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Abstract: The problem of synthesis scatterers in inverse synthetic aperture radar (ISAR) make it
difficult to realize high-resolution three-dimensional (3D) imaging. Radar array provides an available
solution to this problem, but the resolution is restricted by limited aperture size and number of
antennas, leading to deterioration of the 3D imaging performance. To solve these problems, we
propose a novel 3D imaging method with an array ISAR system based on sparse Bayesian inference.
First, the 3D imaging model using a sparse linear array is introduced. Then the elastic net estimation
and Bayesian information criterion are introduced to fulfill model order selection automatically.
Finally, the sparse Bayesian inference is adopted to realize super-resolution imaging and to get the
3D image of target of interest. The proposed method is used to process real radar data of a Ku band
array ISAR system. The results show that the proposed method can effectively solve the problem
of synthesis scatterers and realize super-resolution 3D imaging, which verify the practicality of our
proposed method.

Keywords: three-dimensional imaging; array ISAR; synthesis scatterers; elastic net regression; sparse
Bayesian inference

1. Introduction

With further investigation of space resources in recent years, the surveillance of space target
has gained much more attention among institutes around the world. Compared with the traditional
two-dimensional (2D) inverse synthetic aperture radar (ISAR) images, three-dimensional (3D) radar
images can provide energy distribution of scatterers and more details of 3D geometric features, which
will finally contribute to target recognition [1]. Toward this end, various method are proposed to
reconstruct 3D images of targets [2–4]. These methods can be divided into two categories.

Combined with the interferometric technique, the first category is the interferometric ISAR
(InISAR) technique [5,6]. In the framework of InISAR, the elevation information was obtained by
comparing the phase difference of the received signals from two antennas. To extract 3D information
from 2D ISAR images by interferometric technique, various methods are proposed [6–11]. In [7],
3-D ISAR imaging method with a sparse array is proposed and the CLEAN technique is adopted to
extract strong artificial scatterers caused by high sidelobes. In [8,9], three-dimensional imaging method
using a two-dimensional antenna array is proposed. In [10–12], compressed sensing based approaches
for 3D ISAR imaging are proposed. In [13], polarimetric inverse synthetic aperture radar (ISAR) for
classification of small boats is proposed. In [14,15], a fully polarimetric three-dimensional imaging
method is proposed and the 3D visualization methods are also presented. In the literature, ISAR
image pairs are collected at slightly different elevation angles and interferometrically processed into
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3D images. Finally the 3D reconstruction results are overlaid on to a CAD model of the targets. In [16],
three-dimensional interferometric ISAR imaging method is proposed and the problem of scattering
center extraction and the 3D reconstruction alignment are discussed. However, there are mainly two
shortcomings. The first is that the coordinate-registration problem mentioned in [9]. The second is the
problem of synthesis scatterers. Since the ISAR image is a projection of the 3D target onto the imaging
projection plane, scatterers with the same range and Doppler frequency will be projected in the same
pixel and hard to distinguish. These scatterers are known as the synthesis scatterers, which is also
called angular glint effect [8]. Traditional InISAR technique does not have the ability to distinguish
multiple dominant scatterers from a synthesis scatterer. The reason for this phenomenon is that the
resolution in the elevation direction depends on the baseline length. In order to get a finer image, the
antenna array can be very large which make it difficult for practical applications.

The second class of 3D reconstruction is based on the sequence ISAR approach [17–22]. In [17],
three-dimensional model extraction with sequence ISAR images is proposed with the assumption that
scatterers can be correctly registered from frame to frame. In [18], 3D scatterer models are extracted
from a sequence of ISAR images and used for ship classification. In [19], the radar system first obtains
a sequence of 2D ISAR images. Then feature tracking methods such as the Kanade-Lucas-Tomasi (KLT)
algorithm are firstly adopted to extract the feature points from a sequence of ISAR images [23]. Then
the feature points from different images are matched and the 3D positions of these scatterers can be
retrieved by orthographic factorization method (OFM) [24]. Joint cross-range scaling algorithm
via sequential ISAR images can be found in [25]. However, this kind of method needs a long
observation time and the incoherency caused by the long imaging time will affect the 3D reconstruction
result [16]. Besides, for both of the two categories, most of the literatures so far focus on simulation
and signal processing of simple target with only a few point scattering centers. However, in real
situation an aircraft is always composed of thousands of scatterers which would need a lot of work on
imaging processing.

To solve the problems aforementioned, varies approaches are proposed. In [2], three-dimensional
reconstruction method using two perpendicular antenna arrays to measure the positions of scatterers
of a synthesis scatterer is proposed. A similar approach is proposed in [9] that a multiple-input
multiple-output (MIMO) is used and the elevation position is estimated by spectral analysis. However,
the resolution in the elevation direction is still restricted by the limited baseline length under this
framework. With the development of compressed sensing (CS), the super-resolution ability of sparse
recovery methods shows its advantage over traditional spectral analysis algorithms. In [26,27], CS
based super-resolution reconstruction methods are proposed in SAR tomography and an elevation
resolution better than the Rayleigh limit can be achieved. In [11], CS technique is adopted in ISAR
imaging. Inspired by the result in SAR tomography, we proposed a 3D imaging method to overcome
the problems of synthesis scatterers and realize super-resolution 3D reconstruction in this paper.
Since the dominant scatterers in a single range-Doppler unit are usually sparse in the elevation
direction, the compressed sensing (CS) technique is utilized here. The sparse assumption here is
based on the results in [11,26] and the 3D reconstruction result with measured radar data prove its
validity. Under this framework, multi-channel ISAR images are firstly obtained by using a sparse
linear array, which will reduce the imaging duration compared with the sequence ISAR technique.
After image registration and phase compensation, the elastic net estimation [28] along with Bayesian
information criterion (BIC) [29] is applied to estimate the number of dominant scatterers without
any prior information. With this estimation as a prior, the sparse Bayesian inference method [30] is
then used to obtain an accurate estimation of the reflectivity function along the elevation direction.
After these manipulations, the 3D model of targets can be reconstructed. Simulation results prove
the superiority of the proposed algorithm over other existing three-dimensional recovery algorithms
such as SVD-Wiener and “Scale-down by L1 norm Minimization, Model selection, and Estimation
Reconstruction” (SL1MMER). In addition, Bayesian Cramér-Rao bound (BCRB) and the Mean Square
Error (MSE) are compared to verify effectiveness of the proposed method. Besides, measured radar
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data are used to extract 3D model of the airplane, which validates the effectiveness and feasibility of
proposed method.

This paper is organized as follows. The 3D imaging model with the array ISAR system is presented
in Section 2. In Section 3, an algorithm for 3D imaging based on sparse Bayesian inference is proposed
and the Bayesian Cramér-Rao bound for scatterers’ position estimation is also presented. In Section 4,
both simulation results and experimental results are presented to analyze the imaging performance.
Finally, conclusions are drawn in Section 5.

2. 3D Imaging Model of the Array ISAR System

The 3D imaging geometry of the array ISAR system is depicted in Figure 1a. As can be seen,
the radar array is composed of M transmitters and N receivers, which means that there are P (=MN)
antenna phase centers (APCs) based on the MIMO technique. The ith element is located at (xi, 0, 0).
Here we assume that the target bears a constant velocity in the direction of v. With the MN APCs each
being an independent channel, we can conduct ISAR imaging using the echo signal of these channels
and finally get P 2D ISAR images. Taking the ISAR image corresponding to the APC at the origin in
Figure 1a as an example, the complex pixel value of scatter P is as follows:

SP( f , fm) = A sin c
[

Tp( f +
2γ

c
R∆AP)

]
sin c

[
T1( fm +

2VAP

λ
)

]
exp(−j

4π

λ
R∆AP) (1)

in which R∆AP = RAP − Rre f and VAP is the radial velocity of P with respect to radar A. Tp is the pulse
width and T1 is the overall coherent processing interval. f and fm are the fast-time frequency and
Doppler frequency after Fourier transform, respectively. The first two sinc functions represent the
scatterer’s range and Doppler information. When multiple scatterers have the same range and Doppler
frequency, these scatterers will fall into the same pixel and form a synthesis scatterer in the ISAR
image. Traditional InISAR technique cannot distinguish these different scatterers from the synthesis
scatterer, which leads to the deterioration of 3D imaging performance. Based on the above equation,
contribution of the scatterer P to the complex value of a focused range-Doppler pixel is the phase item
at the end of Equation (1). Based on these observations, the resolution power in range and Doppler
dimension is provided by the ISAR technique while that in the elevation dimension is provided by
sparse recovery methods.
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Figure 1. The 3D imaging geometry of array ISAR. (a) Overview of the ISAR imaging geometry; (b) the
imaging model in the range-elevation plane.

As mentioned above, the phase of a pixel of the ISAR image is the last item of Equation (1).
Figure 1b presents the imaging model in the elevation dimension, i.e., the dimension perpendicular
to the imaging projection plane (IPP). After multi-channel ISAR images registration, for a same
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range-Doppler unit, the complex value of this unit in the nth ISAR image can be expressed as follows
according to Equation (1):

yn =

smax∫
smin

σ(s) exp
[
−j

4π

λ
Rn(s)

]
ds (2)

which is the integral of the reflectivity function along the elevation direction and [Smin, Smax] is
the elevation extent. Since there are P ISAR images in total, after image registration, we can get
P measurements for each range-Doppler unit. Consider the antenna at the origin as a reference,
the continuous model in Equation (2) can be approximated by discretizing s into L sampling grids.
After adopting Fresnel approximation and multiplying the received signal with the phase factor
corresponding to the echo of the elevation center, the discretized signal model is as follows:

y = Φ · σ + n (3)

in which y is a P × 1 measurement vector and n is white Gaussian noise. The element of Φ is

Φi,j = exp
(
−j 4π

λ

∆bisj
r

)
in which r is the range, bi is the position of ith APC and sj is the jth sampling

point. σ is the reflectivity function in the elevation direction with sj (j = 1, 2, . . . , L) being the sampling
points. Hence, this formula can be seen as the spatial Fourier transform of the reflectivity function.
To solve the problem of synthesis scatterers and realize 3D imaging, it is equivalent to solve the
underdetermined problem of (3). If the reconstructed reflectivity function can be exactly extracted from
Equation (3), the dominant scatterers in the same range-Doppler unit can be successfully distinguished
and the 3D model of targets can be obtained.

3. Array ISAR Three-Dimensional Imaging Method Based on SBI

Based on the imaging model introduced in Section 2, a sparse Bayesian inference based
three-dimensional imaging method for array ISAR system is proposed in this part. It is worth
mentioning here why the sparse Bayesian inference is suitable for array ISAR imaging. Inspired by the
results in [31], we assume that the number of dominant scatterers in the same range-Doppler pixel
is small. According to the three-dimensional imaging model in multi-baseline SAR interferometry,
scatterers in the same range-azimuth resolution cell are from the intersections between 3D surface of
the target and the equidistant sphere. For this reason, the number of dominant scatterers in layover
areas is usually small. Here we refer reader to [31] for more details about the multi-baseline SAR
interferometry model. Because the array ISAR 3D imaging is similar to the imaging model in [26],
we assume that the dominant scatterers are sparse in the elevation direction and thus the sparse
recovery technique can be adopted. The overall procedure of this method is as follows. When echo
signal is received, multi-channel ISAR imaging and image registration will be conducted in sequence.
After these manipulations, we first adopt elastic net estimation together with Bayesian information
criterion (BIC) to realize model selection, i.e., to evaluate the number of dominant scatterers K in the
same range-Doppler unit. Then we use sparse Bayesian inference technique to fulfill super-resolution
imaging in the third dimension. Finally the 3D scattering model of target is extracted after point cloud
stitching. The flowchart of our proposed method is depicted in Figure 2.
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3.1. Model Order Selection Based on Elastic Net Regression

In order to get the distribution of dominant scatterers in the angular glint area, we need to extract
σ from Equation (3). Toward this end, the top priority is to estimate the number of dominant scatterers
in a range-Doppler unit. Inspired by the idea of SL1MMER algorithm proposed in [18], we first use the
elastic net method to get a coarse estimation, then the BIC is used to realize model order selection and
find the optimal number K.

With limited number of antennas, the number of sampling points L in the third dimension is
always much larger than the number of APCs P, i.e., L� P. To solve this underdetermined equation,
different solutions are proposed with different penalty terms, for example, Lasso estimation with
L1-norm penalty and Ridge estimation with L2-norm penalty. To combine advantages of the two
approaches mentioned above, Trevor Hastie proposed the elastic net (ELN) regression approach [28].
For the purpose of solving Equation (3), the ELN method uses the following expression:

σ̂ = arg min
σ

σT

(
ΦTΦ + λ2I

1 + λ2

)
σ − 2yTΦσ + λ1|σ|1 (4)

Compared with solutions by Lasso and Ridge mentioned above, the elastic method accommodates
the array ISAR 3D imaging better. On the one hand, since the dominant scatterers are sparsely
distributed in the elevation direction, the L1-norm regularization term ensures a sparse solution and
provides the SR capability. On the other, there exists multicollinearity among columns of Φ since it is
composed of a set of over-complete bases. The ELN method can successfully solve this problem via
L2-norm penalty. Denote γ = λ2/(1 + λ2) and ∑ = ΦTΦ, we have:

ΦTΦ + λ2I
1 + λ2

= (1− γ)∑+γI (5)

In linear discrimination analysis theory, the accuracy can be improved by using the weighted
sum of identity matrix and the autocorrelation matrix of a set of overcomplete bases, as shown in
Equation (5). It is worth mentioning that λ1 and λ2 need to be adjusted according to noise level and
number of measurements in order to obtain a superior performance.
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After solving the problem of Equation (4), we can get an initial estimation of the reflectivity
distribution in the elevation direction in the area where angular glint effect appears. However, the
result always contains some outliers due to the noise. In order to get the 3D reconstruction result with
high accuracy, it is necessary to further realize model order selection after obtaining the initial result.
Based on max a posterior (MAP) theory and Bayesian information criterion (BIC) [29], we proposed a
model order selection scheme. The details are as follows. Assuming that a certain synthesis scatterer
is composed of K dominant scatterers and the corresponding reflectivity coefficient vector is σK, the
noise n obeys the complex Gaussian distribution, i.e., n ∼ CN(n|0, ηI) . Then the likelihood function
can be expressed as:

p(y|σK) = C exp(−η‖y−ΦσK‖2
2

2
) (6)

in which C is a constant. In order to avoid overfitting, a penalty item f (K) is considered based on the
BIC. By this means, the model order K can be evaluated through the following expression:

K̂ = arg max
K
{p(y|σK) + f (K)}

= arg min
K

{
η‖y−ΦσK‖2

2 + βK ln P
} (7)

After finishing the selection of model order K, we now get the accurate number of dominant
scatterers in a single synthesis scatterer. The results obtained in this step serve as a prior information
in the following sparse Bayesian inference steps.

3.2. 3D Reconstruction Based on Sparse Bayesian Inference

3.2.1. Elevation Reconstruction Model with Off-Grid Mismatch

Considering the signal model defined in Equation (3), the definition of sensing matrix Φ is based
on the discretization of sampling points in the elevation direction. Traditional sparse recovery methods
such as OMP and BP are all under the assumption that the true scatterers are exactly located on the
predefined sampling grids as mentioned above. However, this assumption will not always hold true
in real scene.

Assuming that the sampling points in the elevation direction are sj (j = 1, 2, . . . , L) and that a
dominant scatterer’s true position is ŝk /∈

{
sj (j = 1, 2, . . . , L)

}
, the off-grid mismatch emerges. This

mismatch will introduce multiplicative noise which is hard to handle by traditional sparse recovery
algorithms. In order to get a superior imaging performance, we first establish an optimized sparse
recovery model which takes the mismatch problem into consideration.

As mentioned above, ŝk is a scatterer’s true position and its corresponding nearest sampling
point is s′k ∈

{
sj (j = 1, 2, . . . , L)

}
, then ŝk = s′k + δsk in which δsk is the off-grid mismatch. Rename

the original sensing matrix Φ in Equation (3) as Φ0 = [ϕ(s1), ϕ(s2), . . . , ϕ(sL)] in which ϕ(sk) is the
steering vector of sampling point sk, we make a linear approximation of the scatterer’s true steering
vector ϕ(ŝk) using the first order Taylor series expansion as:

ϕ(ŝk) ≈ ϕ(s′k) +ϕ′(s′k)(ŝk − s′k) (8)

in which ϕ′(s′k) is the derivative of ϕ(s′k) with respect to s′k. Thus we can get the approximated off-grid
signal model:

y = (Φ0 + Φ1 · ∆s)σ + n (9)

in which ∆s = diag(δs), δs = [δs1 , δs2 , . . . , δsL ] and Φ1 = [ϕ′(s1), ϕ′(s2), . . . , ϕ′(sL)]. The signal
model in Equation (9) takes the mismatch between scatterer’s true position and the sampling grids into
consideration and will accommodate the real scene better. In the following section, a sparse Bayesian
inference based method is introduced to extract ∆s and σ from Equation (9).
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3.2.2. 3D Reconstruction Algorithm Based on SBI

To solve the sparse recovery problem in Equation (9), we adopt the sparse Bayesian inference
method [30,32] to overcome the shortcomings mentioned above. With the estimated number of
dominant scatterers K and an initial estimation σK obtained in Section 3.1 as prior information, we
adopt this algorithm to fulfill sparse recovery in the elevation direction. In the following we will briefly
explain how this method is used in our 3D imaging process.

Under the framework of sparse Bayesian inference, the estimation of ∆s and σ can be solved
through MAP estimation. According to previous literatures, it is reasonable to assume that scatterers’
reflectivity coefficients obey complex normal distribution, i.e., σ ∼ CN(σ|0, Λ) where Λ = diag(α).
In order to utilize the property of conjugate priors [30], here we assume that the hyper-parameter α

obeys Gamma distribution p(α; ρ) = ∏ Γ(αi|1, ρ) . The white Gaussian noise n is complex Gaussian,
i.e., n ∼ CN(n|0, ηI) in which η is the noise variance. Same as before, we assume that (η; c, d) =

Γ(η|c, d). Since the scatterers are distributed continuously in real scene and there is no prior information
about the off-grid mismatch δs, we assume that δs obeys the uniform distribution:

δs ∼ U([−ρs/2, ρs/2]L) (10)

in which ρs is the sampling interval. According to the Bayesian formula, the posterior probability
density function can be obtained:

p(σ, ∆s, η, α|y) = p(σ, ∆s, η, α, y)/p(y)
p(y) =

t
p(σ, ∆s, η, α, y)dσd∆sdαdη

(11)

With the posterior probability density function, we can obtain the estimation of reflectivity
coefficient vector σ, the off-grid mismatch δs and the noise variance η based on the MAP estimation.

According to Equation (11), we need to get the explicit expression of p(y) while the integral
is hard to calculate. So we use the variational inference technique to get an approximated analytic
expressions. The results are presented here and we refer readers to [32] for more details about the
variational inference technique. The estimation of σ, ∆s, η, α can be calculated according to the
following expressions:

σ = ηΣΦHy;

αi =

√
1+4ρE

{
‖σi‖2

2

}
−1

2ρ (i = 1, 2 . . . L);

η =
E
{
‖y−Φσ‖2

2

}
+d

P+c−1

(12)

in which Σ = [ηΦHΦ + diag(1/α)]
−1

, Φ = Φ0 + Φ1 · ∆s. As for the off-grid mismatch δs, it can be
calculated by solving the following convex optimization problem:

δs = argminδs

{
δs

T Bδs − 2xTδs

}
(13)

with:
B = <(Φ1

HΦ1 � (σσH + Σ))
x = <

{
diag(σ)Φ1

H(y−Φ0σ)− diag(Φ1
HΦ1Σ)

} (14)

Equations (11)–(14) together suggest an iterative approach for estimating the unknowns. The
iteration ends when the number of iteration exceeds a threshold or the relative change of two successive

iteration is less than a predefined constant ε, i.e., ‖σ
(i+1)−σ(i)‖2

2
‖σ(i)‖2

2
< ε. With the results obtained in

Section 3.1 as initial input, we can fulfill super-resolution 3D reconstruction through iteration which is
presented in this section.
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3.2.3. Bayesian Cramér-Rao Lower Bound for Proposed Method

In order to evaluate the estimation accuracy in the framework of sparse Bayesian inference,
Ranjitha proposed the Bayesian Cramér-Rao lower bound (BCRB) which is the counterpart of
Cramér-Rao lower bound [33]. In the following part, the BCRB of our proposed 3D reconstruction
method is presented.

Denote the unknowns to be estimated as θ = [σ; δs], the BCRB of δs can be calculated by the
following expression [33]:

− Ey,θ

[
∂

∂δs

{
∂ log p(y, θ; η, α)

∂δs

}T
]

(15)

where:
p(y, θ; η, α) = p(y|σ, δs; η)p(σ; α)p(δs) (16)

By substituting Equation (16) into (15), we can get the following expression after trivial
manipulations:

− Ey,θ

[
∂

∂δs

{
∂ log p(y, θ; η, α)

∂δs

}T
]
=

2
η

Re{Φ1
HΦ� diag(α)} (17)

More details about the BCRB can be found in [33]. According to Equation (17), BCRB of scatterer’s
position estimation is:

BCRB(δsi) =
η

2(Φ1
HΦ1)i,iαi

=
1

2(Φ1
HΦ1)i,iSNRi

(18)

where we define SNRi = αi/η. From above equation, it is obvious that the estimation accuracy is
inverse proportion to the signal to noise ratio (SNR). Besides, it is also influenced by the property of
the matrix Φ1. Considering the expression of elements of Φ1, the BCRB can be further expressed as:

BCRB(δsi) =

√√√√√√ λ2R2
0

16π2SNRi
P
∑

i=1
(∆bi)

2
=

λR0

4π

√√√√√ 1

SNRi
P
∑

i=1
(∆bi)

2
, ∀i ∈ {1, 2 . . . , L} (19)

where ∆bi is the distance between the ith APC and center of all the APCs. As can be seen from
Equation (19), the BCRB is proportion to the distance of target. In order to improve estimation accuracy,
a properly designed APC distribution will be useful given fixed SNR and number of antennas.

4. Experimental Results

In this section, we use both simulated and measured data to analyze performance of our proposed
algorithm. In Section 4.1, an experiment was conducted and the results of model order selection with
measured data are shown. Besides, simulation results are presented to analyze performance of the
proposed method. The super-resolution ability along with the normalized mean square error (NMSE)
of off-grid mismatch estimation are presented in Section 4.2. In Section 4.3, the reconstructed 3D
images of a Boeing-737 are presented to validate the practicality of the proposed algorithm.

4.1. Array ISAR System Configuration and Model Selection

To evaluate the feasibility of our proposed algorithm, we conducted an array ISAR imaging
experiment near the Beijing International Airport. System parameters are shown in Table 1. Figure 3a,b
present the array ISAR system and the observed airplane, respectively. The elements arrangement of
this system are shown in Figure 3c. There are two transmitters and four receivers. The eight red solid
dots stand for the APCs. With these APCs, we can use the multi-channel echo signal to obtain eight
ISAR images. Figure 3d is one of these images and the area inside the red rectangle is where angular
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glint appears. Inside this area, the synthesis scatterers are consist of multiple dominant scatterers
which are hard to distinguish by traditional interferometric ISAR technique.

Table 1. Array ISAR system configuration.

Parameter Symbol Value

Carrier frequency fc 15 GHz
Bandwidth Bw 500 MHz
Pulse repetition frequency PRF 1 KHz
Velocity of plane v 63.5 m/s
Reference range Rref 836.4 m
Number of APCs P 8
Maximum baseline ∆bmax 1.31 m
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With the eight channels echo signal, we first conduct the elastic net estimation to realize model
order selection. Take the pixel (1291, 93) in the red rectangle in Figure 3d as an example, Equation (4) is
utilized in which the weights λ1, λ2 have been adjusted to get the best performance. The results are
presented in Figure 4a. As can be seen, there are lots of outliers in the reconstructed result because of
noise and the off-grid mismatch. Based on this result, model selection is completed using Equation (7).
Since the number K of dominant scatterers is usually small, we use the function in (7) to evaluate
the goodness of different K. The relations between model order K and the objective function are
presented in Figure 4b. When K equals two, the objective function is minimal. With this estimation,
the reconstructed reflectivity vector σELN is got. A comparison between the reconstructed reflectivity
distribution before and after model order selection is presented in Figure 4c. Although the result σELN
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usually still suffers from the off-grid mismatch, it can be used as an initial input of the sparse Bayesian
inference procedure.
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4.2. Performance Analysis with Simulations

Since the observed plane is uncooperative and the distribution of dominant scatterers are not a
known prior, it is difficult to evaluate performance of our proposed method. Toward this end, we use
simulations instead and the simulation parameters are the same as Table 1.

Inspired by the results in [34], we analyze the super-resolution ability of proposed method. The
super-resolution (SR) factor is defined as κ = ρRayleigh/ρ in which ρRayleigh is the Rayleigh resolution
decided by the baseline length and ρ is the resolution by proposed method. It is shown that κ is
influenced by the product of SNR and number of APCs P. Figure 5 presents the SR factor with varying
P*SNR and no amplitude or phase error. We refer readers to [27,34] for more explanations about the
relations between κ and P*SNR. However, since the proposed method realize super-resolution imaging
with multi-channel data, amplitude and phase error among different channels will have influence on
the super-resolution imaging performance. With the parameters in Table 1, we further discuss the
relations between SR factor and different amplitude and phase errors. Considering that the number
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of APCs is eight in our system and that the SNR is calculated to be 20.26 dB according to the ISAR
images, we set P*SNR to 29 dB in the following simulations.

Assuming that the amplitude and phase error obey Gaussian distribution with different variances,
we analyze the super-resolution power by Monte Carlo simulations. The number of Monte Carlo
trails is set to 1000 and results are presented in Figure 6. In Figure 6a, it can be seen that the SR factor
decreases with the phase error increases. From Figure 5, the SR factor is around 31 when there are
none phase or amplitude error. The appearance of the phase error spoils the super-resolution ability
to some extent. In our radar system, the phase error can be restricted to around 0.5 degrees, which
means the SR factor will be reduced from 31 to 20 according to Figure 6a. With P*SNR being 29 dB and
phase error being 0.5 degrees, we further investigate the relations between SR factor and amplitude
error in Figure 6b. As expected, the amplitude error will also introduce reduction of the SR factor.
When the amplitude is around 0.5 dB which is typical in our radar system, the SR factor will finally
reduce to around 15. We adopt polynomial fitting in this section and the coefficients are summarized
in Table 2. Although these coefficients are obtained by simulations, they can serve as a reference for
further analysis about the super-resolution ability of the array ISAR system. The results in Figures 5
and 6 suggests that the SR ability of proposed method will be influenced by both phase and amplitude
error. However, the SBI based imaging method can still achieve a satisfactory SR ability with typical
value of those errors.
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Table 2. Polynomial approximation of the SR factors as a function of P*SNR, phase error and
amplitude error.

Zero-Order 1st Order 2nd Order 3rd Order 4th Order 5th Order

P*SNR −10.091 1.0498 0.099758 −0.011345 2.8687 × 10−4 0
Phase error 25.083 −14.242 3.797 −0.17337 −0.097998 0.012569
Amplitude error 31.017 −35.754 13.942 −0.55709 −0.71587 0.10677

Based on the APC distribution, the maximal baseline is 1.31 m. The Rayleigh resolution in the
elevation direction is calculated to be 6.3825 m. According to Equation (19), the BCRB of scatterer’s
position estimation is 0.1875 m and 0.0593 m when SNR equals 10 dB and 20 dB, respectively. Assuming
that there are two dominant scatterers in the same range-Doppler unit and their reflectivity coefficient
are both unit, Figure 7 shows the reconstructed results with different SNR and scatterers’ distance.
Traditional imaging algorithms in the elevation direction can mainly be divided into three categories,
i.e., the Fourier transform based algorithms [35], spectral analysis based algorithms [34,36] and
compressed sensing based algorithms [27,37,38]. However, the performance of Fourier transform
based algorithms is severely degraded by the unequally spaced baselines and we ignore the approach
of Fourier transform here. In order to compare the resolution ability between proposed method
and traditional methods, we choose a representative algorithm from the latter two categories. The
SVD-Wiener algorithm [34] and the SL1MMER algorithm [38], which stands for Scale-down by L1
norm Minimization, Model selection, and Estimation Reconstruction, are chosen as references. In
Figure 7a, the two scatterers are located at 0 m and 3 m and the SNR is set to be 10 dB. In Figure 7b,
the distance is 0.63 m and SNR equals 20 dB. As can be seen from these figures, compared with
the SVD-Wiener algorithm, scatterers within a Rayleigh limit can be successfully distinguished by
proposed method and it can realize ten times SR imaging in elevation direction. As for the SL1MMER
algorithm, the mismatch problem described in Section 3 has a severe influence on the reconstruction
performance. The multiplicative noise introduced by the mismatch makes it hard to get an exact
estimation of scatterers’ position and RCS. The proposed algorithm solves this by using the sparse
Bayesian inference technique and a better result is obtained. Besides, the estimations of scatterers’
position are within ±3 times BCRB around the true position, which proves the accuracy.
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Figure 7. Comparison of reconstructed reflectivity profiles in elevation direction between proposed
method and SVD-Wiener. (a) Scatterers’ distance 3 m, SNR = 10 dB, BCRB = 0.1875 m; (b) Scatterers’
distance 0.63 m, SNR = 20 dB, BCRB = 0.0593 m.
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After above procedures, dominant scatterers in a single pixel can be distinguished from a synthesis
scatterer and the 3D point cloud can be extracted. Since the 3D point cloud is reconstructed from
multi-channel ISAR images, which means that the underdetermined problem in Equation (3) needs
to be solved for every single pixel of the 2D images. This will make the post processing very time
consuming. Considering that the amplitude of pixel where synthesis scatterer emerges is larger than
where there is no synthesis scattterer, a threshold is set to find pixels in the ISAR images where angular
glint effect exists. Then the sparse Bayesian inference technique is only applied to these pixels and the
overall computation time can be effectively reduced. With the measured data in the manuscript, the
overall computation time by proposed method is around five times as much as the interferometric
approach. Although our proposed method will need more computation time, it can effectively solve
the problem of synthesis scatterers and the dominant scatterers can be successfully distinguished. It is
mentioned in the introduction that three-dimensional imaging method based on sequence ISAR images
needs a long observation time because a set of different view angles provide information for estimation
of the 3D position of each target scattering center [16]. Thus a few coherent processing interval (CPI)
are needed for a sequence of ISAR images [19]. As a comparison, the array ISAR three-dimensional
imaging method needs only one CPI because the data acquisition is fulfilled by all the channels at
the same time. And the imaging duration can be reduced by proposed method compared with the
sequence ISAR approach.

In order to further demonstrate the effectiveness of the proposed method, the root mean square
error (RMSE) of estimated scatterer’s position and its corresponding BCRB are compared. The RMSE
is defined as follows:

RMSE(s) =

√√√√1/T
T

∑
t=1

(ŝt − st)
2 (20)

in which T is the number of Monte-Carlo trails. In this simulation, only a single scatterer which is
located at 6.6 m is considered and T is set to 500. Figure 8 presents the RMSE and BCRB under different
SNRs. In this figure, the RMSE of estimated position approximates the BCRB when the SNR increases.
However, when the SNR is less than 10 dB, the sparse recovery fails and the scatterer’s position cannot
be properly estimated.
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4.3. 3D Reconstruction Results Based on Measured Data

By applying the proposed method to real radar data, we can get reconstructed 3D image of the
target. With the eight channels echo signal we can get eight ISAR images. With the result obtained
after model selection in Section 3.1, the sparse Bayesian inference technique is applied to fulfill
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super-resolution 3D imaging. Since there are some hyper-parameters used in the process, we set
ρ = 0.01, c = d = 10−5 and initialize σ(0) = σELN and η(0) = ‖y−Φσ‖2/P. The value of ρ, c and d
are set close to zero in order to get a broader prior [39]. The reconstructed 3D point cloud is presented
in Figure 9.
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In Figure 9a, it can be seen that there are lots of outliers outside the boundary of the target due to
the noise. In order to get a better 3D model, we adopt point cloud filtering based on k-nearest neighbor
algorithm. Denote a scatterer in Figure 9a as I and a set containing its k-nearest scatterers as Ω, we can
calculate the mean distance between the scatterer I and the scatterers in Ω:

dI(K) =
1
K ∑

k
‖I − J‖2(J ∈ Ω) (21)

The average distance is then compared with a predefined threshold ξ. If dI(K) is larger than ξ,
then scatterer I is regarded as noise and will be discarded from the point cloud. After this procedure,
the optimized 3D point cloud is presented in Figure 9b. It is obvious that the outliers are removed.

The final 3D result is shown in Figure 10 in which the color of scatterers stands for the RCS. In the
center of this figure is the reconstructed 3D model while the three views of this model are presented
with different colors. Among these projections, the red one is the projection of the target onto the
range-Doppler plane. Along with other projections presented, it can be seen that multiple scatterers in
the same range-Doppler unit can be well distinguished by proposed algorithm. Besides, features of
the airplane such as engines and stabilizers can be extracted as is shown in Figure 10. These results
verify that the proposed method outperforms traditional spectral analysis methods and can effectively
solve the problem of synthesis scatterers in real scene. The proposed method provides a solution to
the problem of synthesis scatterers and can extract the three-dimensional model of target of interest.
Compared with 2D radar images, 3D models can provide the structure of aircraft and the pose is
also obtained. With these information, this technique can be applied in target recognition and fault
detection. However, there also exist some shortcomings. The proposed three-dimensional imaging
method is based on multi-channel ISAR images, which means that the quality of the ISAR images is of
fundamental importance to the 3D reconstruction. Its 3D reconstruction performance may be spoiled
when the targets are high maneuvering since target’s mobility during the coherent processing interval
(CPI) will have influence on the quality of the ISAR images, which will finally affect the performance
of proposed three-dimensional imaging method. Overall, this study solves the problem of synthesis
scatterers and makes some contributions to 3D imaging of air targets.
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5. Conclusions

The problem of synthesis scatterers emerges when multiple dominant scatterers are with the
same range and Doppler frequency. Traditional interferometric technique based three-dimensional
imaging method cannot resolve multiple scatterers from a synthesis scatterer. The problem with this
phenomenon is that the 3D structure of a target cannot be successfully captured, which will make it
difficult for target recognition. In order to solve this problem, a 3D imaging method based on sparse
Bayesian inference with an array ISAR system is proposed. Considering the characteristics of the
over-complete dictionary and the sparseness of imaging scene, the elastic net estimation along with
sparse Bayesian inference are chosen to realize super-resolution 3D imaging. In the first step, the elastic
net regression is first used to obtain an initial estimation, then model selection with BIC criterion is
adopted to remove the outliers and get an accurate estimation of the number K of dominant scatterers.
With this result, the sparse Bayesian inference is utilized to get the final estimation of reflectivity
function free of multiplicative noise caused by grid mismatch. The proposed method is applied to
both simulated and measured data to validate its practicality. The results obtained show that the
proposed method can realized ten times super-resolution imaging in the elevation direction. As a
comparison, the SVD-Wiener method cannot distinguish scatterers inside a Rayleigh limit and the
performance of SL1MMER algorithm is degraded by the multiplicative noise caused by basis mismatch.
Besides, quantitative analyses are provided to illustrate the relations between SR factor and phase
and amplitude errors. To verify the effectiveness of proposed method, the RMSE is compared with its
corresponding BCRB. Taken together, these results suggest that the proposed method can effectively
solve the problem of synthesis scatterer and provide a new understanding of 3D imaging of aircrafts.
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