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Abstract: In situ, diffuse reflectance spectroscopy (DRS) profile soil sensors have the potential to
provide both rapid and high-resolution prediction of multiple soil properties for precision agriculture,
soil health assessment, and other applications related to environmental protection and agronomic
sustainability. However, the effects of soil moisture, other environmental factors, and artefacts of
the in-field spectral data collection process often hamper the utility of in situ DRS data. Various
processing and modeling techniques have been developed to overcome these challenges, including
external parameter orthogonalization (EPO) transformation of the spectra. In addition, Bayesian
modeling approaches may improve prediction over traditional partial least squares (PLS) regression.
The objectives of this study were to predict soil organic carbon (SOC), total nitrogen (TN), and texture
fractions using a large, regional dataset of in situ profile DRS spectra and compare the performance
of (1) traditional PLS analysis, (2) PLS on EPO-transformed spectra (PLS-EPO), (3) PLS-EPO with
the Bayesian Lasso (PLS-EPO-BL), and (4) covariate-assisted PLS-EPO-BL models. In this study, soil
cores and in situ profile DRS spectrometer scans were obtained to ~1 m depth from 22 fields across
Missouri and Indiana, USA. In the laboratory, soil cores were split by horizon, air-dried, and sieved
(<2 mm) for a total of 708 samples. Soil properties were measured and DRS spectra were collected on
these air-dried soil samples. The data were randomly split into training (n = 308), testing (n = 200),
and EPO calibration (n = 200) sets, and soil textural class was used as the categorical covariate in the
Bayesian models. Model performance was evaluated using the root mean square error of prediction
(RMSEP). For the prediction of soil properties using a model trained on dry spectra and tested on
field moist spectra, the PLS-EPO transformation dramatically improved model performance relative
to PLS alone, reducing RMSEP by 66% and 53% for SOC and TN, respectively, and by 76%, 91%, and
87% for clay, silt, and sand, respectively. The addition of the Bayesian Lasso further reduced RMSEP
by 4–11% across soil properties, and the categorical covariate reduced RMSEP by another 2–9%.
Overall, this study illustrates the strength of the combination of EPO spectral transformation paired
with Bayesian modeling techniques to overcome environmental factors and in-field data collection
artefacts when using in situ DRS data, and highlights the potential for in-field DRS spectroscopy as a
tool for rapid, high-resolution prediction of soil properties.
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1. Introduction

On-the-go diffuse reflectance spectroscopy (DRS) sensors in the visible (VIS; 400–700 nm) and
near-infrared (NIR; 700–2500 nm) range have the potential to provide high-resolution spatial data
quickly at low cost. Soil properties are known to exhibit high spatial variability across landscapes
and with depth, and soil profile characteristics are important factors in understanding hydrology, soil
productivity, and other soil functions. Therefore, the ability to reliably predict soil profile properties
in the field would increase the effectiveness of site-specific agriculture, be beneficial for sustainable
agricultural management, and have many applications in soil mapping and monitoring. Prediction of
multiple soil properties using DRS has been successful on air-dried surface samples [1–3], air-dried
whole-profile soil samples [4], and moist samples [1,3,5] scanned in the laboratory. Some studies have
compared predictions obtained at different soil moisture levels, with some reporting better results
with dry soil [3,6] and others reporting better results with moist soil [7,8]. Moreover, in a field setting,
spectra are sensitive to other environmental conditions (e.g., temperature and soil structure) along with
soil moisture, decreasing prediction accuracy and the utility of spectra collected in the field [3,5,9–12].

Various techniques have been applied to account for moisture and other environmental factors
to improve model performance, including external parameter orthogonalization (EPO), direct
standardization (DS), and global moisture modelling (GMM) [13]. The EPO algorithm removes
variation due to external factors by projecting the soil spectra orthogonal to the space of unwanted
variation [14]. Studies have successfully applied EPO for estimation of soil properties, including soil
carbon [9,15] and clay content [15,16]. Alternatively, the DS approach derives a transfer matrix to
characterize differences between corresponding field and laboratory spectra, and has successfully been
used to predict soil organic matter using a portable spectrometer [12]. With the GMM technique, a
secondary variable with a relationship to the primary variable is intentionally manipulated, resulting
in a more robust calibration model [17]. This approach, akin to spiking, has been applied to datasets
that span large geographical regions or use combined spectral libraries to estimate soil carbon and clay
content [18,19]. The ultimate goal is to leverage existing libraries consisting of spectra collected on dry,
laboratory-processed soils for prediction of soil properties from spectra collected in situ under variable
environmental conditions.

The effectiveness of DRS spectra in modeling soil properties also varies depending on spectral
preprocessing techniques, calibration and modeling techniques, the specific soil properties of interest,
and the size and distribution of the dataset [5,20,21]. Common approaches to model calibration include
partial least squares (PLS) regression [22,23] and principal components regression [2,22,24]. Alternative
techniques, such as Bayesian modeling approaches for PLS, have not been extensively applied to
DRS spectral datasets for profile soil property prediction, and warrant exploration. For more detailed
information, comprehensive reviews of DRS applications and tools for proximal soil sensing have
previously been published [20,24–26].

Despite these challenges, DRS sensors have been successfully applied in field settings [11,27,28].
For in situ profile data collection to a depth of 1 m, a commercial instrument, the Veris P4000
VIS-NIR-EC-force probe (Veris Technologies, Salina, Kans.), has recently become available [29].
This instrument has demonstrated success in soil C estimation across multiple fields in Kansas,
USA [27]; however, in comparison to DRS spectra collected in the laboratory on dry soil, the Veris
P4000 spectrometer was less accurate in soil C estimation in the 1302–2202 nm range [30]. Only a few
studies on in situ profile DRS spectroscopy applications with the P4000 have been reported [31,32],
and there is a need to continue to evaluate the performance of the instrument under different field
conditions, across multiple soil types, and for additional soil properties.

The objectives of this study were to compare predictions of profile soil properties, including SOC,
TN, clay, silt, and sand content, using DRS spectra from: (1) in situ profile Veris P4000 DRS spectrometer
scans under field moist conditions, and (2) laboratory Veris P4000 DRS spectrometer scans of air-dried
soil using the following modeling approaches: (1) PLS regression, (2) EPO transformation of spectra
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followed by PLS regression (EPO-PLS), (3) EPO-PLS with the Bayesian Lasso (EPO-PLS-BL), and (4)
adding a categorical covariate to the model (EPO-PLS-BL-C).

2. Materials and Methods

2.1. Site Characteristics

Soil sampling locations were selected in 22 fields across five major land resource areas (MLRAs) in
Missouri and Indiana, USA, with varying soil type and textural classes (Table 1). Locations within each
field were identified to encompass the range of landscape variation. Across this region, the principal
crops are corn, soybean, cotton, feed grains, and hay, and the dominant soil orders are alfisols, mollisols,
and entisols characterized by smectitic clay mineralogy. The major resource concerns are water erosion,
surface water quality, loss of soil organic matter, and productivity of soils. Three fields were located
in the Heavy Till Plain Area (MLRA 109), an area of rolling hills with upland divides covered by
loess, underlain by glacial drift, and characterized by high clay content. Five fields were located in
the Central Claypan Area (MLRA 113) on nearly level, old till plains covered with loess, underlain by
glacial drift, and characterized by high clay content and complex runoff and infiltration phenomena.
Six fields were located in the Northern Indiana Drift Plain Area (MLRA 98), a broad glaciated plain
that is deeply mantled by till and outwash. The land surface is nearly level and the soils are of mixed
mineralogy. Three fields were located in the Central Mississippi Valley Wooded Slopes Area (MLRA
115B) in the Missouri River flood plain, where glacial outwash, alluvium, and sandy eolian materials
were deposited on stream terraces. Four fields were located in the Mississippi Delta Region in the
Southern Mississippi River Alluvium Area (MLRA 131A), where artificial drainage is typical and thick
deposits of sandy to clayey alluvium were deposited by rivers [33].

Table 1. Profile locations and soil descriptions of sampling locations in Missouri and Indiana by major
land resource area (MLRA). In situ scans and soil cores were collected from each location (n = 153).
Cores were split by horizon, resulting in 708 total samples.

Location Soil Textural Class Taxonomic Class # Fields # Profiles

Indiana Outwash
MLRA 98 Loam; Sandy loam

Sebewa loam: Fine-loamy over sandy or
sandy-skeletal, mixed, superactive, mesic Typic
Argiaquolls; Tracy sandy loam: Coarse-loamy,

mixed, active, mesic Ultic Hapludalfs

6 24

Central Missouri Claypan
MLRA 113 Silt loam

Adco silt loam: Fine, smectitic, mesic Vertic
Albaqualfs; Mexico silt loam: Fine, smectitic, mesic
Vertic Epiaqualfs; Leonard silt loam: Fine, smectitic,

mesic Vertic Epiaqualfs

6 60

Missouri Upland Loess
MLRA 109

Silt loam; Silty clay
loam

Higginsville silt loam: Fine-silty, mixed, superactive,
mesic Aquic Argiudolls; Wakenda silt loam:
Fine-silty, mixed, superactive, mesic Typic

Argiudolls; Knox silty clay loam: Fine-silty, mixed,
superactive, mesic Mollic Hapludalfs

3 23

Missouri River Alluvium
MLRA 115B

Silt loam; Silty clay
loam

Lowmo silt loam: Coarse-silty, mixed, superactive,
mesic Fluventic Hapludolls; Peers silty clay loam:

Fine-silty, mixed, superactive, mesic
Fluvaquentic Hapludolls

3 12

Mississippi River Delta Alluvium
MLRA 131A

Clay; Sandy loam;
Loam, Silt loam;

Tiptonville silt loam: Fine-silty, mixed, superactive,
thermic Oxyaquic Argiudolls; Reelfoot loam and

sandy loam: Fine-silty, mixed, superactive, thermic
Aquic Argiudolls; Steele sandy loam: Sandy over

clayey, mixed, superactive, nonacid, thermic Aquic
Udifluvents; Dundee silt loam: Fine-silty, mixed,

active, thermic Typic Endoaqualfs; Portageville clay:
Fine, smectitic, calcareous, thermic Vertic

Endoaquolls; Dubbs silt loam: Fine-silty, mixed,
active, thermic Typic Hapludalfs

4 34

2.2. Spectral and Laboratory Data Collection

In situ DRS soil profile spectral data were collected at 153 locations within the 22 fields described
above, to a depth of ca. 1 m using a Veris P4000 (Figure 1a). The probe acquired VIS-NIR data
through a sapphire window (43–367, Edmund Optics, Barrington, NJ, USA). The P4000 used a Si
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charge-coupled device array spectrometer and an InGaAs photodiode-array spectrometer to collect
visible and near-infrared measurements in the range of 343 to 2202 nm. Dark current and reflectance
standard calibrations were performed according to the manufacturer’s recommendations [27]. P4000
VIS-NIR absorbance (i.e., log10[1/reflectance]) measurements were obtained at a nominal 20 Hz rate
as the probe was hydraulically pushed into the soil at approximately 30 mm s−1. To increase the
signal-to-noise ratio, output data representing the mean of every 25 raw measurements were obtained
at approximately 4 cm depth increments to at least 90 cm depth.
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the laboratory (b).

Soil cores were collected at the same locations as the probe data, split by horizon, air-dried,
and sieved (<2 mm) for a total of 708 samples. Soil samples were analyzed for SOC and TN with
a Leco TruMac C/N combustion analyzer (LECO Corp., St. Joseph, MI, USA) following standard
procedures [34]. Water content was determined gravimetrically by oven drying, and soil texture
fractions (clay, silt, and sand) were determined by the sieve-pipette method [35]. DRS spectra were
also collected on the air-dried samples using the Veris P4000 (adapted for the laboratory; Figure 1b).
To improve the signal-to-noise ratio, spectral values from 343–500 nm were removed.

2.3. Alignment of Profile Spectra and Laboratory Data

As soil and sensor data were collected at different depth increments, it was necessary to combine
them to a common level of spatial (i.e., vertical) support. This was done using weighted averaging of
the sensor data to match the soil samples segmented by variable thickness horizons from the soil cores.
The weighting procedure was based on the fact that the sensor depth recorded was the final depth of
the instrument at the end of the 25-scan observation period. This depth then defined the starting depth
for the next observation in the probing sequence. These sensor-data depth segments varied somewhat
in thickness, with an average thickness of 4.0 cm and a standard deviation of 1.3 cm. The initial
starting depth for the first observation in any probe was unknown; therefore, we chose to start at a
depth of zero for the first scan, or at a depth such that the first observation represented no more than
4.0 cm of depth. Observations that fell entirely into a single target soil core layer were weighted by the
depth increment of the observation divided by the total thickness of the layer. Where observations
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spanned two soil layers, the observation was partitioned into both layers based on the amount of depth
represented in each layer and again divided by the layer thickness. At the end of this procedure, the
weighted average sensor data were merged with the corresponding soil properties. Observations with
any missing laboratory or spectral data were dropped, resulting in a final dataset of 708 observations
for analysis. This dataset was further split into three sets via random sampling for validation purposes.
The sample sizes for the model training, model testing, and EPO calibration datasets were 308, 200,
and 200, respectively. Descriptive statistics, including the maximum, minimum, mean, and standard
deviation of soil properties for each independent dataset, can be found in Table 2. Finally, a complete
set of analyses were run ten additional times with different random model training, model testing,
and EPO calibration datasets, and results were similar to those presented. This indicates that the
conclusions were not sensitive to the randomization procedure.

Table 2. Maximum, minimum, mean, and standard deviation (SD) of laboratory-determined soil
properties for the training, testing, and external parameter orthogonalization (EPO) calibration datasets.
All units are in % (g × 100 g soil−1).

Training (n = 308) Testing (n = 200) EPO Calibration (n = 200)

Max Min Mean SD Max Min Mean SD Max Min Mean SD

SOC † 2.95 0.06 0.70 0.45 2.72 0.06 0.68 0.44 1.98 0.03 0.65 0.43
TN ‡ 0.23 0.01 0.06 0.04 0.21 0.01 0.06 0.04 0.16 0.01 0.06 0.04
Sand 98.0 0.6 22.1 26.0 96.2 0.5 24.2 27.2 97.8 0.3 23.7 28.6
Silt 83.7 1.2 51.4 18.7 81.9 2.6 50.8 19.8 81.3 1.4 49.9 20.0

Clay 68.9 0.8 26.4 14.4 72.3 1.2 25.0 14.5 69.7 0.8 26.4 15.5
Moisture 41.8 2.8 23.3 6.4 73.9 3.8 22.5 7.6 42.2 4.6 22.7 6.7

† SOC = soil organic carbon; ‡ TN = total nitrogen.

2.4. External Parameter Orthogonalization (EPO)

External parameter orthogonalization (EPO) was applied to an independent dataset consisting
of field moist and dry scans (n = 200) to decompose the spectra into a useful signal component and
a nonsignal component attributable to external factors, as described in [9] and [16]. In this case,
the external factor was moisture content, and the goal was to remove this component, effectively
isolating the signal. This was accomplished via a linear transformation, which was then applied to the
training and testing datasets as a pre-processing step prior to model development for prediction of soil
properties. The EPO algorithm contains the following steps:

1. Standardize both the field moist spectra and the dry spectra to have mean zero and unit standard
deviation for each soil sample. Note that for a dataset with rows corresponding to soil samples
and columns corresponding to wavelengths, this step is completed via row standardization.

2. Let matrix D be the difference between the field moist spectra and dry spectra.

3. Perform a singular value decomposition on D
′
D to obtain UΣV

′
. Here, U denotes the matrix of

left singular vectors, V denotes the matrix of right singular vectors, and Σ denotes the diagonal
matrix of non-negative singular values.

4. Let matrix Q = VK V
′
K, where VK consists of the first K right singular vectors of V.

5. The EPO transformation matrix is defined as P = I − Q.

Here, K is a tunable parameter that represents the number of EPO factors on which to
orthogonalize. Using the transformation matrix, the EPO-transformed spectra can be found by
X* = XP, where X is the untransformed spectra. See [9] for further details.

2.5. Statistical Models

Seven different analyses were implemented using the training set (n = 308) to fit the model and
the testing set (n = 200) to calculate the out-of-sample root mean square error of prediction (RMSEP).
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In models where EPO was applied, the independent EPO dataset was used to create the EPO projection
matrix, which was then applied to the training and testing spectral datasets. First, PLS regression
models were fit as follows: (1) trained and tested on dry spectra, (2) trained on dry spectra and tested
on field moist spectra, and (3) trained and tested on field moist spectra. Next, a PLS model was
fit to EPO-transformed dry spectra and tested on EPO-transformed field moist spectra, then fit to
EPO-transformed field moist spectra and tested on EPO-transformed field moist spectra. For all PLS
models, a 10-fold cross validation was used to select the number of PLS components to retain using
the one-standard-error heuristic [36] as the retention criterion to determine the optimum number
of components. Specifically, models were fit with 1–50 PLS components and then the model that
minimized the cross-validation error was found. The model with the smallest number of components
such that the RMSEP was within one standard error of the minimum was retained. All PLS work was
conducted using the pls package in R [37].

The final two model types utilized were Bayesian hierarchical models in the form of the Bayesian
Lasso [38]. The Bayesian Lasso provides a form of regularization that shrinks the regression coefficient
values towards zero. Regularization introduces additional information to prevent overfitting. This adds
bias to the predictions, but can often reduce the variance to a greater extent, thus reducing the
overall mean squared error (MSE). The shrinkage proceeds by assuming a double exponential prior
distribution on the coefficients. The full model hierarchy used is as follows:

~
y|X, β, σ2 ∼ Nn

(
Xβ, σ2In

)
β| τ2

1 , . . . , τ2
p , σ2 ∼ Np

(
0p, σ2Dτ

)
, Dτ = diag

(
τ2

1 , . . . , τ2
p

)
τ2

1 , . . . , τ2
p ∼

p

∏
j=1

λ2

2
exp

(
λ2τ2

j

2

)
τ2

j , τ2
1 , . . . , τ2

p > 0

λ2 ∼ Gamma(r, δ)

σ2 ∼ 1
σ2

In this model, ỹ represents the dependent variable after centering to have mean zero.
The independent variables are represented with X and should be standardized to have mean zero and
unit standard deviation. The parameters r and δ can be chosen to be weakly informative, essentially
letting the data outweigh the prior distribution so that these parameters impart little impact on
the analysis. In this case, the value 0.1 was used for both r and δ. This model hierarchy is fully
conjugate and allows for the use of Gibbs sampling to sample from the joint posterior distribution of
the parameters (see Appendix A or [38] for further details). Because of the posterior distribution of the
parameters, predictions are averaged over the values in the posterior sample and therefore constitutes
a type of Bayesian model averaging (see [39]).

For the Bayesian Lasso models, the first 50 PLS components of the EPO-transformed spectra
served as the independent variables. Each model was trained on the EPO-transformed dry spectra
and tested on the EPO-transformed field moist spectra. When fitting the Bayesian Lasso models,
the model was fit on the logit-transformed response for sand, silt, and clay content, given that these
responses are proportions and bounded between 0 and 1. Working on the logit-transformed scale puts
the response on the real line and thus makes the normally distributed response assumption of the
Bayesian Lasso more appropriate. Predictions were then transformed back to the original scale, thus
the interpretation of RMSEP was not affected (that is, the calculated RMSEP corresponds to the original
scale). In some cases, the Bayesian Lasso may not provide enough shrinkage for unimportant covariates.
For this reason, a prefilter step was implemented for the Bayesian Lasso models. The number of PLS
components was varied from 2–50 for all models, and the one with minimum RMSEP on the test set
was selected. The final model type added a categorical independent variable to the Bayesian Lasso
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model that classified each sampling location according to Loam, Sand, or Clay soil type based on the
dominant type in each field (Loam (loam, silt loam), Sand (sandy loam), or Clay (claypan silt loam, clay,
silty clay loam)). Note that all Bayesian Lasso models ran for 1600 iterations, discarding the first 100
iterations as burn-in. Convergence was extremely rapid and was assessed through visual inspection of
the trace plots of the sample chains of the parameters, with no lack of convergence detected.

To select the optimal model within each model type, RMSEP was compared across many tuning
parameter combinations. For the EPO-based models relying only on the PLS package, the number of
PLS components selected by the PLS package for each level of EPO factors from 1–10 was determined.
In this way, the best model was selected for each level of EPO factors, and subsequently, the best
overall model was selected from among all EPO levels. A similar approach was used for the Bayesian
Lasso models. Each combination of EPO factors (from 1–10) and prefiltered covariates (from 2–50 PLS
factors) was evaluated. From these combinations, the best model for each soil property was selected.

3. Results and Discussion

The spectral effects of EPO transformation are evident in Figure 2. The absorbance features of
the field moist and dry spectra are strikingly different prior to the EPO transformation due to the
effects of soil moisture. Following transformation of the spectra via EPO with six factors, the curves
visibly match each other quite well in this example, indicating that the EPO transformation worked as
intended. Table 3 presents the RMSEP for the best model across all model types for each soil property,
along with the number of EPO and PLS factors. The number of PLS factors reflects the number chosen
by the PLS package for PLS and PLS-EPO models, or the number kept in the prefilter step for the
Bayesian Lasso models. The R2, bias, and slope values refer to the best-fit line of the actual versus
predicted values for each model type and soil property, although model R2 was not used as a model
selection criterion in this study. Scatterplots of actual versus predicted values of SOC and clay content
for select models are shown in Figures 3 and 4, respectively, along with the 1:1 (actual = predicted) line
(zero-error line) and the best-fit line.
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Figure 2. Plots of spectra before and after EPO transformation with six EPO factors for a selected
soil sample. Differences in spectral features between the dry and field moist spectra are significantly
reduced as a result of the transformation.



Sensors 2018, 18, 3869 8 of 15

Table 3. The root mean square error of prediction (RMSEP) for the best model within each model
type including partial least squares (PLS), external parameter orthogonalization (EPO) transformation,
Bayesian Lasso (BL), and covariate addition (C) for each soil property: soil organic carbon (SOC),
total nitrogen (TN), and particle size fractions in % (g × 100 g−1 soil). The EPO transformation was
determined on an independent set of field moist and dry spectra (n = 200), and the number of EPO
factors is shown. The number of PLS factors corresponds to the number chosen by the PLS package
in PLS and PLS-EPO models, and refers to the number kept in the prefilter step for Bayesian Lasso
models. R2, bias, and slope represent the best-fit line between the actual and predicted values for each
soil property and model type.

Soil Property Model Type Training Set
(n = 308)

Test Set
(n = 200)

# PLS
Factors

# EPO
Factors RMSEP R2 Bias Slope

SOC PLS Dry Dry 14 0 0.188 0.82 0.01 0.86

SOC PLS Dry Field Moist 14 0 0.960 0.23 0.52 1.00

SOC PLS Field Moist Field Moist 14 0 0.265 0.64 −0.01 0.69

SOC EPO-PLS Dry Field Moist 12 6 0.327 0.46 −0.01 0.49

SOC EPO-PLS Field Moist Field Moist 9 7 0.262 0.65 0.01 0.69

SOC EPO-PLS-BL Dry Field Moist 13 6 0.316 0.49 −0.01 0.54

SOC EPO-PLS-BL-C Dry Field Moist 3 5 0.310 0.55 0.03 0.41

TN PLS Dry Dry 13 0 0.017 0.81 0.00 0.81

TN PLS Dry Field Moist 14 0 0.068 0.20 0.02 0.81

TN PLS Field Moist Field Moist 12 0 0.024 0.63 0.00 0.67

TN EPO-PLS Dry Field Moist 10 6 0.032 0.34 0.00 0.43

TN EPO-PLS Field Moist Field Moist 8 6 0.024 0.63 0.00 0.68

TN EPO-PLS-BL Dry Field Moist 4 3 0.029 0.52 0.00 0.34

TN EPO-PLS-BL-C Dry Field Moist 3 5 0.027 0.53 0.00 0.44

Clay PLS Dry Dry 11 0 6.281 0.81 0.11 0.84

Clay PLS Dry Field Moist 11 0 44.539 0.03 −36.26 −0.23

Clay PLS Field Moist Field Moist 11 0 8.388 0.66 −0.61 0.69

Clay EPO-PLS Dry Field Moist 12 9 10.597 0.49 −0.73 0.60

Clay EPO-PLS Field Moist Field Moist 8 6 7.775 0.71 −0.28 0.72

Clay EPO-PLS-BL Dry Field Moist 16 8 9.594 0.63 −2.98 0.76

Clay EPO-PLS-BL-C Dry Field Moist 3 10 9.048 0.61 −0.38 0.62

Silt PLS Dry Dry 14 0 11.214 0.68 0.30 0.69

Silt PLS Dry Field Moist 14 0 159.498 0.08 −156.88 0.79

Silt PLS Field Moist Field Moist 13 0 11.964 0.63 −0.40 0.64

Silt EPO-PLS Dry Field Moist 6 10 15.013 0.42 −0.97 0.43

Silt EPO-PLS Field Moist Field Moist 12 1 11.908 0.63 −0.25 0.65

Silt EPO-PLS-BL Dry Field Moist 5 8 14.433 0.47 −1.39 0.46

Silt EPO-PLS-BL-C Dry Field Moist 5 8 13.496 0.53 −0.30 0.56

Sand PLS Dry Dry 18 0 13.081 0.77 −0.08 0.85

Sand PLS Dry Field Moist 17 0 155.874 0.23 −79.94 2.04

Sand PLS Field Moist Field Moist 13 0 12.069 0.75 0.59 0.75

Sand EPO-PLS Dry Field Moist 9 10 19.899 0.54 0.25 0.74

Sand EPO-PLS Field Moist Field Moist 15 1 14.289 0.72 0.48 0.73

Sand EPO-PLS-BL Dry Field Moist 6 10 17.855 0.58 −1.21 0.68

Sand EPO-PLS-BL-C Dry Field Moist 4 10 16.197 0.66 −2.82 0.63
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3.1. PLS Models

As expected, the PLS models with the dry training set and dry testing set performed the best
across all soil properties, as indicated by the smallest RMSEP for SOC, TN, and the texture fractions
(R2 ranging from 0.68 to 0.82). PLS models with the field moist training and test sets demonstrated
somewhat lower performance, with a 7–41% increase in RMSEP relative to the PLS models trained and
tested on dry spectra. In contrast, the RMSEP for PLS models trained on dry spectra and tested on field
moist spectra was very large compared to results trained and tested on dry spectra, reflecting a 3- and
4-fold increase for TN and SOC, respectively, and a 6-, 13-, and 3-fold increase for clay, silt, and sand,
respectively (R2 ranging from 0.03 to 0.23). These results are consistent with previous work showing a
reduction in performance when calibrating with dry spectra and predicting with moist spectra [5,15].
Despite the reduction in performance, there are potential advantages of training models on dry spectra
for prediction with field moist spectra, namely that soil samples collected for standard laboratory
analyses, such as SOC and TN, are typically processed by drying and sieving. Thus, dry spectra could
readily be collected on these processed samples to generate a training dataset. Subsequently, these
dry calibration models could be used to predict soil properties with dry spectra collected in a lab or
with field moist spectra collected at higher spatial resolution under variable conditions. However, in
this study, PLS models trained on dry spectra did not perform well when predicting soil properties
with field moist spectra. Thus, the goal of leveraging existing libraries of spectra collected from dry,
processed soil to predict soil properties using field moist spectra was not realized using only PLS on
untransformed spectra from this regional dataset, and alternative techniques were explored.

3.2. EPO-PLS Models

The EPO transformation of the spectra provided substantial reduction in RMSEP for each soil
property for models trained on dry spectra and tested on field moist spectra, demonstrating RMSEP
reductions from 53–91% across soil properties. This improvement is evident in the scatterplots shown in
Figures 3 and 4, where the best-fit and zero-error lines are either widely separated (SOC) or divergent
(clay content) with the PLS-only models (R2 = 0.23 and 0.03, respectively), whereas the EPO-PLS
models greatly improve the relationship between the actual and predicted values (R2 = 0.46 and 0.49,
respectively).

The advantage of robust models that are trained on dry spectra for prediction with field moist
spectra lies in the ability to develop spectral libraries consisting of soil properties and EPO-transformed
dry spectra collected in the laboratory. Subsequently, in situ profile spectra could be collected
under variable environmental conditions at new locations and at high spatial resolution, the EPO
transformation could be applied to these field moist spectra, and predictions of multiple soil properties
could be obtained without the cost of soil core collection or laboratory analysis.

3.3. EPO-PLS-Bayesian Lasso Models and Covariate Addition

The application of the Bayesian Lasso to the EPO-PLS components further improved performance
for models trained on dry spectra and tested on field moist spectra. For SOC and TN, the EPO-PLS-BL
model reduced RMSEP by 4% and 9%, respectively, over the EPO-PLS models. For clay, silt, and sand,
RMSEP was reduced by 10%, 4%, and 11%, respectively, relative to the EPO-PLS models. The addition
of the soil classification covariate to the Bayesian Lasso models (EPO-PLS-BL-C models) demonstrated
a reduction of RMSEP by 5–20% over the EPO-PLS models, with strong improvements observed in the
clay, silt, and sand fractions.

In general, one strength of the Bayesian Lasso lies in the addition of covariates to the model.
Components in PLS models are designed to be uncorrelated, but additional covariates will likely
exhibit some level of correlation with the PLS components. The Bayesian Lasso, or other forms of
regularization, can reduce the prediction variance and in turn reduce mean squared error (MSE).
Figure 5 illustrates the reduction of the coefficient estimates for the Bayesian Lasso model with and
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without the added covariate for prediction of SOC and clay content. In this example, the first six PLS
components were used with 10 EPO factors. This reduction indicates that information contained in the
covariate is already contained in the PLS factors, and thus the inputs are correlated to some extent. To
combat this multicollinearity, the Bayesian Lasso shrinks the coefficients towards zero. In this case,
the observed improvement in the EPO-PLS-BL-C models for clay, silt, and sand was expected and is
intuitive, given that soil texture is a diagnostic characteristic of soil taxonomy and classification. Thus,
in this case, the covariate assisted in model performance by providing a useful intercept or starting
point for prediction of clay, silt, and sand content.
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4. Conclusions and Future Work

This study demonstrated the potential for in situ profile DRS spectral data to predict soil properties
under variable field conditions, using the EPO transformation in conjunction with the Bayesian Lasso
along with additional covariate information using models developed on dry spectra. The main
benefit of this approach lies in the ability to leverage existing libraries of spectra and soil properties
measured in the laboratory on dry, processed soil samples to develop PLS-EPO-BL calibration models.
Alternatively, soil samples handled and processed for standard laboratory analyses or archived soil
samples could be used as training sets to develop PLS-EPO-BL calibration models. Subsequently, these
models could be used to predict soil properties on EPO-transformed field moist spectra collected at
new locations and at high resolution without the expense of soil collection and analysis.

Future work in this area involves the evaluation of additional statistical approaches in combination
with techniques such as sensor data fusion. Given that the strength of the Bayesian Lasso lies in the
ability to add covariates, additional variables should be considered in future studies. Further, it is
also possible to use the Bayesian Lasso on the spectra directly without PLS projections. This approach
could result in increased computation time, although it has the advantage of increased interpretability
and a potential reduction in RMSEP. In this case, Bayesian coefficient values may be used to gain
insight into the importance of spectral features in prediction of soil properties. This is not possible
in many cases under ordinary least squares regression, due to the number of wavelengths sampled
in the spectrum being larger than the sample size used to fit the model. Ultimately, there are many
opportunities for continued work to unlock the potential of profile DRS spectroscopy under different
field conditions, including making the procedure fully automated. The ability to develop a spectral
library with regional calibration models built on EPO-transformed dry spectra that can successfully
predict soil properties using in situ field moist spectra would be beneficial for site-specific precision
agriculture, soil health assessment, and many other applications.
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Appendix A

The full conditional distributions that we used to implement the Bayesian Lasso Gibbs sampler can
be found below (see [40] for details on Gibbs sampling). Specifically, one can sample iteratively from
the list of full conditionals in order to sample from the joint posterior distribution of the parameters.
The full conditionals are as follows:

β|· ∼ Np

(
A−1X′ỹ, σ2A−1

)
, A−1 = X′X + D−1

τ

σ2|· ∼ IG

(
n− 1

2
+

p
2
+ 1,

(ỹ−Xβ)′(ỹ−Xβ)

2
+

β′ D−1
τ β

2

)

1
τ2

j
|· ∼ Inv.Gauss

(λ2σ2

β2
j

) 1
2

, λ2

, j = 1, . . . , p
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λ2|· ∼ Gamma

(
p + r, ∑p

j=1

τ2
j

2
+ δ

)
,

where Dτ is defined in the main text. Here, IG (A,B) represents the Inverse Gamma distribution with
shape parameter A and scale parameter B. The Inverse Gaussian distribution with mean parameter A
and scale parameter B is represented by Inv.Gauss (A,B). Finally, Gamma (A,B) represents the Gamma
distribution with shape parameter A and rate parameter B. See [41] for further details.

The above full conditionals assume no intercept coefficient, because the response and covariates
have been mean-centered. Alternatively, one could add an intercept to the model, allowing for the use
of the response data y without centering to obtain mean zero. The data level of the model then becomes:

y|X, β, σ2 ∼ Nn

(
θn + Xβ, σ2In

)
Here, θn just represents a vector of length n with all values equal to θ. The full conditional for the

intercept parameter is as follows:

θ|· ∼ N
(

y−X′β,
σ2

n

)
.

When including an intercept in the model, the full conditionals for β and σ2 take the
following form:

β|· ∼ Np

(
A−1X′(y− θn), σ2A−1

)
σ2|· ∼ IG

(
n− 1

2
+

p
2
+ 1,

(y− θn −Xβ)′(y− θn −Xβ)

2
+

β′ D−1
τ β

2

)
.

The full conditionals for all other parameters do not differ from the case without an intercept.
In our analysis, we include an intercept term for the models without the soil type covariate, but

remove the intercept when the additional covariate is present.
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