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Abstract: Unmanned aerial vehicles (UAVs) or drones are increasingly used in cities to provide
service tasks that are too dangerous, expensive or difficult for human beings. Drones are also used
in cases where a task can be performed more economically and or more efficiently than if done by
humans. These include remote sensing tasks where drones can be required to form coalitions by
pooling their resources to meet the service requirements at different locations of interest in a city.
During such coalition formation, finding the shortest path from a source to a location of interest is key
to efficient service delivery. For fixed-wing UAVs, Dubins curves can be applied to find the shortest
flight path. When a UAV flies to a location of interest, the angle or orientation of the UAV upon its
arrival is often not important. In such a case, a simplified version of the Dubins curve consisting of
two instead of three parts can be used. This paper proposes a novel model for UAV coalition and
an algorithm derived from basic geometry that generates a path derived from the original Dubins
curve for application in remote sensing missions of fixed-wing UAVs. The algorithm is tested by
incorporating it into three cooperative coalition formation algorithms. The performance of the model
is evaluated by varying the number of types of resources and the sensor ranges of the UAVs to reveal
the relevance and practicality of the proposed model.

Keywords: smart cities; Internet-of-Things; multi-drone task allocation; unmanned aerial vehicles;
path planning; Dubins curves; particle swarm optimization

1. Introduction

Drone technology has recently moved from a niche area mainly controlled by the American
Department of Defense into a technology that can be accessed off-the-shelf for different purposes and
tasks. Presently, drones are increasingly used for tasks that are either too dangerous, expensive or difficult
for human beings [1]. Drones are also used in cases where a task can be performed more economically
or more efficiently than if done by humans. Target search is a common application widely used in
missions involving rescue [2,3], monitoring [4,5] or destruction [6,7]. Area coverage is also a popular
application for multiple purposes, which include environment mapping [8,9], surveillance [4,10–14],
sensor deployment [15,16], aerobiological sampling [17] or acting as communications hubs for immobile
wireless sensor networks [15,18]. UAVs can also be used to provide data muling services in applications
such as smart parking [19,20] and drought mitigation [21]. Other applications include fire detection,
weather forecasting, space exploration, traffic surveillance, environmental clean-up, agricultural
monitoring and interior surveillance of buildings. New and unforeseen applications also continue
to surface. In Israel and Australia, UAVs are being used to search for groundwater. More recently,
commercial applications using drones have emerged in niche areas where these vehicles have been
found much more practical and more economically sound than traditional applications. These include
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cases where drones are being used commercially: (1) as marketing gimmicks, (2) to deliver pizza
by Domino’s pizza in the U.S., (3) to deliver flowers on Valentine’s Day and (4) to deliver beer
during a festival. Drones equipped with cameras have been deployed to help combat the scourge of
rhino-poaching on game farms in Africa, while the Australian defense force has started using UAVs to
monitor its vast coastline. Facebook and Google have recently acquired aerospace companies Ascenta
and Titan Aerospace, respectively, and are investing in drones for supplying remote areas on Earth
with broadband and Internet connectivity. It is envisaged that their solar-powered drones will be
capable of staying in the air for months and beam WiFi signals to inaccessible areas of the world.
In 2014, Alec Momont, in the Netherlands, developed an ambulance drone that delivers an automatic
external defibrillator to patients via air, much faster than a standard ambulance [22]. This invention
could bring relief to many of the approximately 360,000 patients who experienced cardiac arrest in the
United States last year. These applications along with the potential for drones to deliver life-saving
medicines and supplies to isolated communities in rural and disaster zones when overland access is not
an option make the multi-drone task allocation an interesting research area that may benefit both urban
and rural areas of the world. The use of a team of drones instead of a single drone is possible when the
mission to be performed can be decomposed into independent tasks, i.e., the mission ‘is inherently
distributed in terms of space, time and functionality’ [23]. However, path finding and resources
allocation, both aerial and ground-based, are two key challenging issues that need to be addressed in
order to provide a team of drones with the necessary autonomy to achieve a task cooperatively.

1.1. Related Work

In [24], Dubins presented a solution for the shortest path between two positions given a car’s
direction or heading at both positions. His solution consists of all combinations of arcs of minimal
turning radius of the car and a straight line segment joining the two arcs. The shortest path solution
provided by Reeds and Shepp in [25] included both forward and backward movement of the vehicle.
In [26], Kavraki et al. constructed a probabilistic road map of all feasible paths between the source
and target, and the path with the lowest cost was then selected as a solution. In [27], a swarm of
UAVs with airborne sensors cooperated in path planning by using Dubins curves in conjunction
with splinegons, which are generalizations of polygons with sides of constant curvature, to detect
the boundaries of contaminant clouds in order to model and track their movement. In [28], a path
generator was proposed that finds the shortest path for a fixed-wing UAV from its current position
and direction of flight to a new position and direction. The generated path was traversed using
their Lyapunov path-following scheme. In [29], a path planning approach for mobile robots was
modeled as an optimization problem with the objective of achieving a smooth path linking several
waypoints by using fifth order Bézier curves. In [30], a path planning model was proposed for
many UAVs to cooperatively collect data at different locations. A particle swarm optimization (PSO)
based distributed coalition auction algorithm for real-time task assignment that uses a dynamic
bidding strategy to address target assignment conflicts between UAVs, which resulted in shorter
mission completion times, while still maintaining a high mission completion rate, was proposed
in [31] by Lin et al. In [32], Fargeas et al. used a heuristic algorithm to plan the paths of a team of
UAVs patrolling a network of roads and pursuing intruders detected by unattended ground sensors
where UAV paths were scheduled using revisit deadlines that resulted in most of the intruders
being identified. In [33], Kwok et al. used PSO to determine drive commands, speed and turning,
to coordinate the motion of construction vehicles for task assignment by minimizing the distance
and difference in orientation between the current positions of the vehicles and the positions of the
targets. Collisions between vehicles were avoided using a behavioral-based reactive approach in
conjunction with a dynamical indexing schedule that reduced dead-lock events. Bellingham et al.
in [34] solved large problems involving many obstacles and waypoints by partially decoupling the task
allocation and trajectory design aspects of the fleet coordination problem. Completion times for the
various allocation scenarios were efficiently estimated and then passed on to the allocation problem
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that was solved using mixed-integer linear programming. In [35], Tong et al. successfully applied a
cooperative control strategy based on Voronoi diagrams and discrete PSO to cooperative-trajectory
planning problems with timing constraints. Path planning and task allocation are crucial aspects in the
application of a fleet of UAVs to remote sensing. UAVs collecting data directly from targets close to each
other often result in non-optimal flight paths due to the limitation of a UAV’s minimum turning radius.
In [36], a UAV path planner was presented that collected sensing data using a minimal distance by
exploiting the sensor footprint and by pruning a tree of feasible paths, which was based on the learning
real-time A* search algorithm. Road network search was defined as a graph in [37] and first solved as a
Chinese postman problem and then modified to address the physical constraints of UAVs before using
a multiple multidimensional knapsack in conjunction with Dubins paths to find the shortest flight
path. In [38], task allocation was decentralized, and three complementary algorithms based on swarm
intelligence and multi-agent systems were presented, which outperformed current approaches. In [39],
a UAV’s flight path was adapted based on fluctuations detected for several performance parameters,
and the path planner calculated an optimal flight path by considering: avoidance of obstacles using a
probabilistic risk model, the limitation of the maneuverability of a UAV and the velocity and flight
time to a target.

1.2. Contributions and Outline

This paper proposes a collaborative strategy and mechanisms to control multiple UAVs and
sensor networks with the objective of surveillance and achieving remote sensing in a city. A potential
deployment scenario for the model presented in this paper consists of remote sensing in a city where
different environment parameters need to be collected by a team of drones at separate locations of
interest. The environment sensing parameters may differ from location to location, and different
drones can be equipped with different sensing resources, thus leading to a model where drones need
to form coalitions in order to meet the sensing requirements of different locations. The remote sensing
services may consist, for example, of (i) pollution monitoring of different pollutants to be measured
at different locations of the city and (ii) visual sensing by a number of drones coming from different
angles to capture a view of a scene of a given location as depicted in Figure 1. In this scenario example,
the pollution monitoring parameters and visual information captured at different locations will be
ferried to a processing place where the different portions of the scene are stitched together to reproduce
the whole scene of the location, and levels of pollution are evaluated at the location using machine
learning techniques.

Figure 1. Visual sensing and pollution monitoring scenario.

The main contributions of this paper include:

1. An algorithm to calculate the Dubins longest path using elementary geometry is presented.
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2. For successful collection of environment parameters from various locations, agents need to have
sufficient storage capacity that can accommodate all the parameters. Agents in the experiments in
this paper are equipped with sufficient storage capacity that can accommodate all the environment
parameters collected from the various locations.

3. The effect of the increase of the number of types of environment parameters on the performance
of the algorithms is investigated.

4. The effect of the increase of the sensor range on the performance of the algorithms and mission
completion time are also investigated.

5. The energy gain of the proposed approach in (2) is quantified.

This paper borrows from Manathara et al. in [40] the three coalition formation algorithms,
but uses a different model where the mission completion time is used as cost for minimization,
while Manathara et al. used total coalition path length as the cost. In addition, the model introduced
in this paper uses agents that were initialized with sufficient resources that met all the targets’
resource requirements, would lead to complete prosecution of all the targets. The path generation was
introduced in [41].

The remainder of this paper is organized as follows. The coalesced city’s remote sensing model is
described in Section 2. Section 3 describes the problem statement and algorithms used in this paper.
The approach to calculate the Dubins longest path is described in Section 4. Experiments and results
are reported in Section 5. The paper is concluded in Section 6.

2. The Coalesced City’s Remote Sensing Model

2.1. Model Formulation

Let us consider a hybrid sensor network represented by a directed graph G = (N ,L,S ,Q),
where N is the set of cluster sensor nodes, L is the set of locations of interest in a given region, S is
the set of the UAV base stations, while Q is the set of UAVs. Consider the case where each location
has to be visited only once by a set of UAVs at time r(i) and a set of UAVs forming a coalition Coal(i)
spend an amount of time t(i) to arrive at the location i with a risk ε(i) of arriving earlier than planned
or after the expected arrival time. Assume that D(G) = {Dn} is the set of the city’s remote sensing
configurations associated with the hybrid network G.

2.2. The City’s Remote Sensing Problem

The coalesced city’s remote sensing task is based on some rules, which can be expressed in terms
of constraints and/or objectives to be met by the coalition of UAVs and resources needed at the specific
locations. These rules are described as follows:

• Visiting time at locations: An early visit to a location will be penalized, and a late visit to a
location is also penalized. Therefore, a visit by a UAV k(i) ∈ Q, which is part of a coalition Coal(i)
at location i, will be constrained by:

0 ≤ r(i)− t(i, k(i)) < T1, ∀ k(i) ∈ Coal(i)i and (1)

T2 < r(i)− t(i, k(i)) < 0, ∀ k(i) ∈ Coal(i), (2)

where t(i, k(i)) is the time taken by UAV k(i) to arrive at location i. T1 and T2 are the allowed
early and late thresholds, respectively. The model considers that there is a penalty assigned to the
UAV if it arrives early t(k(i)) < r(i) and late t(k(i)) > r(i).

• Resource requirements at locations: The sum of resources required by a UAV coalition at location
i is constrained by:

∑
i∈Coal(i)

Rc
src(k(i)) ≥ Rc

eq(i), ∀ c ∈ {1, 2, . . . , C}, (3)
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where Rc
src(k(i)) is the resource of type c carried by UAV k and C the total number of resources at

the location of interest.
• UAV teams’ coalition: A data collection model is proposed where a coalition of UAVs Coal(i)

collects data at a given location i. Each network configuration Dn is defined by a partition of the
set of UAVs Q and made up of a set of UAV coalitions at different locations as expressed by:

⋃
i∈L

Coal(i) = Q and

| Coal(i) |= ∑
k∈Q

y(i, k(i)),

where | Coal(i) | is the size of a coalition at node i and y(i, k(i)) defined by:

y(i, k(i)) =

{
1, if k(i) ∈ Coal(i),
0, otherwise.

(4)

This coalition process is constrained by the fact that each UAV can be either part of only one
coalition as expressed by:

Coal(i) ∩ Coal(j) = ∅, ∀ i, j ∈ L, (5)

or of more than one coalition if it has enough resources as expressed by:

Coal(i) ∩ Coal(j) 6= ∅, if Rsrc(k(i)) ≥ Req(i ∪ j). (6)

• The city’s remote sensing problem consists of finding a cost-efficient city remote sensing
configuration Dce f , such that:

τ̂cst(Dce f ) = min
Dn∈D(G)

τcst(Dn), (7)

= min
Dn∈D(G)

∑
i∈L

y(i, k(i))( max
Coal(i)∈Dn

Dist(k(i))), ∀ k(i) ∈ Coal ,

subject to the constraints:

0 ≤ r(i)− t(i, k(i)) < T1, ∀ k(i) ∈ Coal(i) (8)

T2 < r(i)− t(i, k(i)) < 0, ∀ k(i) ∈ Coal(i) (9)

k ∈ Coal(i) ∩ Coal(j) if Rsrc(k(i)) ≥ Req(i ∪ j) (10)⋃
i∈L

Coal(i) = Dce f (11)

∑
i∈Coal(i)

Rc
src(k(i)) ≥ Rc

eq(i), ∀ c ∈ {1, 2, ..., C} (12)

y(i, k(i)) =

{
1, if k(i) ∈ Coal(i),
0, otherwise,

(13)

Req(i) = ∑
s∈S

Req(k(i), s), (14)

where Dist(k(i), i) is the distance covered by UAV k(i) when forming part of coalition Coal(i) to
reach location i. Note that the constraints (8) and (9) are timing constraints defining respectively
the arrival requirements at location i and the city’s remote sensing scheduling at the same location.
Equations (10)–(13) are resource allocation constraints. Note also that the constraints (10), (11)
express the fact that one UAV can participate in different coalitions if it has remaining resources



Sensors 2018, 18, 2184 6 of 25

after a first coalition. These constraints could be relaxed to restrict a UAV to participate in only
one coalition as expressed by:

k ∈ Coal(i) ∩ Coal(j) if Rsrc(k(i)) ≥ Req(i ∪ j) (15)⋃
i∈L

Coal(i) = Dce f (16)

2.3. The City’s Remote Sensing Process

At the start of the process, the positions of the locations of interest and the resources on-board the
UAVs are provided. The solution presented in Figure 2 consists of two steps,

1. Resource allocation or coalition formation:
Each UAV may contain three types of resources, i.e., a pollutant sensor, a camera and on-board
storage. If all the targets or locations of interest have been visited, then execution details, such as
the coalition and mission times, are reported, otherwise proceed and find any of the remaining
locations of interest. If the combined resources of the available UAVs that are not assigned
to coalitions fulfil the resource requirement of the location of interest, then proceed to form a
coalition of minimal distance each time, by including from the available UAVs the one closest to
the location of interest in the potential coalition until the resource requirement of the location of
interest is met.

2. Path planning:
Once a coalition is formed, the radii of the coalition members are increased to ensure that their
Dubins distances are all equal to that of the UAV furthest from the location of interest under
consideration. The coalition members proceed to fly to the location of interest. After collecting
the sensor data at the location of interest, the UAVs become available to form further coalitions
should they have any resources remaining.

(coalition formation)

Resource allocation

Path planning

Can
coalition be 

formed based on 
available
UAVs?

Determine

minimal distance
coalition of

and minimal size

Increase radii of
UAVs for

simultaneous
arrival at target

UAVs and targets

Position and 
resources of

Input

No

No

Any targets
remaining?

Find a target

Yes

Yes

mission time
coalition time

Report:

Output

Figure 2. Diagram depicting solution steps.
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3. Problem Statement and Algorithms

A number of fixed-wing UAVs are required to collect different types of environment parameters
from various locations. Each location may contain different amounts of each of the different types of
environment parameters. Each UAV is capable of storing each type of environment parameter, but in
different quantities. For example, a UAV may contain a sensor to detect the levels of pollutants such as
CO2 or NH3, a camera with picture quality ranging from 8–16 megapixels (MP) and on-board storage
ranging from 500 megabytes (MB) to two gigabytes (GB). See the illustration in Figure 1. The UAVs do
not know the positions of the locations of interest and fly in search of it and can only detect a location’s
position once it is within the UAVs’ sensor range. All UAVs can communicate with each other. Once the
position of a location of interest is detected, a single-member coalition or multiple-member coalition
can potentially be formed to collect the environment data using Dubins longest path. After collecting
the data at a location, the UAVs that formed part of the coalition are released and continue to search
for positions of the remaining locations of interest and may participate in further coalitions if they
have any data storage space available. The objective of coalition formation is to complete a mission
in minimum time, by forming a coalition for each location of interest that (a) reaches the position of
a location in minimum time, (b) uses a minimum number of UAVs and (c) collects the environment
data simultaneously.

In [40], the combined resources of all UAVs may not be sufficient to prosecute all the targets.
This will be the case if for each resource type, the sum of the quantities of the resource under
consideration of all UAVs is not equal to, or does not exceed, the sum of the quantities of the same type
of resource of all the targets. No test is performed initially to check whether the combined resources of
all UAVs are sufficient to prosecute all the targets. Instead of initiating a mission that may not end
in success, one can establish if the combined storage capacity of all UAVs in a mission is adequate to
accommodate the environment data of all locations of interest before commencing a mission. For the
data used in the experiments reported in this paper, it was ensured that the combined storage capacity
of all the UAVs was sufficient to accommodate the environment data at all locations of interest.

Further, in Manathara et al.’s paper, the positions of the fixed position targets were also not
known in the polynomial time coalition formation algorithm (PTCFA) and optimal coalition formation
algorithm (OCFA). If the targets are dynamic and moving all the time, one could understand the
need for searching for them. However, if the targets are fixed and static, then the actual positions
of the targets can be communicated to the UAVs at the start of the mission. This is a more realistic
representation of problems that involve targets at fixed positions. The PTCFA and OCFA solutions
proposed by Manathara et al., where targets are searched for, can easily be remodeled as a solution
where the positions of the targets are known to the UAVs at the start of the execution of the algorithm
by ensuring that the sensor range is large enough to cover the entire fly zone. The length of the
diagonal of the square search area with each side 1000 m long is 1414 m. Fitting the UAVs with sensors
that have a sensor range of 1500 m will ensure that the entire search area is covered and that all targets
or the positions of environment data locations are detectable by the UAV sensors when the coalition
formation algorithm is executed.

In [40], the mission completion time is minimized by selecting coalition paths of minimal length
to each target using a coalition of minimal size. Manathara et al. described the Dubins longest path
using three angles, θ1, θ2, θ3, and the radius, as indicated in Section 4. The θ’s are computed using
the initial position of the UAV, the position of the target and the initial direction of flight of the UAV.
Finding accurate values for θ3 may pose a problem as indicated in Section 4, and a different and more
robust approach is adopted in this paper to calculate the Dubins longest path based on the following
four attributes, (1) the initial position of the UAV, (2) the size of the angle traversed during the circular
path, (3) the exit point where the UAV leaves the circular path and (4) the incoming angle of the UAV
when approaching the target.

Coalition formation is considered using three approaches as described below.
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The Dubins longest path was included in three algorithms developed by Manathara et al. as
described in [40]. The algorithms are:

1. polynomial time coalition formation algorithm (PTCFA),
2. optimal coalition formation algorithm (OCFA) and
3. particle swarm optimization (PSO).

In all three algorithms, it is assumed that all UAVs fly at a constant speed and at a constant
altitude. A short description of each algorithm appears below.

3.1. PTCFA

The PTCFA consists of two parts. First, each UAV is in search of a target and is equipped with
a sensor with limited range capability. As soon as a target is detected, its position and resource
requirements are communicated to all UAVs. The UAV that detects the target is referred to as the
coalition leader. All UAVs that are not in a coalition and that contain any of the resources required by
the target calculate their estimated time of arrival (ETA) or cost and communicate this information
together with the amount of resources on board the UAV to the coalition leader. The coalition leader
sorts the ETAs received from all responding UAVs in ascending order and then adds the UAV closest
to the target to the potential coalition and accumulates its resources. If the accumulated resources do
not meet the target’s resource requirements, then the next closest UAV is also included in the coalition
and its resources accumulated, as well. This process of adding a UAV with the next smallest ETA to the
potential coalition continues until the resources accrued satisfy the resource requirements of the target.
In the second part of the PTCFA, the coalition leader sorts the ETAs of the UAVs in the potential coalition
in ascending order. Again starting with the UAV closest to the target, the coalition leader removes the
resources of this UAV from the resources accumulated. If the remaining accumulated resources after
removal still satisfy the target’s resource requirements, then the UAV under consideration is removed
from the potential coalition; otherwise, its resources are added back to the accumulated resources.
The UAV removed is redundant since its resources are not required for prosecution. The removal
from the coalition of the next closest UAV is then considered. This process ends after all UAVs in the
coalition have been considered for removal. The coalition leader then informs all remaining coalition
members of (a) their inclusion in the coalition and (b) the ETA of the UAV furthest from the target.
Coalition members then calculate revised radii that increase their ETAs at the target to match the ETA
of the UAV furthest from the target.

3.2. OCFA

The first part of the OCFA is the same as the first part of the PTCFA. In the second part, the size
of the coalition is minimized using mixed integer linear programming such as MATLAB’s bintprog.
The coalition leader then informs all coalition members of (a) their inclusion in the coalition and
(b) the ETA at the target of the UAV furthest from the target. Coalition members then increase their
radii appropriately so that their distances to the target match that of the UAV furthest from the target.

3.3. PSO

Particle swarm optimization (PSO) has been used in [40] to select an optimal set of UAVs for
a single known target, given a set of UAVs and their resources. PSO is a nature-based stochastic
optimization algorithm that emulates the swarm behaviors of bird flocks [42]. PSO searches for
an optimum solution by merely drawing the position of each particle in the swarm toward its
own historical best position and toward the position of the historical best particle in a defined
neighborhood [43]. The position and velocity of each particle are updated over time. Each particle
in the swarm is N ×M-dimensional, where M denotes the number of targets and N the number of
UAVs. Each particle is a potential solution to the optimization problem. The position vector of a
particle is constructed as follows. For each UAV, there is an M-dimensional vector where each element
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stores the preferred target to be visited by the UAV, e.g., vector (5,3,2,1) indicates the preference of
the UAV to visit targets in the order 5, 3, 2 and 1. The N vectors, each of dimension M, of the UAVs
are concatenated to form an N ×M position vector. The position vector of each particle contains the
preferences of all N UAVs in visiting the various targets. Each value in the position vector of a particle
indicates the target to be visited and potentially prosecuted by a specific UAV, e.g., if element (2,3) in
the position vector has a value of four, then it indicates that UAV Number 2 prefers Target Number
4 to be visited during the third sequence. To check whether a particle can successfully prosecute a
target, say Target 4, during Sequence 2, proceed by identifying all UAVs that containing a value of
four as their second vector element. All the UAVs identified form a potential coalition to prosecute
Target 4. Next, accumulate the resources of all the UAVs in the potential coalition, i.e., the UAVs that
prefer Target 4. If the combined resources of all the UAVs in the potential coalition satisfy the resource
requirements of Target 4, then a coalition is possible, and the coalition time is calculated as the time
taken by the UAV with the largest ETA to reach the target. If all targets can be prosecuted by a particle,
then the sum of the coalition distances of all coalitions will be returned as the cost of the prosecution by
the particle. A fitness function evaluates the cost of a particle. The cost of a successful mission is simply
the sum of the coalition time required to prosecute each target. If all targets are not prosecuted by a
particle, then a large cost, say infinity, is assigned as the particle’s fitness value. For more details of the
fitness function, refer to [40]. To kick start the process, the position vector of the swarm is initialized
to random values in the range [0, M], where zero indicates a search and a non-zero integer of the
prospective target to be prosecuted; targets being numbered from 1–M. The PSO process ensures that
the position vector yielding the best fitness and thus lowest coalition time is returned as the minimum
or optimal value.

In the experiments reported in this paper, the resources referred to in Manathara et al. were
replaced with environment data and the targets with locations of interest from whence environment
data must be collected.

The next section discusses the Dubins longest path.

4. Calculating the Dubins Longest Path

Dubins curves can be used to calculate the shortest path to a target for a fixed-wing UAV. A Dubins
curve consists of all combinations of arcs of minimal turning radius and a straight line segment that
joins the two arcs. Six possible configurations were considered, namely LSL, LSR, RSL, RSR, RLR and
LRL, where L and R represent a left and right turn, respectively, and S a straight line segment. In many
search missions, fixed-wing UAVs are required only to fly a circular path followed by a straight line
path to reach a target. No second arc is required. Hence, the original Dubins curves that consist of
three components can be reduced to a curve with two components, in which case only two possible
cases need to be considered, i.e., LS and RS.

Given a drone’s current position and a target, two types of Dubins paths can be traversed to reach
the target, i.e., the Dubins shortest path (DSP) and Dubins longest path (DLP) (Figure 3a). A target
may lie either to the left or to the right of the straight line path of a UAV. In the case of DSP, the UAV
performs a turn in the same direction as the direction of the target relative to the UAV’s straight line
path of flight. In the case of DLP, the UAV turns in the opposite direction of the direction of the target
relative to a UAV’s position.

When the distance between the UAV and the target is smaller than the minimum turning radius
of the UAV, then the Dubins shortest path cannot reach the target, as shown in Figure 3b. In this case,
the UAV will simply circle around the target, never reaching it.

With the Dubins longest path, this problem does not exist, since the target is always reachable,
irrespective of how close a target is to the UAV, as shown in Figure 3b.

To calculate the distance of the Dubins longest path, the following two cases are considered,

1. the target lies to the right of the straight line path of the UAV or
2. the target lies to the left of the straight line path of the UAV.
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In Case (1), the UAV has to turn left or counterclockwise, while in Case (2) the UAV has to turn
right or clockwise to reach the target.

(a) (b)

Figure 3. (a) Dubins shortest and longest paths (DSP and DLP, respectively) where the target lies to the
left of the path of the drone; (b) DSP and DLP where the target lies to the right of the path of the drone.

In ‘Multiple UAV Coalitions for a Search and Prosecute Mission’ by Manathara et al., the estimated
time of arrival of a UAV reaching its target based on the Dubins longest path for the two cases was
defined in terms of three angles θ1, θ2 and θ3 (see Figure 4), where θ1 denotes the angle between the line
that joins the center of the circle with the target and the line that joins the center of the circle with the
exit point of the UAV from the arc, θ2 denotes the angle between the line that joins the initial position
of the UAV with the center of the circle and the positive x-axis, measured in a positive direction,
i.e., anti-clockwise, while θ3 denotes the angle between the line that joins the center of the circle with
the target and the positive x-axis measured in a positive direction.

Figure 4. Dubins longest path.

The angles are given by:

θ1 = arccos(

√
(xt − xc)2 + (yt − yc)2

r
), (17)

θ2 =
π

2
− α, and (18)

θ3 = arctan(
yt − yc

xt − xc
). (19)
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In Case (1), the estimated time of arrival (ETA) was defined as,

D =
r(2π − (θ1 − (θ2 − θ3))) + r tan θ2

vi
, (20)

and in Case (2),

D =
r(2π − (θ1 − (π − θ3)− θ2)) + r tan θ2

vi
, (21)

where vi is the ground speed, (xc, yc) is the center of the arc traversed by the UAV, (xt, yt) is the position
of the target and α the angle of direction of flight of the UAV measured from the positive x-axis.

Calculating the Dubins longest path using Equations (10) and (11) may pose a problem in certain
cases, as reflected in Figure 5.

Figure 5. Calculating θ’s based on Manathara et al.

Substituting the radius of the arc, the coordinates of the target’s position, the center of the arc and
the angle of the flight of the UAV in Equations (7)–(18) yield values for θ1, θ2 and θ3 as 67.92◦, −120.0◦

and −45.65◦, respectively, while values computed using the mathematical tool Geogebra for θ1, θ2 and
θ3 are 67.92◦, 239.99◦ and 225.35◦, respectively. This discrepancy resulted in an alternative approach to
be explored to determine the Dubins longest path.

An alternative approach to calculate the Dubins longest path is proposed next. If the UAV’s
initial position, (xi, yi), the angle of flight of the UAV, α, the target’s position (xt, yt) and the minimum
turning radius of the UAV, rmin, are provided, then the distance of the circular path and the straight
line path of Dubins longest path can be calculated based on the following data:

• center of the circular path formed when the UAV turns,
• the exit point of the UAV from the circular path,
• the central angle traversed by the UAV while turning and
• the angle of the direction of flight of the UAV when approaching the target along the straight

line path.

The distance of the Dubins longest path is then simply computed as the distance traversed along
the arc plus the distance covered by the straight line path that joins the exit point on the arc with the
target, as shown in Equation (38). In the next section, each of the data values referred to above will
be calculated.
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4.1. Calculating the Coordinates of the Center of the Circle

The center of the circle is calculated for each of the two cases referred to above.
If the target lies to the right of the straight line path of the UAV, then the center of the circle, (xc, yc)

is calculated as follows,
In triangle CDI , in Figure 6,

xi − xc

r
= sin α2 and

xc = xi − r · sin α2, (22)

and,

yc − yi
r

= cos α2 and

yc = yi + r · cos α2. (23)

When the target lies to the left of the straight line path of the UAV, then it can be shown that,

xc = xi + r · sin α and (24)

yc = yi − r · cos α, (25)

where r is the radius of the arc and α denotes the angle of the direction of the UAVs initial flight path.

(a) (b)

Figure 6. (a) Calculating the center of the circle when the target lies to the right of the path of the drone;
(b) Calculating the center of the circle given the initial position, angle of the drone and the radius.

4.2. Calculating the UAV’s Exit Point on the Arc

Let mk denote the gradient of line Lk in Figure 10, then:

m2 = tan α2. (26)

If line L2 is not parallel to the y-axis, then its equation is,

y = m2 · x + c2. (27)
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Since (xt, yt) lies on line L2, (xt, yt) can be substituted in Equation (27) to calculate the constant
c2, i.e.,

c2 = yt −m2 · xt. (28)

Equation (27) can now be written as,

y = m2 · x + (yt −m2 · xt). (29)

Since line L3 is perpendicular to line L2, this implies:

m3 ·m2 = −1, (30)

m3 =
−1
m2

= cot α2,

=
y− yc

x− xc
,

y− yc = m3 · (x− xc).

The equation of L3 is,

y = yc + m3 · (x− xc). (31)

The point of tangency is the intersection of lines L2 and L3 in Figure 10 and is calculated as,

(xp, yp) = (
yc −m3 · xc − c2

m2 −m3
, m2 · xp + c2). (32)

If line L2 is parallel to the y-axis, then line L3 (that is perpendicular to L2) is parallel to the x-axis;
their corresponding equations are,

L2 : x = xt,
L3 : y = yc

and the point of tangency is,

(xp, yp) = (xt, yc). (33)

Similarly, if line L2 is parallel to the x-axis, then line L3 is parallel to the y-axis; the corresponding
equations are,

L2 : y = yt,
L3 : x = xc

and the point of tangency is,

(xp, yp) = (xc, yt). (34)

The exit point of the UAV from the circular path is given by (xp, yp).

4.3. Calculating the Angle Traversed by the UAV While Turning

If L0 denotes the line that joins the UAV’s initial position (xi, yi) with the center of the circle
(xc, yc) and L3, the line that joins the exit position of the UAV on the arc (xp, yp) with the center of
the circle, then the angle traversed by the UAV is the angle measured from line L0 to line L3 in the
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same direction as that of the UAV’s circular direction of flight. In Figure 7, α0 and α3 denote the
angles formed between the x-axis and lines L0 and L3, respectively. The size of the angle traversed
by the UAV for the circular path is the angle ω measured from L0 to L3, as shown in the diagrams in
Figures 7 and 8.

(a) (b)

Figure 7. (a) UAV flies counterclockwise where α0 < α3; (b) UAV flies counterclockwise where α0 > α3.

(a) (b)

Figure 8. (a) UAV flies clockwise where α0 < α3; (b) UAV flies clockwise where α0 > α3.

The central angle is calculated as indicated in Algorithm 1.

Algorithm 1: Calculating the central angle, ω.
if (UAV turns left) then

if (α3 > α0) then
ω ← α3 − α0

else
ω ← 360◦ + (α3 − α0)

end if
else

if (UAV turns right) then
if (α0 > α3) then

ω ← α0 − α3
else

ω ← 360◦ + (α0 − α3)
end if

else
ω ← 0◦

end if
end if

4.4. Calculating the Incoming Angle of the UAV

In the case where the target lies to the right of the straight line path of the UAV and the UAV has
to turn anti-clockwise as reflected in Figure 9, let the new angle of the direction of the flight of the UAV
be denoted by α2. If α1 is the angle between the extended hypotenuse and the positive x-axis and β is
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the angle between the hypotenuse extended and the tangent to the circle at (xp, yp) extended, then α1

and β can be calculated as follows,

α1 = arctan 2(yt − yc; xt − xc), (35)

β = arcsin(
r√

(xt − xc)2 + ((yt − xc)2
), (36)

where arctan 2(·, ·) returns the angle measured between the positive x-axis and the line that joins the
two points (xt, yt) and (xc, yc). If the resulting value is negative, then simply add 360◦ to yield the
angle measured counterclockwise from the positive x-axis.

In Figures 9 and 10, L1 denotes the line that joins the center of the circle with the target, while L2

denotes the line that joins the UAVs exit point, after turning, with the target. L3 denotes the line that
joins the center of the circle with the exit point.

In Figure 9, where the target lies to the right of the straight line path of the UAV resulting in the
UAV turning left, the new incoming angle of the UAV is calculated as,

α2 = α1 + β. (37)

Figure 9. Target lies to the right of the UAV’s straight line path.

In the case where the target lies to the left of the straight line path of the UAV, as shown in
Figure 10, the new angle of the UAV, α2, is calculated as,

α2 = α1 − β. (38)

Figure 10. Target lies to the left of the UAV’s straight line path.
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Finally, the distance of the Dubins longest path, d, is the distance measured along the arc from the
UAV’s initial position to the exit point on the circular path, plus the distance of the straight line path
from the exit point to the target’s position, i.e.,

d = ω · rmin +
√
(xt − xp)2 + (yt − yp)2. (39)

This concludes the discussion on the calculation of the Dubins longest path based on
elementary geometry.

5. Experiments and Results

For each of the OCFA, PTCFA and PSO algorithms, 100 simulations were performed on a square
search area with sides of length 1000 m. To restrict the UAVs to the search area and to allow sufficient
space for turning around within the search area, a strip of width 100 m around the boundary of the
search area was deemed out of place for placing the data collection locations. Locations were randomly
placed at positions within the 800 m× 800 m area inside the search area. The UAVs were restricted to
flying inside this smaller area. The UAVs were also initially placed at random positions inside the fly
zone with an angle of direction of flight generated randomly. All UAVs had a minimum turning radius
of 50 m. A UAV that flies outside the fly zone will immediately turn around and can comfortably
return inside the 100-m strip without leaving the search space. All UAVs were flying at a constant
speed of 10 m/s. It is assumed that all UAVs fly at the same constant speed at the same altitude during
the entire mission and that each UAV can store three different types of environment data.

The quantity for each type of environment data at each location of interest was generated as a
random integer value in the range 0–3. The algorithmic parameters were set to the same values as in
Manathara et al.’s paper, except that the storage capacity for each type of environment data of the UAVs
was randomly generated with values ranging from 0 to the (number-of-locations-of-interest/2) and
stored only if, for each type of environment data, the total sum of storage capacity for that specific type
of data of all UAVs was equal to or greater than the total sum of quantities of the specific environment
data of all the locations. This was done to ensure that the combined storage capacity of all the UAVs
was sufficient to store all the environment data to be collected at the various locations.

In the simulations reported in this paper, the mission completion time, and not the coalition
path length, was used as the cost. Simulations were performed for each of 5, 10, 15 and 20 locations
of interest or targets with varying numbers of UAVs ranging from 5–20. The following values were
recorded: mission completion time, i.e., time taken from the start of a mission until all the environment
data of the last location were collected, total coalition time, i.e., the sum of the coalition time of all
locations, and simulation time, i.e., the time taken to complete a simulation from the time when the
UAVs were set in motion until the time when all the environment data of the last location of interest
were collected.

5.1. Comparing Simulation Times of Algorithms Whose Cost Is Based on Either Coalition Time or on
Mission Time

In [40], Manathara et al. used coalition time as the cost for minimization in their algorithms.
Results reported in this section are based on the algorithms using mission time instead, as the cost for
minimization. However, since coalition path length was key for the inclusion of a UAV in a potential
coalition in both PTCFA and OCFA, no differences were observed in the results when either coalition
time or mission time was considered as the cost in Table 1. However, a difference was observed
between the simulation times of PTCFA and OCFA for each of the two types of cost approaches. Of the
16 experiments conducted in the case of OCFA, only two cases with mission time as the cost produced
smaller simulation times. PTCFA with mission time as the cost achieved smaller simulation times than
PTCFA with coalition time as the cost in 11 of the 16 cases. PSO with mission time as the cost reflected
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smaller simulation times than PSO with coalition time as the cost in all cases, bearing in mind that
PSO takes the longest to execute of all three algorithms.

Table 1. Simulation times in milliseconds of the optimal coalition formation algorithm (OCFA),
the polynomial time coalition formation algorithm (PTCFA) and particle swarm optimization (PSO).

OCFA PTCFA PSO

No of
Targets

No of
UAVs

Based on
Coalition

Time

Based on
Mission Time

Based on
Coalition

Time

Based on
Mission Time

Based on
Coalition

Time

Based on
Mission Time

5 5 19.17 19.95 12.62 8.61 22,414.8 21,570.1
5 10 12.98 15.67 8.30 4.89 34,006.9 32,734.6
5 15 9.67 10.76 7.39 5.14 43,106.9 405,858.5
5 20 8.87 9.53 7.21 19.25 52,920.2 49,756.5

10 5 16.36 17.46 13.34 19.00 24,591.3 23,793.2
10 10 16.55 16.33 12.45 16.81 40,502.0 37,648.8
10 15 14.43 15.06 11.38 10.37 49,174.7 47,941.2
10 20 13.97 15.34 11.41 9.54 59,669.6 57,586.5

15 5 24.89 28.07 24.60 20.63 28,950.8 24,245.7
15 10 19.66 21.77 21.66 16.95 59,202.1 45,361.7
15 15 22.98 25.71 19.68 21.32 71,315.7 55,908.2
15 20 22.32 29.67 16.88 22.53 88,065.8 66,963.6

20 5 30.23 33.67 27.69 27.07 31,280.2 20,218.5
20 10 27.10 31.03 26.23 26.19 50,740.8 50,217.7
20 15 25.47 28.18 24.31 22.56 62,134.9 60,292.0
20 20 24.43 24.29 19.63 18.81 72,133.8 71,825.6

5.2. Effect of Increased Sensor Range

In [40], Manathara et al. compared the performances of PTCFA and OCFA with PSO. In their
paper, the positions of the targets were not known to the UAVs for both PTCFA and OCFA, while the
positions of the targets were known to the UAVs in PSO. In such a comparison, PSO has an unfair
advantage over both PTCFA and OCFA, since the latter two algorithms must first search and find a
target before they can form a coalition. Searching for a target consumes additional time, while PSO
does not spend any time in searching for the targets and can immediately proceed with coalition
formation, if the target’s resource requirements are met. A large sensor range that covers the entire
search area enables a UAV to detect the positions of all the targets or locations of interest. In the
second set of experiments, the sensor range of the UAVs was gradually increased from 100 m–1100 m
in increments of 200 m; noting that locations are placed inside a square with each side 800 m long.
A sensor range of 1100 m effectively covers a total distance of 2 × radius (= 2200 m), which is the
diameter of the circle of the area covered by a sensor with a sensor range of 1100 m. A distance of
1100 m should cover almost the full distance of 1131 m between any two corners positioned diagonally
opposite each other in the fly zone. A sensor range of 1100 m should enable the sensor of a UAV to
detect all the locations of interest. A hundred simulations were performed with each sensor range
value. Results are reported in Figure 11a–d.

Plots in Figure 11a indicate that coalition path length increases with an increase in sensor range.
It should be noted that coalition path length refers only to the path length of the largest Dubins longest
path to reach a target. The coalition path length does not include the distance covered by the UAV
while searching for a target. With a small sensor range, coalition formation can only be initiated when
a target is detected within this smaller range; hence, coalition formation is only triggered when the
distance to a target is within the distance covered by the smaller sensor range. In the case of a larger
sensor range, coalition formation is initiated similarly only when the distance between a UAV and
a target falls within the larger sensor range. With a larger sensor range, coalition formation can be
initiated much sooner than the case with a smaller sensor range. In the case of the larger sensor range,
the coalition leader that detects the target might be the closest to the target with all other UAVs that
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join the coalition to be further from the target. Hence, generally, a larger sensor range will lead to
larger coalition path lengths.

Since all UAVs fly at a constant speed and coalition time is calculated as coalition path length
divided by the speed of the UAV, one would expect the coalition time to also increase with an increase
in sensor range, as reflected in Figure 11b.

Mission time consists of time spent on searching for the locations of interest or targets and time
spent on executing a coalition. During the execution of a coalition, the UAVs traverse the Dubins
longest paths to reach the target, with the radii of the participating UAVs increased to ensure that
all UAVs reach the target at the same time. With a smaller sensor range, targets are only detected
once they are within this smaller sensor range of a UAV. Often, UAVs could find themselves flying
away from a target that is just outside the sensor range and move effectively further away form a
target while searching for a target. This is time wasted by the UAV that could have better been utilized
by executing a coalition. With a larger sensor range, less time is spent and wasted on searching for
targets, and coalitions are formed earlier, which leads to reduced mission times. The plots in Figure 11c
confirm that mission time decreases with an increase in sensor range and that mission time decreases
with an increase in the number of UAVs.

Simulation time decreases with an increase in sensor range, as reflected in Figure 11d. A sensor
range of 500 m covers a circle with a corresponding diameter of 1000 m, which covers a large part of
the square fly zone with each side length being 800 m. The plots in Figure 11d indicate that sensor
ranges 500 m and 700 m produce identical simulation times, which on their face, implies that PTCFA
did not benefit at all from the larger sensor range. However, Figure 11c puts this misleading conclusion
to rest, since a sensor range of 700 m produced smaller mission times than a sensor range of 500 m.
One can conclude that the benefits and losses with respect to simulation time in the case of 500 m and
700 m sensor ranges offset one another, resulting in similar simulation times. Similar simulation times
are reported also for sensor ranges of 500 m, 700 m and 900 m in the case of 15 and 20 UAVs.

(a) (b)

(c) (d)

Figure 11. (a) Coalition path lengths for various sensor ranges; (b) coalition times for various sensor
ranges; (c) mission time for various sensor ranges; (d) simulation time for various sensor ranges.
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5.3. Effect of Increased Number of Types of Resources or Environment Data

Another set of experiments was conducted to investigate the effect of an increased number of
types of resources or environment data on the mission, w.r.t. coalition time, mission completion time
and simulation time. The number of types of resources was increased from 3–11 in increments of
two. Configurations comprised of 15 locations of interest or targets and UAVs varying from 5–20 in
increments of five were considered. For each configuration, a hundred simulations were performed,
and the average for each of the characteristics referred to above were recorded. Results are reported in
Figure 12a–d. The plots in Figure 12a indicate that the coalition path length increases with an increase
in the number of types of resources or environment data. A similar trend is noticed with the coalition
time as reflected in Figure 12b. For each configuration of the number of environment data or resources,
the coalition time decreases with an increase in the number of UAVs in both Figure 12a,b.

The plots in Figure 12c indicate that the mission time increases with an increase in the number of
types of resources or environment data. For a fixed number of types of resources or environment data,
the mission time decreases with an increase in the number of UAVs.

Graphs in Figure 12d indicate that simulation time also increases with an increase in the number
of types of resources or environment data.

(a) (b)

(c) (d)

Figure 12. (a) Coalition path lengths for various numbers of resources for 15 locations; (b) coalition
times for various numbers of types of resources for 15 locations; (c) mission time for various numbers
of types of resources for 15 locations; (d) simulation time for various numbers of types of resources for
15 locations.
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5.4. Comparing PSO with PTCFA and OCFA

In the last set of experiments, the performance of PSO was compared to that of PTCFA and
OCFA. For a fair comparison, sensor range was set to 1500 m to ensure that all targets or locations of
interest were detectable from any position in the fly zone with the execution of PTCFA and OCFA.
Average mission times and simulation times are reported for various configurations of UAVs and
targets or locations of interest in Figures 13a–14d.

5.4.1. Average Mission Time

The mission times of PSO, PTCFA and OCFA are reflected in Figure 13a–d. Results indicate that
PSO had the best mission time of all three algorithms. PTCFA and OCFA had similar performances,
with PTCFA achieving slightly better mission times than OCFA at times in Figure 13a–c. A possible
explanation is that OCFA is optimized per target/location, and occasionally, the inclusion of the closest
UAV in a coalition for a specific target/location may result in the distance to the next target/location
being much further than had the UAV closest to the target/location been excluded from the first
coalition. The OCFA algorithm optimizes a coalition w.r.t. a single target/location, and the solution
proposed may not necessarily be an optimal solution across all targets.

Figure 13d reflects coalition path lengths, coalition times, mission times, coalitions and simulation
times for a single run using five targets/locations and five UAVs for PTCFA and OCFA. Note, coalitions
comprising different coalition members were formed for PTCFA and OCFA. PTCFA produced smaller
coalition path lengths and mission completion times than OCFA. The simulation time of PTCFA was
also much smaller than that of OCFA.

(a) (b)

(c) (d)

Figure 13. (a) Mission time for five targets/locations; (b) mission time for 10 targets/locations;
(c) mission time for 15 targets/locations; (d) mission time for 20 targets/locations.
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Results for a single run are recorded in Table 2. Note the various coalitions formed for PTCFA and
OCFA. Results show that different coalitions were formed by the two algorithms. Although OCFA had
a lower mission time than PTCFA, its coalition path lengths and simulation times were higher than
those of PTCFA. PTCFA produced smaller mission times than OCFA in 10 out the 100 simulations.

Table 2. Comparison of a single execution between PTCFA and OCFA for 5 targets/locations and
5 UAVs.

PTCFA

Location or
Target No. Agents

Detected at
Time in
Seconds

Coalition
Path Length

in Meters

Coalition Time in
Seconds

Coalition
Leader

Mission Completion
Time in Seconds

Simulation
Time in

Milliseconds

4 0 0.0 362.44 36.2 0
3 0, 2 60.7 564.76 56.5 2
1 0 97.5 851.11 85.1 0 269.0 12.0
2 0, 3 195.0 446.48 44.6 3
0 2, 1 212.7 841.71 84.2 1

Total 3066.5 306.65

OCFA

Location or
Target No. Agents

Detected at
Time in
Seconds

Coalition
Path Length

in Meters

Coalition Time in
Seconds

Coalition
Leader

Mission Completion
Time in Seconds

Simulation
Time in

Milliseconds

4 0 0.0 362.44 36.2 0
3 0, 2 60.7 564.76 56.5 2
1 1 97.5 791.49 79.1 1 303.0 20.0
2 3, 4 189.1 657.18 65.7 4
0 2, 1 212.7 903.14 90.3 1

Total 3279.01 327.9

5.4.2. Average Simulation Time

The plots in Figure 14a–d indicate that PSO took the longest simulation time of all three algorithms.
In the case of PSO, the average simulation time also increased with an increase in the number of UAVs.
PTCFA had the lowest simulation time of all the algorithms. The simulation time of OCFA was slightly
longer than that of PTFCA, but much smaller than that of PSO. Results indicate that PTCFA with the
shortest simulation time of all three algorithms is the best candidate for coalition formation since the
computational overhead must be minimal.

5.4.3. Energy Savings

In the experiments conducted by Manathara et al. in [40], data files were randomly populated and
not initialized to ensure that the total sum of the quantities of resources of the UAVs was at least equal
to the total sum of the quantities of the corresponding resource of all the targets. Their argument is
that often, at the start of a search and prosecute mission, one is not aware of the resource requirements
of the various targets. However, there are cases when the resource requirements are known at the start
of a mission, e.g., the size of the data to be collected at various targets when performing a city’s remote
sensing is known in advance. In these cases, one can ensure that the resource requirements are met
before the mission is initiated. Furthermore, if the environment data of all the locations of interest
cannot be stored in the UAVs, then the mission will not be completed successfully. These unsuccessful
missions imply that energy was wasted while performing the various coalitions. To quantify the
benefit in energy savings, 1600 data files were populated randomly without ensuring that the UAVs
had sufficient storage capacity to accommodate all the environment data to be collected at the various
locations. Of the 1600 data files, in 457 cases, the UAVs could not store all the environment data
collected. For the experiments reported in this paper, it was ensured that the UAVs had sufficient
storage capacity to store all the data collected. In the case of data files that were randomly populated,
28.6% (= 4571/600) would not lead to successful prosecution of the targets. The approach adopted in
the experiments resulted in an energy savings of 71.4%.
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(a) (b)

(c) (d)

Figure 14. (a) Simulation time for five targets/locations; (b) simulation time for 10 targets/locations;
(c) simulation time for 15 targets/locations; (d) simulation for time 20 targets/locations.

6. Conclusions

The Dubins longest path can be used to describe the path traversed by a fixed-wing unmanned
aerial vehicle in pursuit of a target. This paper provides an approach that calculates the Dubins
longest path using elementary geometry. Experiments were conducted where the Dubins longest path
was applied to algorithms that included particle swarm optimization, the polynomial time coalition
formation algorithm and the optimal coalition formation algorithm. Simulation results indicated that
although PSO had the lowest average mission completion time, and it had the longest simulation time
of all three algorithms. The latter does not make PSO a good candidate for coalition formation for
UAVs where minimal computational time is of paramount importance. PTCFA’s smaller simulation
time than OCFA and its fairly reasonable mission time for a large number of UAVs compared to PSO
make it a viable option as an algorithm for coalition formation for fixed-wing UAVs. Results confirm
that for each type of algorithm, an increase in the number of UAVs led to a decrease in mission time.
The constraint that UAVs have sufficient resources that meet the resource requirement of the targets
led to a considerable savings in energy. An increase in the sensor range produced an increase in
coalition time with a corresponding reduction in mission times. Results indicate that an increase in the
number of types of resources led to an increase in coalition time and also to an increase in mission
time. An increase in the number of UAVs that all contained the same number of types of resources
assigned to a mission led to a decrease in mission time. Results also indicate that an increase in the
number of UAVs led to an increase in simulation time in the case of PSO, but to a decrease in the case
of PTCFA and OCFA.

For future work, the proposed model will be improved by reducing the assumptions.
Environmental conditions such as the wind and weather need to be considered, as well as their
impact on path planning and coalition formation. When many UAVs must be used in a relatively
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small area, collision avoidance will be of paramount importance for successful completion of a mission.
Collision avoidance will be investigated and applied to the coalition formation algorithms used in
this study. Experiments will be extended by considering heterogeneous UAVs, as well as the effect of
different UAV specifications on the performance of coalition formation in data muling.
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UAVs for tracking contaminant cloud. In Proceedings of the 17th International Federation of Automatic
Control (lFAC) World Congress, Seoul, Korea, 6–11 July 2008; Volume 41, pp. 5718–5723.

28. Lugo-Cárdenas, I.; Flores, G.; Salazar, S.; Lozano, R. Dubins path generation for a fixed-wing UAV.
In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems, Orlando, FL, USA,
27–30 May 2014.

29. Costanzi, R.; Fanelli, F.; Meli, E.; Ridolfi, A.; Allotta, B.Generic path planning algorithm for mobile robots
based on Bézier curves. In Proceedings of the 9th IFAC Symposium on Intelligent Autonomous Vehicles IAV
2016, Leipzig, Germany, 29 June–1 July 2016; Volume 49, pp. 145–150.

30. Tuyishimire, E.; Bagula, A.; Rekhis, S.; Boudriga, N. Cooperative data muling from ground sensors to base
stations using UAVs. In Proceedings of the 2017 IEEE Symposium on Computers and Communications,
Heraklion, Greece, 3–6 July 2017; pp. 35–41.

31. Lin, L.; Sun, Q.; Wang, S.; Yang, F. Research on PSO based multiple UAVs real-time task assignment.
In Proceedings of the Control and Decision Conference, Guiyang, China, 25–27 May 2013.

32. Fargeas, J.L.; Kabamba, P.; Girard, A. Cooperative surveillance and pursuit using unmanned aerial vehicles
and unattended ground sensors. Sensors 2015, 15, 1365–1388. [CrossRef] [PubMed]

33. Kwok, N.M.; Ha, Q.P.; Fang, G. Motion coordination for Construction vehicles using swarm intelligence.
Int. J. Adv. Robot. Syst. 2007, 4, 44 . [CrossRef]

http://dx.doi.org/10.3390/s150715443
http://www.ncbi.nlm.nih.gov/pubmed/26134104
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.2140/pjm.1990.145.367
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.3390/s150101365
http://www.ncbi.nlm.nih.gov/pubmed/25591168
http://dx.doi.org/10.5772/5672


Sensors 2018, 18, 2184 25 of 25

34. Bellingham, J.; Tillerson, M.; Richards, A.; How, J.P. Multi-task allocation and path planning for
cooperating UAVs. In Cooperative Control: Models, Applications and Algorithms; Butenko, S., Murphey, R.,
Pardalos, P.M., Eds.; Cooperative Systems; Springer: Boston, MA, USA, 2003; Volume 1.

35. Tong, H.; Chao, W.W.; Qiang, H.C.; Bo, X.Y. Path planning of UAV based on Voronoi diagram and DPSO.
In Proceedings of the International Workshop on Electronics and Engineering, Xi’an, China, 23–25 August
2012; Volume 29, pp. 4198–4203.

36. Howlett, J.K.; McLain, T.; Goodrich, M. Learning real-time A* path planner for unmanned air vehicle target
sensing. AIAA J. Aerosp. Comput. Inf. Commun. 2006, 3, 108–122. [CrossRef]

37. Oh, H.; Shin, H.S.; Tsourdos, A.; White, B.A.; Silson, P. Coordinated road network search for multiple UAVs
using Dubins path. In Advances in Aerospace Guidance, Navigation and Control; Springer: New York, NY, USA,
2011; pp. 55–65.

38. Schwarzrock, J.; Zacarias, I.; Bazzan, A.L.C.; Fernandes, R.Q.D.; Moreira, L.H.; de Freitas, E.P. Solving task
allocation problem in multi unmanned aerial vehicles systems using swarm intelligence. Eng. Appl. AI 2018,
72, 10–20. [CrossRef]

39. Liu, W.; Zheng, Z.; Cai, K. Adaptive path planning for unmanned aerial vehicles based on bi-level
programming and variable planning time interval. Chin. J. Aeronaut. 2013, 26, 646–660. [CrossRef]

40. Manathara, J.G.; Surit, P.B.; Beard, R.W. Multiple UAV coalitions for a search and prosecute mission. J. Intell.
Robot. Syst. 2011, 62, 125–158. [CrossRef]

41. Ismail, A.; Tuyishimire, E.; Bagula, A. Generating Dubins path for fixed-wing UAVs in search missions.
In Proceedings of the International Symposium on Ubiquitous Networking, Hammamet, Tunisia,
2–5 May 2018; Springer: New York, NY, USA, 2018.

42. Kennedy, J.F.; Kennedy, J.; Eberhart, R.C. Swarm Intelligence; Morgan Kaufmann Publishers: Burlington, MA,
USA, 2001.

43. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2514/1.16623
http://dx.doi.org/10.1016/j.engappai.2018.03.008
http://dx.doi.org/10.1016/j.cja.2013.04.041
http://dx.doi.org/10.1007/s10846-010-9439-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Contributions and Outline

	The Coalesced City's Remote Sensing Model
	Model Formulation
	The City's Remote Sensing Problem
	The City's Remote Sensing Process

	Problem Statement and Algorithms
	PTCFA
	OCFA
	PSO

	Calculating the Dubins Longest Path
	Calculating the Coordinates of the Center of the Circle
	Calculating the UAV's Exit Point on the Arc
	Calculating the Angle Traversed by the UAV While Turning
	Calculating the Incoming Angle of the UAV

	Experiments and Results
	Comparing Simulation Times of Algorithms Whose Cost Is Based on Either Coalition Time or on Mission Time
	Effect of Increased Sensor Range
	Effect of Increased Number of Types of Resources or Environment Data
	Comparing PSO with PTCFA and OCFA
	Average Mission Time
	Average Simulation Time
	Energy Savings


	Conclusions
	References

