commercial implementation of sensor-based assisted living technologies, there can
be many hurdles, especially for the elderly people who have dementia or Alzheimer’s disease.
In addition, there is a lack of suitable outcomes to validate the installation, management, and delivery of
technological solutions to meet specific needs. Insufficient experience with smart healthcare initiatives
has demonstrated that pilot projects do not always lead to an extensive scale of technology applications.
Thus, there are commercial concerns for providing smart home solutions, especially for people who
need special assistance [168].

Elderly people are generally aware of privacy risks and possible intrusion. Acceptance of sensors
such as video cameras may be challenging, as cameras can easily be perceived as intrusive by the
elderly. Most researchers of elderly care in smart homes assume that users would accept the machine in
the way that it is designed. With limited literature on acceptance by monitored subjects, the assumption
of sensor acceptance by the elderly has not been well investigated.
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Acceptability is culture-dependent and will differ from one society to another. A very important
challenge for smart home system designers and developers is identifying the degree of user acceptance.
In addition, there is commercial concern regarding smart home solutions for individuals with
special needs.

4. Conclusions

This survey of ambient assisted living works has been carried out with the aim of supporting
the elderly in living independent lives, mostly based on ambient sensors. It could also be helpful in
supporting caregivers, friends, and family and in avoiding unexpected harm to the elderly. By far,
the sensor-based surveys have majorly focused on wearable sensors alone or wearable sensors in
combination with ambient sensors for the elderly. One major disadvantage of using wearable sensors
is that they can generate uncomfortable feelings during extended wearing on the body, which results
in a high risk of rejection by the elderly, especially at home. In contrast, ambient sensors are free
from this drawback, which results in high acceptance by the elderly if they can provide reliable data.
Hence, this survey has been performed by focusing on research works that are based on using ambient
sensors for monitoring the health or behaviors of the users, especially the elderly. Findings from
this survey also indicate that most of the frameworks on ambient assistive living primarily focus on
monitoring basic daily activities and falls, while mostly overlooking the opportunities of long-term
care. The potential for non-intrusive ambient sensors in elderly care is yet to be fully appreciated.
Developments in low-cost embedded computing and miniaturization of electronic devices have
significant potential for remarkable future advancements in the area. Future elderly care systems can
also consider issues such as vital sign (e.g., heart rate and respiration) monitoring using different
non-intrusive ambient sensors (e.g., ultra-wideband radar and WiFi-based sensors), providing privacy
and security.
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