
sensors

Article

Low-Cost and Data Anonymised City Traffic Flow
Data Collection to Support Intelligent Traffic System

Jonathon Handscombe and Hong Qing Yu *

School of Computer Science, University of Bedfordshire, Luton LU1 3JU, UK;
Jonathon.Handscombe@study.beds.ac.uk
* Correspondence: hongqing.yu@beds.ac.uk

Received: 14 December 2018; Accepted: 13 January 2019; Published: 16 January 2019
����������
�������

Abstract: There are many methods of collecting traffic flow data, especially using smart phone apps.
However, few current solutions balance the need for collecting full route data whilst respecting
privacy and remaining low-cost. This project looks into the creation of a wireless sensor network
(WSN) that can balance these requirements in an attempt to negate some of the concerns that come
with this type of technology. Our proposed system only collects location data within a defined city
area. This data is collected with a randomized identifier, which limits repeated identification of the
source vehicle and its occupants. Data collected is shared between vehicle and roadside base stations
when the two are in range. To deal with the fluid nature of this scenario, a purposely designed Media
Access Control (MAC) protocol was designed and implemented using the beacon-slotted ALOHA
(Advocates of Linux Open-source Hawaii Association) mechanism.

Keywords: WSN; MAC; slotted ALOHA; beacon; Arduino; Raspberry Pi; GPS (Global Positioning
System)

1. Introduction

Information and data are important to a city’s council in understanding how best to use their
available assets and resources. The following research identifies previously explored applications
focused on Intelligent Traffic Systems that go beyond merely road usage measurements. They each
rely on data generated by systems or solutions similar to that which will be generated by this project’s
artefact. The term Intelligent Traffic System (ITS) describes the idea of integrating communications
technology with transport infrastructure and vehicles. This integration allows for better management
of the available transport systems meaning that they operate more effectively and efficiently [1].

An example of this improvement in efficiency could be the introduction of adaptive traffic light
systems. Presently, the timing of many traffic light-controlled junctions depends simply on the time of
day. For instance, during morning peak time traffic travelling in one direction is given more priority
over those travelling in the other directions. Later, in the evening peak, the timings may be reversed to
allow the returning traffic greater priority. During the day and the night, the timings may be fairer,
with no priority given to a single direction [2]. With an ITS-based system, the timings could be more
dynamic and reflect the traffic that is waiting. The timings can be increased when there is more traffic
and decreased when there is less. Which would increase the number of vehicles that are processed by
the traffic light system and avoid turning on a green light needlessly if no vehicles are present [3] in the
direction. This concept though could be applied to multiple connected traffic light-controlled junctions
so that they work in conjunction with each other. Reference [4] proposes a method in which each
intersection is in communication with its neighbour. This implementation allows for synchronisation
and the creation of green waves, as the authors refer to them as. Successive green lights would be
able to decongest busy routes but, as the authors warn, it comes at the cost of greater congestion on

Sensors 2019, 19, 347; doi:10.3390/s19020347 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19020347
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/2/347?type=check_update&version=2

Sensors 2019, 19, 347 2 of 48

other roads. Overall, this demonstrates groups of vehicles could be dealt with more intelligently on
a city-wide basis rather than at a single junction.

A further idea that can be applied is that of Priority. Traffic waiting at traffic light controlled
junctions is treated fairly, where everyone waits their turn. Not all traffic is equal, though: emergency
vehicles, for instance, need to move at speed to deal with an emergency. As [5] notes with queuing
traffic comes the difficulty for emergency vehicles that must create a path to progress, slowing them
down. The authors present a system in which traffic lights acknowledge emergency vehicles arriving
and, as quickly as possible, set the lights in that lane to green. With the traffic flowing, there is a reduced
chance that the emergency vehicle will be held up.

A second example of improvement in efficiency is the possibility of congestion detection and
alleviation. This mainly applies to long stretches of road, such as motorways, but the idea is to alert
road users before they reach the congestion ahead. This allows the road user to make an informed
decision on whether to continue or proceed [1]. In the United Kingdom, this example has been
implemented on the most congested motorways. These systems are referred to as Active Traffic
Management (ATM) and sees gantries placed regularly along the road. Each gantry has a single-lane
led matrix display which can alert road users of problems ahead, show lane closures or set the lane
speed [6]. In the last two cases, drivers must abide by what is displayed. The changing of speed can
slow the rate at which the vehicles arrive at the congestion, this can help to alleviate the congestion
and, in some cases, for it to disappear. Research has shown that this type of implementation can have
an impact not only on congestion but also air pollution [7].

Citizens using public transport can be seen as another important use case that is positive for a city
council, as it lowers the number of vehicles on the road, reduces air pollution and creates revenue.
With an ITS-based system, the accurate current and historical traffic data can be applied to improve
the service and experience of this method of transport. Focusing on busses, arrival times are usually
displayed at bus stops to tell users how many minutes until the next bus. The accuracy of this sort of
information is helpful to those which utilise these services. Waiting at a bus stop for a bus that arrives
10 min late, is a frustrating experience for the user. The accurate estimation of arrival times and travel
times are potential areas that this technology can be used to provide a better service. Knowing current
road conditions ahead, the current location of the bus and historical data from previous journeys
allows for the estimations to be fine-tuned and their accuracy improved. This was demonstrated in
part by [8], in their research they collected the GPS data from 1213 unique trips made on Dublin’s route
46 A. With this dataset they were able to estimate the time of arrival at the final stop of the route, the
accuracy though of the predication improved the further the bus travelled. When the bus was further
than 10 km from its final stop, the prediction error was very high. This research demonstrates the
possibilities but also the limitations. A solution cannot rely on one source of data (the bus) to correctly
estimate travel times and arrival times.

One kind of solution can be to rely upon ITS-based systems which fundamentally require a range
of dynamic data collection techniques. Our research including traditional pneumatic road tubes
system and induction loop system and new technologies, such as video detection, piezoelectric sensors,
and smart app applications, demonstrates four major limitations of current data collective solutions:
(1) lacking balances of cost and efficiency, (2) privacy control, (3) incentive publicity, and (4) a new
MAC algorithm supporting efficient concurrent communications.

Especially, the privacy issue has always been ignored. However, privacy cannot be treated as
before since more restrictive laws are introduced, e.g., GDPR (General Data Protection Regulation)
has been applied to the whole of Europe from May 2018, so a new alternative technique solution
must be developed. In the paper “Toward Community Sensing”, [9] acknowledge that for a person
to surrender data from private sensors there may be a need for an incentive. They indicate that the
incentive for this type of data may need to be of the monetary kind. This brings in the consideration of
cost versus reward from the city council perspective especially when budgets must be kept to. It is
acknowledged, though, that in some cases the reward may be as simple as those seen in the Active

Sensors 2019, 19, 347 3 of 48

Traffic Management applications. In other words, being able to save time and avoid congestion may be
enough of a reward to some users. The city council then, in theory, may need to provide some form of
incentive to increase what would be an undeniably slow adoption rate of a system such as the artefact.
One such idea may be to offer free or discounted parking charges to those who allow the system
to be installed. In Milton Keynes, where our research is based, a smart city in the United Kingdom
implemented a type of incentive discount for those who partake in their car sharing scheme [10].

Our initial objective of the project is to carry out systematic research into current data collection
limitations. Namely, understanding why information is important to cities and users value their
privacy, identify the technical challenges of implementing an alternative solution, and evaluation.
As a result, we proposed a WSN-based system and a new Beacon-Slotted Aloha MAC communication
protocol as a solution.

The final research contributions of the project are designated a low-cost traffic data collection
device that use new Beacon-Slotted Aloha MAC protocol for wireless communications between the
tracking device and base station device that supports concurrent and privacy control.

2. Traffic Flow Data Collection Methods and Wireless Communication

2.1. Traffic Flow Data Collection Methods

2.1.1. Pneumatic Road Tubes

Pneumatic road tubes are simply rubber tubes that are placed across lanes of a road. As the tyres
of vehicles run over them the tube is squashed which changes the pressure within. The difference in
pressure and the moving air is recorded by a counting device located on one side of the road [11]. This
implementation does not gather route data but simply allows for the understanding of how many
vehicles use a section of road.

The implementation of this solution is designed to be temporary and low cost. There are multiple
methods by which to lay out the tubes, with each one depending on the road in question [12]. Figure 1
demonstrates a layout where the tube is bolted to each side of the road covering opposing lanes. This
implementation means that traffic in each lane will be counted, with no way to differentiate the number
of vehicles travelling in each lane. Another layout would involve using a rubber tube and counting
device for each lane. In this case, each rubber tube would be terminated on the centre line.

Sensors 2019, 19, 347 3 of 48

form of incentive to increase what would be an undeniably slow adoption rate of a system such as the

artefact. One such idea may be to offer free or discounted parking charges to those who allow the system

to be installed. In Milton Keynes, where our research is based, a smart city in the United Kingdom

implemented a type of incentive discount for those who partake in their car sharing scheme [10].

Our initial objective of the project is to carry out systematic research into current data collection

limitations. Namely, understanding why information is important to cities and users value their

privacy, identify the technical challenges of implementing an alternative solution, and evaluation. As

a result, we proposed a WSN-based system and a new Beacon-Slotted Aloha MAC communication

protocol as a solution.

The final research contributions of the project are designated a low-cost traffic data collection

device that use new Beacon-Slotted Aloha MAC protocol for wireless communications between the

tracking device and base station device that supports concurrent and privacy control.

2. Traffic Flow Data Collection Methods and Wireless Communication

2.1. Traffic Flow Data Collection Methods

2.1.1. Pneumatic Road Tubes

Pneumatic road tubes are simply rubber tubes that are placed across lanes of a road. As the tyres

of vehicles run over them the tube is squashed which changes the pressure within. The difference in

pressure and the moving air is recorded by a counting device located on one side of the road [11].

This implementation does not gather route data but simply allows for the understanding of how

many vehicles use a section of road.

The implementation of this solution is designed to be temporary and low cost. There are multiple

methods by which to lay out the tubes, with each one depending on the road in question [12]. Figure

1 demonstrates a layout where the tube is bolted to each side of the road covering opposing lanes.

This implementation means that traffic in each lane will be counted, with no way to differentiate the

number of vehicles travelling in each lane. Another layout would involve using a rubber tube and

counting device for each lane. In this case, each rubber tube would be terminated on the centre line.

Figure 1. Illustration demonstrating implementation of pneumatic road tubes. The blue lines

represent the road tube and the green box representing the counting device.

In addition, some layouts will simply use one rubber tube whilst others will use multiple in

succession. Using multiple provides the advantage of being able to understand what direction the

traffic is travelling in. If the road does have opposing lanes and is configured in the manner

demonstrated by Figure 1, multiple vehicles synchronously running over the tube will be counted as

a single vehicle, likewise, vehicles travelling too closely may not be individually counted.

2.1.2. Induction Loop

This solution involves embedding wire in a square formation within the road surface. Electrical

energy is transferred through the wire at a certain frequency. When a vehicle passes over the loop

Figure 1. Illustration demonstrating implementation of pneumatic road tubes. The blue lines represent
the road tube and the green box representing the counting device.

In addition, some layouts will simply use one rubber tube whilst others will use multiple in
succession. Using multiple provides the advantage of being able to understand what direction
the traffic is travelling in. If the road does have opposing lanes and is configured in the manner
demonstrated by Figure 1, multiple vehicles synchronously running over the tube will be counted as
a single vehicle, likewise, vehicles travelling too closely may not be individually counted.

Sensors 2019, 19, 347 4 of 48

2.1.2. Induction Loop

This solution involves embedding wire in a square formation within the road surface. Electrical
energy is transferred through the wire at a certain frequency. When a vehicle passes over the loop
fluctuations in the frequency occur, these fluctuations are then counted by detecting device located
on the side of the road. Some implementations allow for the identification of types of vehicles but,
generally, this solution is used only to count vehicles [11]. As Figure 2 demonstrates, the wire is placed
within the surface tarmac of each lane which provides a longer-term implementation. The upside
of this per lane implementation over the pneumatic tube is that traffic in each lane can be counted
individually. This will allow for the tally of vehicles using one lane over another or which direction to
be determined.

Sensors 2019, 19, 347 4 of 48

fluctuations in the frequency occur, these fluctuations are then counted by detecting device located

on the side of the road. Some implementations allow for the identification of types of vehicles but,

generally, this solution is used only to count vehicles [11]. As Figure 2 demonstrates, the wire is

placed within the surface tarmac of each lane which provides a longer-term implementation. The

upside of this per lane implementation over the pneumatic tube is that traffic in each lane can be

counted individually. This will allow for the tally of vehicles using one lane over another or which

direction to be determined.

Figure 2. Illustration demonstrating implementation of two induction loops. The blue line

represents the wire embedded into the road and the green box representing the power supply and

detecting device.

Placing multiple loops in succession within the same lane allows for the identification of speed

and length of the vehicle from which type can be determined [13].

2.1.3. Video Image Detection

This solution uses video cameras to identify the number plates of moving vehicles which are

then recorded for later use. This technology is known as ANPR (Automatic Number Plate

Recognition) and relies upon optical character recognition. Once a number plate is read, information

about the vehicle such as type can be queried from Government databases [14]. From a data point of

view, in addition to identifying vehicle type, this solution also provides vehicle counting and the

possibility of route identification. The possibility of route identification depends on the number of

cameras that exist within a city and their density. It will also depend on the number of cameras a

vehicle has passed by to allow a route can be determined or estimated. The implementation of this

solution is designed to be long-term, lasting many years. It also comes at a greater cost as a result, as

many interconnected video cameras are required.

2.1.4. Piezoelectric Sensors

Piezoelectric sensors turn mechanical energy into electrical energy and are embedded within

grooves cut into the road’s surface [11]. As vehicles, bicycles or pedestrians walk over the sensors

they generate a small electrical charge which is then recorded by a roadside counting device. The

sensors can also be used to measure weight as the electrical charge generated is proportional to the

movement they sense.

Like the previous solution, piezoelectric sensors are designed to be a longer-term solution. As

Figure 3 on the following page demonstrates, the sensor can cover either the entire width of the road

or just a single lane. This presents an advantage over the pneumatic road tube, in that it can collect

data from single lanes allowing for analysis of lane utilisation.

Figure 2. Illustration demonstrating implementation of two induction loops. The blue line represents
the wire embedded into the road and the green box representing the power supply and detecting device.

Placing multiple loops in succession within the same lane allows for the identification of speed
and length of the vehicle from which type can be determined [13].

2.1.3. Video Image Detection

This solution uses video cameras to identify the number plates of moving vehicles which are then
recorded for later use. This technology is known as ANPR (Automatic Number Plate Recognition) and
relies upon optical character recognition. Once a number plate is read, information about the vehicle
such as type can be queried from Government databases [14]. From a data point of view, in addition
to identifying vehicle type, this solution also provides vehicle counting and the possibility of route
identification. The possibility of route identification depends on the number of cameras that exist
within a city and their density. It will also depend on the number of cameras a vehicle has passed by to
allow a route can be determined or estimated. The implementation of this solution is designed to be
long-term, lasting many years. It also comes at a greater cost as a result, as many interconnected video
cameras are required.

2.1.4. Piezoelectric Sensors

Piezoelectric sensors turn mechanical energy into electrical energy and are embedded within
grooves cut into the road’s surface [11]. As vehicles, bicycles or pedestrians walk over the sensors they
generate a small electrical charge which is then recorded by a roadside counting device. The sensors
can also be used to measure weight as the electrical charge generated is proportional to the movement
they sense.

Like the previous solution, piezoelectric sensors are designed to be a longer-term solution. As
Figure 3 on the following page demonstrates, the sensor can cover either the entire width of the road
or just a single lane. This presents an advantage over the pneumatic road tube, in that it can collect
data from single lanes allowing for analysis of lane utilisation.

Sensors 2019, 19, 347 5 of 48
Sensors 2019, 19, 347 5 of 48

Figure 3. Illustration demonstrating implementation of two piezoelectric sensors. The blue line

represents the sensor placed within a groove in the road and the green box representing the

counting device.

2.1.5. Smartphone App

Smartphone app solutions utilise the onboard sensors of a smartphone to gather the required data.

This allows for the collection of GPS location data, gyroscope and accelerometer data. The collection of

these data types a couple of advantages over the other solutions. Firstly, full location data is collected

which will allow the determination of full routes. Secondly, the accelerometer data can be used to help

identify potholes or damaged road services [15]. This type of information is useful for the city council,

as they can build an understanding of where to spend their road maintenance budgets.

2.1.6. Comparing Results

Table 1 provides a comparison between this project’s system and the other solution explored in

the preceding sub-sections. The following data is generalised from the sources provided in those sub-

sections.

Table 1. Comparison between the different solutions and this project’s system.

 Intrusive or

Non-intrusive

Implementation

Gathered

Information

Area

Covered
Privacy Lifespan

P
n

eu
m

at
ic

 R
o

ad

T
u

b
e

Intrusive:

Requires short-

term road

closure for the

tube to be

bolted to

surface.

Count

Small:

Counts

vehicles

between

junctions.

Full:

No

identification

and record

kept of

vehicle

Short-

term

V
id

eo
 I

m
ag

e

D
et

ec
ti

o
n

 Intrusive:

Requires

installation of

CCTV cameras

roadside

Counts,

Type of

vehicle,

Number

plates,

Partial Route

Small:

Can only

monitor a

small

section of

the road

network

Little:

Identification

and record

kept of

vehicle

Long-

term

Figure 3. Illustration demonstrating implementation of two piezoelectric sensors. The blue line
represents the sensor placed within a groove in the road and the green box representing the
counting device.

2.1.5. Smartphone App

Smartphone app solutions utilise the onboard sensors of a smartphone to gather the required data.
This allows for the collection of GPS location data, gyroscope and accelerometer data. The collection of
these data types a couple of advantages over the other solutions. Firstly, full location data is collected
which will allow the determination of full routes. Secondly, the accelerometer data can be used to help
identify potholes or damaged road services [15]. This type of information is useful for the city council,
as they can build an understanding of where to spend their road maintenance budgets.

2.1.6. Comparing Results

Table 1 provides a comparison between this project’s system and the other solution explored
in the preceding sub-sections. The following data is generalised from the sources provided in
those sub-sections.

After researching each of the alternative solutions it is clear that they are each intended for
different applications.

In the case of the traditional solutions such as the road tubes, induction loops, and piezoelectric
sensors, it is evident that they are limited in their ability. They are more concerned with simply
counting or detecting if a vehicle is present and in some layouts: vehicle types. Whilst this will allow
the city council to understand how many and what types of vehicles are using a section of road. More
data than this is required though for the applications discussed in the literature review.

The video image detection solution offers more capability as does the smartphone app. The use
of Automatic Number Plate Recognition (ANPR) provides an opportunity for the city to determine
the routes which vehicles have taken. This does though overlook privacy as no driver will have
provided consent for their data to be used in this manner. With the smartphone app, consent may
be requested of and given by the user. Of all the solutions discussed the smartphone app offers the
greatest functionality and opportunity for the gathering of full route data.

The disadvantage of the smartphone app is the topic of convenience paired with privacy. There
are either one or two ways in which the app may be used. Either the user must open the app whenever
they make a journey so that data may be collected or allow the app to work always in the background.
With the first suggestion, there may be times where the user fails to open the app, so no data is collected.
With the second suggestion, the user is asked to give up more of their privacy as anything they do will
be collected.

This project will explore respecting privacy by applying a geofence to restrict when data is
collected. It will also be restricted further by the fact that it will be constrained to the vehicle. With a
smartphone app, even if a geofence is applied to provide restriction data will still be collected when
the user is outside of their vehicle. This is the advantage of the project’s artefact system. The user does

Sensors 2019, 19, 347 6 of 48

not have to do anything but drive their vehicle around as they usually would. Once they leave their
vehicle they are no longer sharing location data until they return.

Many of the methods are fixed to a segment of a road or to an area. Making modifications to
the areas in which they collect data from, would be time-consuming and costly. In the case of the
smartphone app and this project’s artefact, the area that is being monitored, the geofenced area, can be
modified at will as the area exists in software alone.

Table 1. Comparison between the different solutions and this project’s system.

Intrusive or
Non-intrusive

Implementation

Gathered
Information Area Covered Privacy Lifespan

Pn
eu

m
at

ic
R

oa
d

Tu
be Intrusive:

Requires short-term road
closure for the tube to be
bolted to surface.

Count
Small:
Counts vehicles between
junctions.

Full:
No identification and
record kept of vehicle

Short-term

V
id

eo
Im

ag
e

D
et

ec
ti

on Intrusive:
Requires installation of
CCTV cameras roadside

Counts,
Type of vehicle,
Number plates,
Partial Route

Small:
Can only monitor a
small section of the road
network

Little:
Identification and
record kept of vehicle

Long-term

In
du

ct
io

n
Lo

op

Intrusive:
Requires lane closure for
installation

Count,
Type of vehicle

Small:
Only the immediate area
above

Full:
No identification and
record kept of vehicle

Long-term

Pi
ez

oe
le

ct
ri

c
Se

ns
or

s Intrusive:
Requires lane closure for
installation

Count,
Type of vehicle

Small:
Only the immediate area
above

Full:
No identification and
record kept of vehicle

Long-term

M
an

ua
l

C
ou

nt
in

g

Non-intrusive: No lane
or road closures required

Count,
Vehicle type,
Number plates

Small:
Can only monitor a
small section of the road
network

Little:
Identification and
record kept of vehicle

Short-term

Sm
ar

tp
ho

ne
A

pp Non-intrusive: No lane
or road closures required

Vehicle type,
Current location,
Full route,
Accelerometer

Large:
Travels with the user to
provide full route data

Little:
Identification and
movement record kept
with identifiers

Long-term

A
rt

ef
ac

t

Intrusive:
Requires installation of
base stations roadside

Full route data,
Current location

Medium:
Travels with the user but
provides data only when
within the geofence

Medium:
Identification and
movement record kept
with no identifiers

Long-term

2.2. Wireless Communication Protocols

Our proposed project is the vehicle tracking node to base station communication, the design of
this determines how well the solution will be capable of collecting the data required.

Most importantly, the solution needs to be designed around the idea that nodes will only be
within range for a short period of time. The time may range from tens of seconds to a few minutes but
within that period the node must be able to share all its recorded data. It will not be alone though, as
there will be other nodes competing to achieve the same goal. This needs to be managed in an effective
way to reduce collisions and allow data to be received successfully.

Secondly, the node needs to know that a base station is present. It is not good design to have a
node which constantly transmits information whilst knowing that a high percentage of the time it is
not within range of anything that can receive it.

Thirdly, the node also needs to know that the base station has received what it sent. Every point
of data recorded is important, so care should be taken to ensure that the transmission completes
successfully. This is referring to an implementation of acknowledgement and resending.

Sensors 2019, 19, 347 7 of 48

Finally, the aspect of privacy needs to be taken into consideration after all it is another concern
of this project. At no point during this interaction should an individual node and in turn, a vehicle
be able to be linked to a previous journey. This then will rely upon the use of unique identifiers that
change regular enough that this would not be possible.

To support multiple vehicles and ensure they have an opportunity to share their data, some form
of media access control (MAC) protocol was required.

The decision was made to base the MAC solution on the ALOHA protocol. ALOHA was mainly
chosen for its simplicity and adaptability. The protocol can be adapted to meet the requirements
needed by the artefact system, namely, a method of both acknowledging and signifying that a base
station is near.

To evaluate current possible wireless communication protocols, the 868 MHz variant of HopeRF’s
RFM69CW transceiver (HopeRF Electronic, Shenzhen, China) was chosen for the project. The transceiver
is low cost, low power and because of the frequency chosen longer range communication is possible.
HopeRF states that the transceivers are capable of a 200 m range with no obstacles, which was
validated during development. This frequency is, importantly, also unlicensed in the UK for short-range
communication [16].

In addition, the transceiver also has the capability to encrypt the data fields of packets and
provides cyclic redundancy check (CRC) functionality.

These RF (radio frequency) modules are transceivers meaning that they are capable of transmitting
and receiving data but in a half-duplex manner. In other words, they can send or receive but not at
the same time. The fact that they can both send and receive is important for this project as both the
tracking nodes and base station will need to perform both operations.

The other important factor is their cost, a single transceiver can be bought for around £1.93 [17]
from several sellers on AliExpress.

2.2.1. Pure ALOHA

Pure ALOHA is the most basic form of a MAC protocol, it has two rules:
If there is data to be sent, send the data; and
If, while sending that data, data is received from another node, a collision has occurred. If this

happens, try resending the data later.
This type of protocol is intended to be used with nodes that communicate infrequently or when

the number of nodes is low. The main problem with this is that the chance of a collision occurring
is high, the protocol only has an 18% successful transmission rate, which in turn means that there
is increased requirement to resend (as demonstrated by Figure 4). An 18% successful rate is exactly
matched to the theory proved by previous research result that the pure ALOHA cannot achieve over
and 18.4% successful transmissions rate [18].

Pure ALOHA is not suited to a network such as the one that this project created. Whilst there
may be periods of infrequent communication, there will also be bursts of data as vehicles arrive and
remain stationary. During these burst periods, the chance of collisions is high.

Taking the 18% chance of successful communication into account the protocol will only support
17 successful transmissions per second:

(56 kbps/100)× 18 = 10.08 kbps
72 bytes per second = 576 bits per second and 10.08 kbps = 10,080 bits per second
10080
576 = 17.5 messages per second

The problem is that acknowledgements would add to general network traffic. With an 18% chance
of successful communication, there is a high chance that the acknowledgements would not make it
to the node which requires it. This could force a resend loop, where acknowledgements are never
received, and nodes keep resending thinking that the original packet was not received by the base

Sensors 2019, 19, 347 8 of 48

station. With the number of packets that need to send in a short period, this scenario could happen
frequently, lowering the throughput.

The other problem with this solution overall is that the vehicle tracking node does not know if a
base station exists, which is a requirement for the solution.

Sensors 2019, 19, 347 8 of 48

In addition, the transceiver also has the capability to encrypt the data fields of packets and

provides cyclic redundancy check (CRC) functionality.

These RF (radio frequency) modules are transceivers meaning that they are capable of

transmitting and receiving data but in a half-duplex manner. In other words, they can send or receive

but not at the same time. The fact that they can both send and receive is important for this project as

both the tracking nodes and base station will need to perform both operations.

The other important factor is their cost, a single transceiver can be bought for around £1.93 [17]

from several sellers on AliExpress.

2.2.1. Pure ALOHA

Pure ALOHA is the most basic form of a MAC protocol, it has two rules:

If there is data to be sent, send the data; and

If, while sending that data, data is received from another node, a collision has occurred. If this

happens, try resending the data later.

This type of protocol is intended to be used with nodes that communicate infrequently or when

the number of nodes is low. The main problem with this is that the chance of a collision occurring is

high, the protocol only has an 18% successful transmission rate, which in turn means that there is

increased requirement to resend (as demonstrated by Figure 4). An 18% successful rate is exactly

matched to the theory proved by previous research result that the pure ALOHA cannot achieve over

and 18.4% successful transmissions rate [18].

Figure 4. Diagram demonstrating a network using the ALOHA protocol with grey boxes indicating

collisions and overlapping. White boxes indicate successful communication.

Pure ALOHA is not suited to a network such as the one that this project created. Whilst there

may be periods of infrequent communication, there will also be bursts of data as vehicles arrive and

remain stationary. During these burst periods, the chance of collisions is high.

Taking the 18% chance of successful communication into account the protocol will only support

17 successful transmissions per second:

(56 ����/100) × 18 = 10.08 ����

72 bytes per second = 576 bits per second and 10.08 kbps = 10,080 bits per second
�����

���
= 17.5 messages per second

The problem is that acknowledgements would add to general network traffic. With an 18%

chance of successful communication, there is a high chance that the acknowledgements would not

make it to the node which requires it. This could force a resend loop, where acknowledgements are

never received, and nodes keep resending thinking that the original packet was not received by the

base station. With the number of packets that need to send in a short period, this scenario could

happen frequently, lowering the throughput.

The other problem with this solution overall is that the vehicle tracking node does not know if a

base station exists, which is a requirement for the solution.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Figure 4. Diagram demonstrating a network using the ALOHA protocol with grey boxes indicating
collisions and overlapping. White boxes indicate successful communication.

2.2.2. Slotted ALOHA

The other important protocol is slotted ALOHA, which modifies the protocol by adding slots that
dictate when a node may start transmitting. Adding this rule doubles the throughput of the protocol
to a successful transmission rate of 36%.

Figure 5 demonstrates how each node waits for a slot to begin before sending its data. With the
increased successful transmission chance of 36%, the network would see 35 successful transmissions
per second:

(56 kbps/100)× 36 = 20.16 kbps
72 bytes per second = 576 bits per second and 20.16 kbps = 20,160 bits per second
20160
576 = 35 messages per second

Sensors 2019, 19, 347 9 of 48

2.2.2. Slotted ALOHA

The other important protocol is slotted ALOHA, which modifies the protocol by adding slots

that dictate when a node may start transmitting. Adding this rule doubles the throughput of the

protocol to a successful transmission rate of 36%.

Figure 5 demonstrates how each node waits for a slot to begin before sending its data. With the

increased successful transmission chance of 36%, the network would see 35 successful transmissions

per second:

(56 ����/100) × 36 = 20.16 ����

72 bytes per second = 576 bits per second and 20.16 kbps = 20,160 bits per second
�����

���
= 35 messages per second

Figure 5. Diagram demonstrating a network using the slotted ALOHA protocol with grey boxes

indicating collisions and overlapping. White boxes indicate successful communication.

The biggest problem with slotted ALOHA is keeping timings, as the time intervals between

the slots are kept by the node. Each node must keep time correctly and ensure that it does not drift

enough to start a slot late. With the artefact, keeping accurate time may be difficult. Whilst the base

stations can connect to a network time server on the internet to keep themselves accurate, the

vehicle tracking nodes will be offline. Keeping accurate timing between all components in the WSN

will be difficult.

This solution also presents the same problems as Pure ALOHA, in that it does not provide an

opportunity to acknowledge successful transmissions and it also does not signify that a base station

exists. If this solution was used, then a slot would be taken up solely by the acknowledgement and

could then collide with another packet, causing the same problems as before.

3. Proposed Solutions

The WSN created for this project does this by only collecting location data within a defined city

area. The recorded data is collected with a randomised identifier, which prevents identification of the

source vehicle to provide privacy control and its occupants even through repeated similar journeys.

There will be two developed parts to the artefact system which uses low-cost hardware.

The first part is a GPS tracking node which is fitted to and powered by a vehicle. It will be the

device which collects the location data, stores it locally and then shares it with a base station when

the two are in range.

The base station, the second part of the artefact system, will collect the information from local

vehicle tracking nodes, perform some processing and pass it onwards using an Internet connection

to the cloud service. The cloud service would then perform the remaining processing required and

store the data. However, this paper focuses on the data collection side.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Figure 5. Diagram demonstrating a network using the slotted ALOHA protocol with grey boxes
indicating collisions and overlapping. White boxes indicate successful communication.

The biggest problem with slotted ALOHA is keeping timings, as the time intervals between the
slots are kept by the node. Each node must keep time correctly and ensure that it does not drift enough

Sensors 2019, 19, 347 9 of 48

to start a slot late. With the artefact, keeping accurate time may be difficult. Whilst the base stations
can connect to a network time server on the internet to keep themselves accurate, the vehicle tracking
nodes will be offline. Keeping accurate timing between all components in the WSN will be difficult.

This solution also presents the same problems as Pure ALOHA, in that it does not provide an
opportunity to acknowledge successful transmissions and it also does not signify that a base station
exists. If this solution was used, then a slot would be taken up solely by the acknowledgement and
could then collide with another packet, causing the same problems as before.

3. Proposed Solutions

The WSN created for this project does this by only collecting location data within a defined city
area. The recorded data is collected with a randomised identifier, which prevents identification of the
source vehicle to provide privacy control and its occupants even through repeated similar journeys.
There will be two developed parts to the artefact system which uses low-cost hardware.

The first part is a GPS tracking node which is fitted to and powered by a vehicle. It will be the
device which collects the location data, stores it locally and then shares it with a base station when the
two are in range.

The base station, the second part of the artefact system, will collect the information from local
vehicle tracking nodes, perform some processing and pass it onwards using an Internet connection to
the cloud service. The cloud service would then perform the remaining processing required and store
the data. However, this paper focuses on the data collection side.

Finally, the wireless communication between tracking device and base station will be applied
to our alternative customized Beacon-Slotted ALOHA MAC protocol to improve the successful data
transmission rate.

3.1. The Software Used

To accelerate development on the software side, a library developed by LowPowerLabs [19] was
used to provide an interface between the transmitter and the microcontroller. This library provided
a flexible programming interface that negated the need to handle SPI (Serial Peripheral Interface)
communication which would have required more time.

Whilst various aspects of the library were flexible, there were some limitations, of which were
inherited from the transceiver itself.

The packet structure that this implementation uses is shown in Figure 6.

Sensors 2019, 19, 347 10 of 48

Finally, the wireless communication between tracking device and base station will be applied to

our alternative customized Beacon-Slotted ALOHA MAC protocol to improve the successful data

transmission rate.

3.1. The Software Used

To accelerate development on the software side, a library developed by LowPowerLabs [19] was

used to provide an interface between the transmitter and the microcontroller. This library provided

a flexible programming interface that negated the need to handle SPI (Serial Peripheral Interface)

communication which would have required more time.

Whilst various aspects of the library were flexible, there were some limitations, of which were

inherited from the transceiver itself.

The packet structure that this implementation uses is shown in Figure 6.

Preamble

(3)
SYN (2)

Header (4)

Data

(n)
CRC (2) Payload

Length (8 bit)

DestID

(8 bit)

SenderID

(8 bit)

CTL

(8Bit)

Figure 6. Implemented packet structure.

The shading of the fields within the packet is done so to demonstrate the originator. The green

fields are handled by the hardware, the blue by the library and the white by this project.

As mentioned previously the transceiver provides an encryption function, if this is used then

the payload can be a maximum of 65 bytes. The payload includes the header provided by the library

which leaves a maximum of 61 bytes for the data field and 72 bytes overall for the packet.

Each message from a node needs to provide a sessionID, a timestamp, and the recorded latitude

and longitude. This amount of data is difficult to fit into 61 bytes and so the following rules were

decided upon:

Firstly, the timestamp does not need to be an ISO 8601 formatted timestamp but rather provide

only the day, the hour, the minute, and the second. This would provide enough information from

which a later process such as one on the cloud service could fill in the unknown. It could add the

month and year based on the day in which the data was sent from the base station. There would also

be a limited chance of a repeated date within the node’s message queue, for example, the fourth of

July and the fourth of August as the node’s data is held only in RAM (Random Access Memory).

When the vehicle is turned off any unsent data is lost.

Secondly, the latitude and longitude were represented in decimal form and restricted to five

decimal places. This provided a maximum accuracy of 1.1132 m which was the limit of the chosen

GPS modules.

These two rules helped to ensure that the required data can be sent within the payload.

The library also implements nodeIDs which are used to identify senders and receivers for each

packet. A Figure 6 explained, the destinationID and senderID fields are each eight bits. Eight bits

provides addressing space for 255 nodes, with one of them used for a (base station) and the remainder

for the other nodes. This, of course, would not be enough for a production system nor would it be

practical as the values are assigned statically. Meaning that if a vehicle is not used for a while, its

node will still hold onto an assigned ID, which could have been used by another vehicle’s node.

In addition, a concern of this project is privacy and preventing the identification of individual

vehicles. By assigning unique IDs to each node there is an opportunity to identify a specific vehicle.

It was due to this concern that the decision was made to use the ID fields for another purpose: to

identify vehicles types. With this solution, all base stations are assigned an ID of 1 and a node is

assigned an ID based on what type of vehicle it is attached to. For example, busses can be assigned

Figure 6. Implemented packet structure.

The shading of the fields within the packet is done so to demonstrate the originator. The green
fields are handled by the hardware, the blue by the library and the white by this project.

As mentioned previously the transceiver provides an encryption function, if this is used then
the payload can be a maximum of 65 bytes. The payload includes the header provided by the library
which leaves a maximum of 61 bytes for the data field and 72 bytes overall for the packet.

Each message from a node needs to provide a sessionID, a timestamp, and the recorded latitude
and longitude. This amount of data is difficult to fit into 61 bytes and so the following rules were
decided upon:

Sensors 2019, 19, 347 10 of 48

Firstly, the timestamp does not need to be an ISO 8601 formatted timestamp but rather provide
only the day, the hour, the minute, and the second. This would provide enough information from
which a later process such as one on the cloud service could fill in the unknown. It could add the
month and year based on the day in which the data was sent from the base station. There would also
be a limited chance of a repeated date within the node’s message queue, for example, the fourth of July
and the fourth of August as the node’s data is held only in RAM (Random Access Memory). When the
vehicle is turned off any unsent data is lost.

Secondly, the latitude and longitude were represented in decimal form and restricted to five
decimal places. This provided a maximum accuracy of 1.1132 m which was the limit of the chosen
GPS modules.

These two rules helped to ensure that the required data can be sent within the payload.
The library also implements nodeIDs which are used to identify senders and receivers for each

packet. A Figure 6 explained, the destinationID and senderID fields are each eight bits. Eight bits
provides addressing space for 255 nodes, with one of them used for a (base station) and the remainder
for the other nodes. This, of course, would not be enough for a production system nor would it be
practical as the values are assigned statically. Meaning that if a vehicle is not used for a while, its node
will still hold onto an assigned ID, which could have been used by another vehicle’s node.

In addition, a concern of this project is privacy and preventing the identification of individual
vehicles. By assigning unique IDs to each node there is an opportunity to identify a specific vehicle.
It was due to this concern that the decision was made to use the ID fields for another purpose: to
identify vehicles types. With this solution, all base stations are assigned an ID of 1 and a node is
assigned an ID based on what type of vehicle it is attached to. For example, busses can be assigned an
ID of 2, taxis an ID of 3, and private vehicles 4. There is an opportunity to go into greater detail with
this implementation, for instance, 2 represents double-decker buses and 3 represents single-decker
buses. In this case, though the privacy concern must be remembered as more detail that is known
about a vehicle will make it easier to identify.

3.2. The New Beacon-Slotted ALOHA MAC

The solution is then to use slotted ALOHA as a base but introduce beacons which help to signify
the beginning of a slot. Each beacon is a broadcast message sent from a base station and provides
a timing point for each vehicle tracking node. This will limit the possible time drift and help to
synchronise each node.

In addition, the beacons are used as an acknowledgement. Each one contains the sessionID of the
last packet it received. This allows the sender to determine the successfulness of its last transmission
by comparing the value in the beacon to the one it sent during the last slot.

The final part of the solution is the back-off, which is implemented in a similar fashion to slotted
ALOHA. If a sessionID contained in a beacon is not the same as one sent by a vehicle tracking node
then it will back-off for a number of slots. When this back-off value has counted down then it will try
to resend in the next available slot.

Figure 7 demonstrates how the beacon implementation works. In the first slot, only Node 1 sends
a packet, which is then acknowledged by the next beacon.

In the second slot, both Node 2 and Node 4 send a packet each causing a collision. If no packets
are received, then a sessionID of 0000 is sent in the next beacon. This tells Node 2 and Node 4 that each
of their respective packets failed to arrive at the base station. Node 2 and Node 4 will now back-off,
Node 4 picks a 0 slot back-off so tries again this slot whilst Node 2 picks a larger value.

Our evaluation result later shows that the successful transmission rate can achieve 89.6%.

Sensors 2019, 19, 347 11 of 48

Sensors 2019, 19, 347 11 of 48

an ID of 2, taxis an ID of 3, and private vehicles 4. There is an opportunity to go into greater detail

with this implementation, for instance, 2 represents double-decker buses and 3 represents single-

decker buses. In this case, though the privacy concern must be remembered as more detail that is

known about a vehicle will make it easier to identify.

3.2. The New Beacon-Slotted ALOHA MAC

The solution is then to use slotted ALOHA as a base but introduce beacons which help to signify

the beginning of a slot. Each beacon is a broadcast message sent from a base station and provides a

timing point for each vehicle tracking node. This will limit the possible time drift and help to

synchronise each node.

In addition, the beacons are used as an acknowledgement. Each one contains the sessionID of

the last packet it received. This allows the sender to determine the successfulness of its last

transmission by comparing the value in the beacon to the one it sent during the last slot.

The final part of the solution is the back-off, which is implemented in a similar fashion to slotted

ALOHA. If a sessionID contained in a beacon is not the same as one sent by a vehicle tracking node

then it will back-off for a number of slots. When this back-off value has counted down then it will try

to resend in the next available slot.

Figure 7 demonstrates how the beacon implementation works. In the first slot, only Node 1 sends

a packet, which is then acknowledged by the next beacon.

Figure 7. Diagram demonstrating a network using the slotted ALOHA with beacons with grey boxes

indicating collisions and overlapping. White boxes indicate successful communication.

In the second slot, both Node 2 and Node 4 send a packet each causing a collision. If no packets

are received, then a sessionID of 0000 is sent in the next beacon. This tells Node 2 and Node 4 that

each of their respective packets failed to arrive at the base station. Node 2 and Node 4 will now back-

off, Node 4 picks a 0 slot back-off so tries again this slot whilst Node 2 picks a larger value.

Our evaluation result later shows that the successful transmission rate can achieve 89.6%.

3.2. Privacy Control

The final aspect to discuss is that of privacy and how it will be respected within the system. This

statement refers to how the geofence will be implemented and what purpose the sessionsIDs have

other than for acknowledgements.

GPS data will only be recorded when a tracking node is within the defined geofence when it is

outside then no recording will take place. The aim of this being to limit the data collection to a

generalised area in which there is more traffic, lessening the ability to identify individuals. This, of

course, depends on where it is placed.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

1111

1
1
1
1

2222

4444

0
0
0
0

4444

4
4
4
4

5555

0
0
0
0

3333
3
3
3
3

3333

4444

Figure 7. Diagram demonstrating a network using the slotted ALOHA with beacons with grey boxes
indicating collisions and overlapping. White boxes indicate successful communication.

3.3. Privacy Control

The final aspect to discuss is that of privacy and how it will be respected within the system. This
statement refers to how the geofence will be implemented and what purpose the sessionsIDs have
other than for acknowledgements.

GPS data will only be recorded when a tracking node is within the defined geofence when it
is outside then no recording will take place. The aim of this being to limit the data collection to
a generalised area in which there is more traffic, lessening the ability to identify individuals. This,
of course, depends on where it is placed.

The second aspect of the geofence design is the use of sessionIDs. Each time a tracking node
determines that it is within the geofence, it generates a new sessionID which is a value between 1000
and 8000. Whilst it remains within the fence the same sessionID is used, only if the node leaves and
then re-enters that a new sessionID generated.

Using Figure 8 as an example, each of the numbered points are GPS collection moments. Whilst
there are nine points only the four (3, 4, 7, and 8) within the yellow geofenced area are recorded. Points
3 and 4 will have the same sessionID whilst points 7 and 8 will share a different sessionID.

Sensors 2019, 19, 347 12 of 48

The second aspect of the geofence design is the use of sessionIDs. Each time a tracking node

determines that it is within the geofence, it generates a new sessionID which is a value between 1000

and 8000. Whilst it remains within the fence the same sessionID is used, only if the node leaves and

then re-enters that a new sessionID generated.

Using Figure 8 as an example, each of the numbered points are GPS collection moments. Whilst

there are nine points only the four (3, 4, 7, and 8) within the yellow geofenced area are recorded.

Points 3 and 4 will have the same sessionID whilst points 7 and 8 will share a different sessionID.

Figure 8. Diagram showing the geofence (yellow area) implementation.

This implementation of sessonIDs assists the ability of the cloud service in stitching a full route

together as the tracking node may have shared data with multiple base stations. There is the small

chance of two tracking nodes picking the same sessionID within a reasonable timespan of each other.

It is believed but not proven that further processing could separate the routes in this case based on

factors such as entry and exits points into and from the geofence and the type of vehicle using the

nodeID within the sent packet.

In the final artefact, the GPS location is checked every five seconds to decide whether it exists

within this area or not. This rate of collection and decision ensures that the route taken by the vehicle

is correctly identified. However, there does exist opportunities where the GPS signal is interrupted

and an incomplete route is recorded. In a situation where two GPS coordinates are many streets apart,

a vehicle could have taken a number of different routes between them. For instance, in Figure 8 if

point 3 is missing, then there would be difficulty in determining from which direction the vehicle

was travelling when point 4 was recorded. Further processing of the data would be required to

determine which of the available routes is the likeliest. [20] presents a method of performing this task

by creating a route prediction algorithm that utilises social networking analysis based on historical

journey data. Using previous data from the journeys of other vehicles, a reliable prediction could be

made and gaps could be filled in.

4. Implementation

The focus of the development stage was to turn the designs discussed in the previous section

into the real-world system that could be used for evaluation. This chapter documents the two aspects

of this stage: hardware and code.

3 4

7

8

5

6

2

1

9

Figure 8. Diagram showing the geofence (yellow area) implementation.

Sensors 2019, 19, 347 12 of 48

This implementation of sessonIDs assists the ability of the cloud service in stitching a full route
together as the tracking node may have shared data with multiple base stations. There is the small
chance of two tracking nodes picking the same sessionID within a reasonable timespan of each other.
It is believed but not proven that further processing could separate the routes in this case based on
factors such as entry and exits points into and from the geofence and the type of vehicle using the
nodeID within the sent packet.

In the final artefact, the GPS location is checked every five seconds to decide whether it exists
within this area or not. This rate of collection and decision ensures that the route taken by the vehicle
is correctly identified. However, there does exist opportunities where the GPS signal is interrupted
and an incomplete route is recorded. In a situation where two GPS coordinates are many streets apart,
a vehicle could have taken a number of different routes between them. For instance, in Figure 8 if
point 3 is missing, then there would be difficulty in determining from which direction the vehicle was
travelling when point 4 was recorded. Further processing of the data would be required to determine
which of the available routes is the likeliest. Ref. [20] presents a method of performing this task
by creating a route prediction algorithm that utilises social networking analysis based on historical
journey data. Using previous data from the journeys of other vehicles, a reliable prediction could be
made and gaps could be filled in.

4. Implementation

The focus of the development stage was to turn the designs discussed in the previous section into
the real-world system that could be used for evaluation. This chapter documents the two aspects of
this stage: hardware and code.

4.1. Hardware

The intention of this stage was to verify that the hardware would be able to operate in the manner
expected. It was also the intention to create a platform from which the code could be developed upon.

Later in Section 4.8, we will explain, the initial design was for the artefact system to utilise
Atmega328 microcontrollers (Microchip Technology, Chandler, AZ, US). It was for this reason that the
following activities were conducted using Arduino Unos which use Atmega328 microcontrollers and
ease the development process.

4.2. Transceiver

As discussed before, HopeRF’s RFM69CW were chosen for the wireless communication and
LowPowerLab’s Arduino library again would be used to accelerate development.

With two transceivers procured the first step was to solder 2.54 mm pin headers on so that the
Surface-mount device (SMD) parts could be used within a breadboard. Figure 9 demonstrates the size
of the two transceivers and Figure 10 shows the soldered-on 2.54 mm pin headers. Whilst this method
of converting the parts from SMD to through-hole components did not produce the cleanest of results,
it was successful.

Sensors 2019, 19, 347 13 of 48

4.1. Hardware

The intention of this stage was to verify that the hardware would be able to operate in the

manner expected. It was also the intention to create a platform from which the code could be

developed upon.

Later in section 4.8, we will explain, the initial design was for the artefact system to utilise

Atmega328 microcontrollers (Microchip Technology, Chandler, AZ, US). It was for this reason that

the following activities were conducted using Arduino Unos which use Atmega328 microcontrollers

and ease the development process.

4.2. Transceiver

As discussed before, HopeRF’s RFM69CW were chosen for the wireless communication and

LowPowerLab’s Arduino library again would be used to accelerate development.

With two transceivers procured the first step was to solder 2.54 mm pin headers on so that the

Surface-mount device (SMD) parts could be used within a breadboard. Figure 9 demonstrates the

size of the two transceivers and Figure 10 shows the soldered-on 2.54 mm pin headers. Whilst this

method of converting the parts from SMD to through-hole components did not produce the cleanest

of results, it was successful.

Figure 9. Photo showing two transceivers with a 1p coin.

Figure 10. Photo showing a transceiver with soldered on pin headers.

4.3. Initial Testing

For this initial stage, two separate Arduino Unos (Atmel, San Jose, CA, USA) were used to test

both the transceivers and the library. One Arduino Uno played the transmitter role and the other

played the receiver role, but both were wired up in the same manner. A logic level converter was

used to convert the 5 V Arduino IO pins to the 3.3 V supported by the transceiver. Figures 11 and 12

demonstrate the final configuration.

Figure 9. Photo showing two transceivers with a 1p coin.

Sensors 2019, 19, 347 13 of 48

Sensors 2019, 19, 347 13 of 48

4.1. Hardware

The intention of this stage was to verify that the hardware would be able to operate in the

manner expected. It was also the intention to create a platform from which the code could be

developed upon.

Later in section 4.8, we will explain, the initial design was for the artefact system to utilise

Atmega328 microcontrollers (Microchip Technology, Chandler, AZ, US). It was for this reason that

the following activities were conducted using Arduino Unos which use Atmega328 microcontrollers

and ease the development process.

4.2. Transceiver

As discussed before, HopeRF’s RFM69CW were chosen for the wireless communication and

LowPowerLab’s Arduino library again would be used to accelerate development.

With two transceivers procured the first step was to solder 2.54 mm pin headers on so that the

Surface-mount device (SMD) parts could be used within a breadboard. Figure 9 demonstrates the

size of the two transceivers and Figure 10 shows the soldered-on 2.54 mm pin headers. Whilst this

method of converting the parts from SMD to through-hole components did not produce the cleanest

of results, it was successful.

Figure 9. Photo showing two transceivers with a 1p coin.

Figure 10. Photo showing a transceiver with soldered on pin headers.

4.3. Initial Testing

For this initial stage, two separate Arduino Unos (Atmel, San Jose, CA, USA) were used to test

both the transceivers and the library. One Arduino Uno played the transmitter role and the other

played the receiver role, but both were wired up in the same manner. A logic level converter was

used to convert the 5 V Arduino IO pins to the 3.3 V supported by the transceiver. Figures 11 and 12

demonstrate the final configuration.

Figure 10. Photo showing a transceiver with soldered on pin headers.

4.3. Initial Testing

For this initial stage, two separate Arduino Unos (Atmel, San Jose, CA, USA) were used to test
both the transceivers and the library. One Arduino Uno played the transmitter role and the other
played the receiver role, but both were wired up in the same manner. A logic level converter was
used to convert the 5 V Arduino IO pins to the 3.3 V supported by the transceiver. Figures 11 and 12
demonstrate the final configuration.Sensors 2019, 19, 347 14 of 48

Figure 11. Photo showing the transmitter Arduino Uno.

Figure 12. Photo showing the receiver Arduino Uno.

After uploading the node (transmitter) and gateway (receiver) examples to the respective

Arduinos, successful communication could be confirmed from the output displayed in the Serial

Monitor. Following this, a short period of experimentation took place to understand the library and

what was possible. One notable function that was tested, was the encryption function. By changing

the password on one side and not the other, it was confirmed that this functionality worked as

expected. Changing the key only on one side made it unreadable on the other.

4.4. Range

The final experiment that took place at this stage was concerning the range. Up to this point, the

two transceivers had been operating without antennas. This limited their range to around a meter

and so an antenna was required to increase this. Following the guide provided by Michael Margolis

in the Arduino Cookbook [21], an antenna was created using a stripped solid core wire. The 82-mm

long antenna was plugged into the breadboard in the correct position.

This greatly improved the range of the transceiver. Powering the Arduino Uno running the Node

(transmitter) example code using a Universal Serial Bus (USB) battery pack a distance of around 30

metres was achieved.

The final range test was to place the Arduino within the glovebox of a car to ensure that the car’s

construction was not a hindrance. Watching the output of the serial monitor on the receiver side from

30 metres away, it seemed to have no effect.

Figure 11. Photo showing the transmitter Arduino Uno.

Sensors 2019, 19, 347 14 of 48

Figure 11. Photo showing the transmitter Arduino Uno.

Figure 12. Photo showing the receiver Arduino Uno.

After uploading the node (transmitter) and gateway (receiver) examples to the respective

Arduinos, successful communication could be confirmed from the output displayed in the Serial

Monitor. Following this, a short period of experimentation took place to understand the library and

what was possible. One notable function that was tested, was the encryption function. By changing

the password on one side and not the other, it was confirmed that this functionality worked as

expected. Changing the key only on one side made it unreadable on the other.

4.4. Range

The final experiment that took place at this stage was concerning the range. Up to this point, the

two transceivers had been operating without antennas. This limited their range to around a meter

and so an antenna was required to increase this. Following the guide provided by Michael Margolis

in the Arduino Cookbook [21], an antenna was created using a stripped solid core wire. The 82-mm

long antenna was plugged into the breadboard in the correct position.

This greatly improved the range of the transceiver. Powering the Arduino Uno running the Node

(transmitter) example code using a Universal Serial Bus (USB) battery pack a distance of around 30

metres was achieved.

The final range test was to place the Arduino within the glovebox of a car to ensure that the car’s

construction was not a hindrance. Watching the output of the serial monitor on the receiver side from

30 metres away, it seemed to have no effect.

Figure 12. Photo showing the receiver Arduino Uno.

After uploading the node (transmitter) and gateway (receiver) examples to the respective
Arduinos, successful communication could be confirmed from the output displayed in the Serial
Monitor. Following this, a short period of experimentation took place to understand the library and
what was possible. One notable function that was tested, was the encryption function. By changing the

Sensors 2019, 19, 347 14 of 48

password on one side and not the other, it was confirmed that this functionality worked as expected.
Changing the key only on one side made it unreadable on the other.

4.4. Range

The final experiment that took place at this stage was concerning the range. Up to this point, the
two transceivers had been operating without antennas. This limited their range to around a meter and
so an antenna was required to increase this. Following the guide provided by Michael Margolis in the
Arduino Cookbook [21], an antenna was created using a stripped solid core wire. The 82-mm long
antenna was plugged into the breadboard in the correct position.

This greatly improved the range of the transceiver. Powering the Arduino Uno running the Node
(transmitter) example code using a Universal Serial Bus (USB) battery pack a distance of around 30 m
was achieved.

The final range test was to place the Arduino within the glovebox of a car to ensure that the car’s
construction was not a hindrance. Watching the output of the serial monitor on the receiver side from
30 m away, it seemed to have no effect.

4.5. GPS Module

Having explored many possible solutions, GPS modules based upon Ublox’s NEO series (Ublox,
Reigate, UK) were chosen. The main reason for this choice was their availability in simpler module
form and price. For instance, the NEO-6M module purchased again from AliExpress for £3.28, provided
a serial input and output. Figure 13 shows the received module.

Sensors 2019, 19, 347 15 of 48

4.5. GPS Module

Having explored many possible solutions, GPS modules based upon Ublox’s NEO series

(Ublox, Reigate, UK) were chosen. The main reason for this choice was their availability in simpler

module form and price. For instance, the NEO-6M module purchased again from AliExpress for

£3.28, provided a serial input and output. Figure 13 shows the received module.

Figure 13. Photo showing the Neo-6M GPS Module with Ceramic Antenna.

As the datasheet from Ublox explains [22], the modules use solely GPS owned by the United

States government and do not interact with the Russian GLONASS system. The accuracy is up to 2.5

m and the time taken for a cold startup boot is 27 s. The qualities are suitable for this project where

cost is of greater concern.

4.6. Initial Testing

Using a blank Arduino Uno, the GPS module was connected in the manner shown by Figure 14.

Figure 14. Photo showing the Arduino Uno GPS module testing Arduino Uno.

The first step was to upload a simple script that outputted what was received over serial from

the module to the Serial Monitor. After waiting about 30 seconds for the module to boot up, messages

started to appear in the monitor, which confirmed that the module worked. The module uses the

National Marine Electronics Association (NMEA) standard for outputting information and so an

Arduino library was sourced to process and clean the output of the messages. NeoGPS was installed

and the NMEA example uploaded. Figure 15 shows the output witnessed in the Arduino Serial

Monitor.

Figure 13. Photo showing the Neo-6M GPS Module with Ceramic Antenna.

As the datasheet from Ublox explains [22], the modules use solely GPS owned by the United
States government and do not interact with the Russian GLONASS system. The accuracy is up to 2.5 m
and the time taken for a cold startup boot is 27 s. The qualities are suitable for this project where cost is
of greater concern.

4.6. Initial Testing

Using a blank Arduino Uno, the GPS module was connected in the manner shown by Figure 14.
The first step was to upload a simple script that outputted what was received over serial from the

module to the Serial Monitor. After waiting about 30 s for the module to boot up, messages started
to appear in the monitor, which confirmed that the module worked. The module uses the National
Marine Electronics Association (NMEA) standard for outputting information and so an Arduino library
was sourced to process and clean the output of the messages. NeoGPS was installed and the NMEA
example uploaded. Figure 15 shows the output witnessed in the Arduino Serial Monitor.

Sensors 2019, 19, 347 15 of 48

Sensors 2019, 19, 347 15 of 48

4.5. GPS Module

Having explored many possible solutions, GPS modules based upon Ublox’s NEO series

(Ublox, Reigate, UK) were chosen. The main reason for this choice was their availability in simpler

module form and price. For instance, the NEO-6M module purchased again from AliExpress for

£3.28, provided a serial input and output. Figure 13 shows the received module.

Figure 13. Photo showing the Neo-6M GPS Module with Ceramic Antenna.

As the datasheet from Ublox explains [22], the modules use solely GPS owned by the United

States government and do not interact with the Russian GLONASS system. The accuracy is up to 2.5

m and the time taken for a cold startup boot is 27 s. The qualities are suitable for this project where

cost is of greater concern.

4.6. Initial Testing

Using a blank Arduino Uno, the GPS module was connected in the manner shown by Figure 14.

Figure 14. Photo showing the Arduino Uno GPS module testing Arduino Uno.

The first step was to upload a simple script that outputted what was received over serial from

the module to the Serial Monitor. After waiting about 30 seconds for the module to boot up, messages

started to appear in the monitor, which confirmed that the module worked. The module uses the

National Marine Electronics Association (NMEA) standard for outputting information and so an

Arduino library was sourced to process and clean the output of the messages. NeoGPS was installed

and the NMEA example uploaded. Figure 15 shows the output witnessed in the Arduino Serial

Monitor.

Figure 14. Photo showing the Arduino Uno GPS module testing Arduino Uno.Sensors 2019, 19, 347 16 of 48

Figure 15. Screenshot of the Serial Monitor showing the output of the NMEA example with redacted

GPS coordinates.

4.7. Interference

So far, the testing had been conducted inside a standard British home which provided

confidence in the module’s ability to gain a connection even though obstacles. To confirm this

confidence, once again the powered Arduino was placed into the glovebox of a car to ensure that it

could lock onto enough satellites to operate with an appropriate accuracy.

Later testing conducted demonstrated the limitations of the module. Within a building that is

made of concrete and steel, the chances of locking onto enough satellites are low. This was not

deemed a problem though as, within the real-world context of the system, this would only likely

become a problem if the vehicle entered a tunnel or a multi-storey carpark. On normal roads, the GPS

module would work as expected, which is demonstrated in the following section.

4.8. Together

With the two hardware components successfully tested separately, the next step was to

implement the final designs by bringing the components together. This process, as the following

paragraphs will explain, presented problems that required changes to the final implementation. The

initial implementation for the artefact system was to use microcontrollers on both the vehicle tracking

node and the base station.

On the vehicle tracking node, the plan was to use an Atmega328 connected directly to both the

GPS and transceiver modules. The microcontroller receives and processes the incoming data from

the GPS module and then if valid, stores it in the data memory (RAM). It also handles all

communication by identifying and responding to beacons when they are present.

The base station was to utilise both an Atmega328 and a Raspberry Pi. In this configuration,

the microcontroller would handle all transceiver module operation including the broadcasting of

beacons. The Raspberry Pi would run a python script to handle replies and perform final

processing before sending the data to the cloud service. The microcontroller and the Raspberry Pi

would be connected using serial communication allowing for bi-directional communication and

sharing of data.

Figure 15. Screenshot of the Serial Monitor showing the output of the NMEA example with redacted
GPS coordinates.

4.7. Interference

So far, the testing had been conducted inside a standard British home which provided confidence
in the module’s ability to gain a connection even though obstacles. To confirm this confidence, once
again the powered Arduino was placed into the glovebox of a car to ensure that it could lock onto
enough satellites to operate with an appropriate accuracy.

Later testing conducted demonstrated the limitations of the module. Within a building that is
made of concrete and steel, the chances of locking onto enough satellites are low. This was not deemed
a problem though as, within the real-world context of the system, this would only likely become
a problem if the vehicle entered a tunnel or a multi-storey carpark. On normal roads, the GPS module
would work as expected, which is demonstrated in the following section.

Sensors 2019, 19, 347 16 of 48

4.8. Together

With the two hardware components successfully tested separately, the next step was to implement
the final designs by bringing the components together. This process, as the following paragraphs
will explain, presented problems that required changes to the final implementation. The initial
implementation for the artefact system was to use microcontrollers on both the vehicle tracking node
and the base station.

On the vehicle tracking node, the plan was to use an Atmega328 connected directly to both the
GPS and transceiver modules. The microcontroller receives and processes the incoming data from the
GPS module and then if valid, stores it in the data memory (RAM). It also handles all communication
by identifying and responding to beacons when they are present.

The base station was to utilise both an Atmega328 and a Raspberry Pi. In this configuration, the
microcontroller would handle all transceiver module operation including the broadcasting of beacons.
The Raspberry Pi would run a python script to handle replies and perform final processing before
sending the data to the cloud service. The microcontroller and the Raspberry Pi would be connected
using serial communication allowing for bi-directional communication and sharing of data.

The major problem is that the GPS modules rely heavily on serial communication, sending a single
character at a time. This activity occupies the limited data memory (RAM) available to the running
program. At the same time, the transceiver library requires data memory to perform its operations.
When the transceiver send code was added to the programme it caused the microcontroller to lock up
and reset continually. Dealing with these two combined demands of serial and SPI communication
was too much for the limited resources of the microcontroller.

4.9. Final Implementation

Having had previous experience with the serial communication of the Atmega328, it was identified
beforehand that a problem may present itself and so a lesser preferred backup solution was planned.
The solution saw the microcontrollers removed from the circuit completely and instead have both
sides utilising a Raspberry Pi. Whilst the initial design was overcomplicated, in some ways, the use of
microcontrollers would be better for communication as timings could be more precise and reliable.
On the other hand, implementing the desired functionality was simpler to do in Python than C.

Figures 16 and 17 show the final physical form of each of the two artefact components.

Sensors 2019, 19, 347 17 of 48

The major problem is that the GPS modules rely heavily on serial communication, sending a

single character at a time. This activity occupies the limited data memory (RAM) available to the

running program. At the same time, the transceiver library requires data memory to perform its

operations. When the transceiver send code was added to the programme it caused the

microcontroller to lock up and reset continually. Dealing with these two combined demands of serial

and SPI communication was too much for the limited resources of the microcontroller.

4.9. Final Implementation

Having had previous experience with the serial communication of the Atmega328, it was

identified beforehand that a problem may present itself and so a lesser preferred backup solution

was planned. The solution saw the microcontrollers removed from the circuit completely and

instead have both sides utilising a Raspberry Pi. Whilst the initial design was overcomplicated, in

some ways, the use of microcontrollers would be better for communication as timings could be

more precise and reliable. On the other hand, implementing the desired functionality was simpler

to do in Python than C.

Figures 16 and 17 show the final physical form of each of the two artefact components.

Figure 16. Photo showing the final vehicle tracking node.

Figure 17. Photo showing the final base station.

The GPS module on the tracking node is connected to one of the Raspberry Pi’s serial

communication pins, allowing for it to operate in the same manner as on the Atmega328. For the

transceiver though, a new library was required to create an interface between the SPI module and the

Python script that would orchestrate the functionality. A library by GitHub user jkittley [23] was

selected as it is a port of the LowPowerLab Arduino library, which meant that it operated in a similar

manner and plenty of documentation existed to aid development.

Figure 16. Photo showing the final vehicle tracking node.

Sensors 2019, 19, 347 17 of 48

Sensors 2019, 19, 347 17 of 48

The major problem is that the GPS modules rely heavily on serial communication, sending a

single character at a time. This activity occupies the limited data memory (RAM) available to the

running program. At the same time, the transceiver library requires data memory to perform its

operations. When the transceiver send code was added to the programme it caused the

microcontroller to lock up and reset continually. Dealing with these two combined demands of serial

and SPI communication was too much for the limited resources of the microcontroller.

4.9. Final Implementation

Having had previous experience with the serial communication of the Atmega328, it was

identified beforehand that a problem may present itself and so a lesser preferred backup solution

was planned. The solution saw the microcontrollers removed from the circuit completely and

instead have both sides utilising a Raspberry Pi. Whilst the initial design was overcomplicated, in

some ways, the use of microcontrollers would be better for communication as timings could be

more precise and reliable. On the other hand, implementing the desired functionality was simpler

to do in Python than C.

Figures 16 and 17 show the final physical form of each of the two artefact components.

Figure 16. Photo showing the final vehicle tracking node.

Figure 17. Photo showing the final base station.

The GPS module on the tracking node is connected to one of the Raspberry Pi’s serial

communication pins, allowing for it to operate in the same manner as on the Atmega328. For the

transceiver though, a new library was required to create an interface between the SPI module and the

Python script that would orchestrate the functionality. A library by GitHub user jkittley [23] was

selected as it is a port of the LowPowerLab Arduino library, which meant that it operated in a similar

manner and plenty of documentation existed to aid development.

Figure 17. Photo showing the final base station.

The GPS module on the tracking node is connected to one of the Raspberry Pi’s serial
communication pins, allowing for it to operate in the same manner as on the Atmega328. For the
transceiver though, a new library was required to create an interface between the SPI module and
the Python script that would orchestrate the functionality. A library by GitHub user jkittley [23] was
selected as it is a port of the LowPowerLab Arduino library, which meant that it operated in a similar
manner and plenty of documentation existed to aid development.

4.10. Code

With the hardware finalised, work on the project moved onto developing the Python scripts that
would run on the artefact system. Once each of the following Python scripts was developed, a start-up
script was written so that the Python code in each instance was executed once the Raspberry Pi’s
Raspbian Operating System had booted up. This meant that the Raspberry Pi could run headless
without the need for a screen or keyboard, once it was powered.

4.10.1. Vehicle Tracking Node

The code is broken down into four separates but simultaneously running threads:

1. Beacon Listener: The role is to process the content of beacon packets, recording the timestamp
contained within and comparing the sessionID against the last packet sent. If sessionID is the
same, then the last message has been acknowledged and can be removed from the queue. If not,
then Python’s random library generates a back-off value inclusive of zero and five.

2. Queue Handler: The role is to reply to recent beacons if still within the last recorded beacon
period, back-off is zero and items exist within the queue.

3. GPS Listener: The role is to handle incoming serial data from the GPS module and pass it to the
processing library.

4. GPS Handler: The role is to process the GPS data every five seconds, checking whether the
coordinates exist within the geofence. If they do exist, then the coordinates and timestamp based
on the time received from the GPS satellites are added to the queue.

Apart from the library used for the transceiver mentioned in Section 4.2, a library is also used to
handle the incoming GPS serial data called MicropyGPS [24].

4.10.2. Base Station

The code is broken down into two separates but simultaneously running threads:

1. Beacon Sender: The role is to broadcast a beacon packet every 200 ms. The packet includes
a timestamp and the sessionID of the packet received during the last beacon period.

Sensors 2019, 19, 347 18 of 48

2. Data Receive: The role is to process any data received during the last beacon period. It will
update the sessionID to match the last packet received or if nothing was received then a zero will
be provided.

5. Evaluation

To correctly evaluate the system and understand whether the project’s objectives were met, two
different experiments were conducted. For each of these experiments, a second vehicle tracker node
was constructed, which will be referred to as a traffic generator node. The aim of this node was to run
a Python script that would randomly generate network traffic, the constructed node can be seen in
Figure 18.Sensors 2019, 19, 347 19 of 48

Figure 18. Photo showing the Traffic Generator Node.

With each beacon, the script either picks a 0 or a 1 randomly using the Python random module.

If a 1 is picked, a message is sent or is a 0 is picked the beacon is ignored and nothing happens. Having

this secondary node on the network creates a random pattern of traffic, which takes opportunities

away from the main vehicle tracking node. This creates an environment similar to that which would

be found should the system be used in the real world where other vehicles are present.

5.1. Static Experiment

The objective of the static experiment is to understand how efficient the media access control

(MAC) protocol is. The efficiency is concluded based on how many slots are utilised and how many

resends are required by the vehicle tracking node. This will help to understand how many points of

data a vehicle can share based on how long it remains within range.

For the experiment, the vehicle tracking node and the traffic generator node were all placed

within a meter of the base station, their distance never changing.

The vehicle tracking node ran an altered Python script that started with GPS data collection

disabled and 50 items in the queue to send. A stopwatch was started when the Python script was

executed and stopped when the script had completed sending all 50 items. From each test, the Secure

Shell (SSH) terminal output was exported to a text file and data derived. In all, six experiment periods

were conducted.

For the first three experiments, just the vehicle tracking node and base station were active with

the traffic generator node unpowered. Table 2 shows the results of each three experiments in terms

of seconds taken to send all 50 messages.

Table 2. Total Length in Seconds for the First Three Experiments.

Experiment Number Length (seconds)

1 16.69

2 18.47

3 20.75

Average (s) 18.64

The time for each of the three experiments was similar and the average was respectable. The

system would only require a vehicle that had 50 data points in its queue to sit stationary for around

19 seconds. The MAC protocol is far from efficient, though, with a beacon occurring every two

hundred milliseconds and with 50 packets to send, if the MAC protocol was 100% efficient and

communication was successful for each beacon period, a perfect time for this scenario would be ten

seconds. The average time is almost double this perfect time, which would indicate that beacon

periods are being missed and or data is needing to be resent on a regular basis.

Figure 18. Photo showing the Traffic Generator Node.

With each beacon, the script either picks a 0 or a 1 randomly using the Python random module.
If a 1 is picked, a message is sent or is a 0 is picked the beacon is ignored and nothing happens. Having
this secondary node on the network creates a random pattern of traffic, which takes opportunities
away from the main vehicle tracking node. This creates an environment similar to that which would
be found should the system be used in the real world where other vehicles are present.

5.1. Static Experiment

The objective of the static experiment is to understand how efficient the media access control
(MAC) protocol is. The efficiency is concluded based on how many slots are utilised and how many
resends are required by the vehicle tracking node. This will help to understand how many points of
data a vehicle can share based on how long it remains within range.

For the experiment, the vehicle tracking node and the traffic generator node were all placed within
a meter of the base station, their distance never changing.

The vehicle tracking node ran an altered Python script that started with GPS data collection
disabled and 50 items in the queue to send. A stopwatch was started when the Python script was
executed and stopped when the script had completed sending all 50 items. From each test, the Secure
Shell (SSH) terminal output was exported to a text file and data derived. In all, six experiment periods
were conducted.

For the first three experiments, just the vehicle tracking node and base station were active with
the traffic generator node unpowered. Table 2 shows the results of each three experiments in terms of
seconds taken to send all 50 messages.

Sensors 2019, 19, 347 19 of 48

Table 2. Total Length in Seconds for the First Three Experiments.

Experiment Number Length (seconds)

1 16.69
2 18.47
3 20.75

Average (s) 18.64

The time for each of the three experiments was similar and the average was respectable.
The system would only require a vehicle that had 50 data points in its queue to sit stationary for around
19 s. The MAC protocol is far from efficient, though, with a beacon occurring every two hundred
milliseconds and with 50 packets to send, if the MAC protocol was 100% efficient and communication
was successful for each beacon period, a perfect time for this scenario would be ten seconds. The
average time is almost double this perfect time, which would indicate that beacon periods are being
missed and or data is needing to be resent on a regular basis.

For the next three experiments, the traffic generator node was powered and running the network
traffic generating Python script. Table 3 shows the results of the final three experiments.

Table 3. Total Length in Seconds for the Second Three Experiments.

Experiment Number Length (seconds)

4 17.17
5 18.77
6 61.13

Average (s) 32.26

The rate at which the network traffic generating script decides to randomly send can vary
massively. With experiments 4 and 5 the times are not that different to those seen in the first three
experiments, but with experiment 6 the time triples. During this experiment, the script was sending
more packets which were causing the vehicle tracking node to have to back off and try again multiple
times. The sixth experiment is reflective of a situation where there are more than two other vehicles
waiting at a junction sharing data.

Whilst with the first three experiments the time needed was respectable at twenty seconds, with
the sixth experiment, 62 s may be too long to expect a vehicle to wait.

Performing analysis on each of the SSH terminal outputs from all six experiments provides
understanding as to what problems occur with the MAC protocol. Tables 4 and 5 show the data from
each perspective whilst the source data can be found in Appendix A.

Table 4. Data from the base station perspective.

Experiment # Traffic Generator Active Slots Total Slots Used Efficiency

1 No 69 56 81.2%
2 No 81 62 76.5%
3 No 91 59 64.8%

Average Efficiency 74.2%

4 Yes 67 60 89.6%
5 Yes 76 66 86.8%
6 Yes 283 219 77.4%

Average Efficiency 84.6%

Sensors 2019, 19, 347 20 of 48

Table 5. Data from the tracking node perspective.

Experiment # Traffic Generator Active Beacons Missed Resend Totals

1 No 6 9
2 No 14 14
3 No 9 11
4 Yes 3 6
5 Yes 9 9
6 Yes 51 55

From the base station perspective, the usage of slots increases in line with the amount of traffic on
the network hitting a high of 89.6% efficiency.

From the vehicle tracking node perspective, the beacons missed is an important number. An
unrealised occurrence during the design stage is that missing a beacon also misses an acknowledgement.
It was blindly assumed that a node would always see every beacon when it is in range. This has the
knock-on effect that the node must go through the back-off period and attempt to resend even if the
packet was acknowledged by a base station in a previous beacon. This leads to wasted time and further
network traffic.

Remembering that the task is to send 50 packets, with every experiment besides six, the resend
total whilst higher than expected is still reasonable based on the real-world expectations. Experiment
six, which saw the increased network traffic, sent more than double the number of packets that was
originally in its queue (105), which again comes down to missing beacons.

Finally, the back-off method relies on Python’s random module to pick a value inclusive of 0 to 5.
Most of the time, the value 0 was picked which the reason for is unknown, but it had an impact.

One of the objectives of the project was to design a method of communication that allowed for
opportunistic uploading of data whilst being able to handle multiple vehicles. This static experiment
helped to evaluate how efficient the purposely designed MAC protocol was. In doing so it clearly
demonstrated that certain aspects of the protocol need improving or even rethinking.

Missing a beacon has a large impact on how much data a node can share. The reason why beacons
are not always seen is unknown but the probability of one being missed increases with the amount of
traffic on the network.

It is believed that moving the transceiver interaction from a microcontroller to a Raspberry Pi may
be a factor. Further research needs to be conducted using a microcontroller capable of handling both
the GPS module and the transceiver to determine whether this belief is true.

5.2. Dynamic Experiment

The objective of the dynamic experiment was to understand how well the artefact system worked
in its intended setting. The experiment was designed to test the geofence implementation and to
further test the MAC protocol by having the vehicle tracking nodes move and not remain static.

For the experiment, a 1 km2 geofenced area was defined (Figure 19). The top left coordinate for
the geofence is 52.066949, −0.322318 and the bottom right is 52.063082, −0.307944.

Within this area, a quiet T junction, shown in Figure 19, was selected that enabled two scenarios
to act out.

The first scenario entitled ‘Drive By’, sees the vehicle driving past the junction at the 30 miles an
hour speed limit. The yellow line in Figure 19 represents the route taken in a right to left direction.

The second scenario entitled ‘Stop’ involves the vehicle coming to a full stop for ten seconds
before driving off. The blue line in Figure 20 represents this scenario, with the direction of travel being
from the bottom of the image to the right.

With each scenario, the vehicle tracking node was kept inside the glovebox of the moving car. The
base station remained static in the location shown by the red dot in Figure 20.

Sensors 2019, 19, 347 21 of 48

Sensors 2019, 19, 347 21 of 48

From the vehicle tracking node perspective, the beacons missed is an important number. An

unrealised occurrence during the design stage is that missing a beacon also misses an

acknowledgement. It was blindly assumed that a node would always see every beacon when it is in

range. This has the knock-on effect that the node must go through the back-off period and attempt to

resend even if the packet was acknowledged by a base station in a previous beacon. This leads to

wasted time and further network traffic.

Remembering that the task is to send 50 packets, with every experiment besides six, the resend

total whilst higher than expected is still reasonable based on the real-world expectations. Experiment

six, which saw the increased network traffic, sent more than double the number of packets that was

originally in its queue (105), which again comes down to missing beacons.

Finally, the back-off method relies on Python’s random module to pick a value inclusive of 0 to 5.

Most of the time, the value 0 was picked which the reason for is unknown, but it had an impact.

One of the objectives of the project was to design a method of communication that allowed for

opportunistic uploading of data whilst being able to handle multiple vehicles. This static experiment

helped to evaluate how efficient the purposely designed MAC protocol was. In doing so it clearly

demonstrated that certain aspects of the protocol need improving or even rethinking.

Missing a beacon has a large impact on how much data a node can share. The reason why

beacons are not always seen is unknown but the probability of one being missed increases with the

amount of traffic on the network.

It is believed that moving the transceiver interaction from a microcontroller to a Raspberry Pi

may be a factor. Further research needs to be conducted using a microcontroller capable of handling

both the GPS module and the transceiver to determine whether this belief is true.

5.2. Dynamic Experiment

The objective of the dynamic experiment was to understand how well the artefact system worked

in its intended setting. The experiment was designed to test the geofence implementation and to further

test the MAC protocol by having the vehicle tracking nodes move and not remain static.

For the experiment, a 1 km2 geofenced area was defined (Figure 19). The top left coordinate for

the geofence is 52.066949, −0.322318 and the bottom right is 52.063082, −0.307944.

Figure 19. Screenshot of Google Maps showing the geofenced area [25].

Within this area, a quiet T junction, shown in Figure 19, was selected that enabled two scenarios

to act out.

The first scenario entitled ‘Drive By’, sees the vehicle driving past the junction at the 30 miles an

hour speed limit. The yellow line in Figure 19 represents the route taken in a right to left direction.

Figure 19. Screenshot of Google Maps showing the geofenced area [25].

Sensors 2019, 19, 347 22 of 48

The second scenario entitled ‘Stop’ involves the vehicle coming to a full stop for ten seconds

before driving off. The blue line in Figure 20 represents this scenario, with the direction of travel

being from the bottom of the image to the right.

Figure 20. Screenshot of Google Maps showing routes taken and location of the base station [26].

With each scenario, the vehicle tracking node was kept inside the glovebox of the moving car.

The base station remained static in the location shown by the red dot in Figure 20.

With both scenarios, the vehicle had to loop round local roads to get into the correct position,

which took time and so overall only four loops where performed. This provided an opportunity for

four Drive By scenario experiments and four Stop scenario experiments, eight in total. For only the

final loop, experiments 7 and 8, the network traffic generating node was used, to again create a more

realistic situation.

Finally, between each experiment, the vehicle tracking node’s Python script was restarted to

ensure that the queue was empty and the SSH terminal output could be easily saved. The full data

from each experiment conducted can found under Appendix B.

5.2.1. Geofence

Looking firstly at how the geofence implementation worked, Table 6 shows how many

coordinates were recorded.

Table 6. Number of Coordinates Collected during each experiment.

Experiment

Number
Scenario

Coordinates Recorded

Within Geofence

Coordinates Recorded

Outside of Geofence
SessionID

1 Drive By 16 0 3978

2 Stop 13 0 6533

3 Drive By 15 0 5626

4 Stop 13 0 2179

5 Drive By 16 0 1663

6 Stop 13 0 2250

7 Drive By 16 0 5342

8 Stop 15 0 4361

Based on the results of the experimentation the geofence implementation works as intended.

Every five seconds when the current location was checked and only those that were within the

defined geofence were added to the queue. At no point during any experiment was a coordinate

Figure 20. Screenshot of Google Maps showing routes taken and location of the base station [26].

With both scenarios, the vehicle had to loop round local roads to get into the correct position,
which took time and so overall only four loops where performed. This provided an opportunity for
four Drive By scenario experiments and four Stop scenario experiments, eight in total. For only the
final loop, experiments 7 and 8, the network traffic generating node was used, to again create a more
realistic situation.

Finally, between each experiment, the vehicle tracking node’s Python script was restarted to
ensure that the queue was empty and the SSH terminal output could be easily saved. The full data
from each experiment conducted can found under Appendix B.

5.2.1. Geofence

Looking firstly at how the geofence implementation worked, Table 6 shows how many coordinates
were recorded.

Based on the results of the experimentation the geofence implementation works as intended.
Every five seconds when the current location was checked and only those that were within the defined
geofence were added to the queue. At no point during any experiment was a coordinate added that
existed outside of it. In addition, as was intended, a new sessionID was generated every time the
vehicle entered.

The difference in the number of recorded coordinates between the two scenarios is the down to
how the geofence was applied. If a vehicle was driving past the junction, then it remained for more
time inside, compared to a vehicle which was stopping at the junction. With experiment 8, the waiting

Sensors 2019, 19, 347 22 of 48

time at the junction was higher as there was more road traffic which allowed more time to record
coordinates. The accuracy of the GPS modules is not perfect and so even when stopped, the module
often provides a new location with a few meters difference.

Table 6. Number of Coordinates Collected during each experiment.

Experiment
Number Scenario Coordinates Recorded

Within Geofence
Coordinates Recorded
Outside of Geofence SessionID

1 Drive By 16 0 3978
2 Stop 13 0 6533
3 Drive By 15 0 5626
4 Stop 13 0 2179
5 Drive By 16 0 1663
6 Stop 13 0 2250
7 Drive By 16 0 5342
8 Stop 15 0 4361

5.2.2. Data Sharing

Whilst the average of recorded coordinates during the experiments was 14, the number that was
shared with a base station was much lower, as shown by Table 7.

Table 7. Percentage of Coordinates Collected Shared with Base Station During Experiment

Experiment
Number Scenario Coordinates Recorded

Within Geofence Coordinates Shared Percentage
Shared

1 Drive By 16 8 50%
2 Stop 13 7 53.8%
3 Drive By 15 9 60%
4 Stop 13 8 61.5%
5 Drive By 16 10 62.5%
6 Stop 13 8 61.5%
7 Drive By 16 4 25%
8 Stop 15 9 60%

Average Percentage Shared 54.3%

With every experiment, not all of the coordinates recorded were shared with the base station. The
reason for this is simply that once the vehicle had left the range of the base station, it no longer saw any
beacons and could not share the data it had. In addition, after leaving the range of the base station it
remained within the geofenced area and so it continued to record coordinates. This meant that unless
the vehicle was to turn around and re-enter the range of the base station the data could not be shared.

It was expected beforehand that the experiments that saw the vehicle come to a stop would have
a higher number of coordinates shared, than those which were moving past at 30 miles per hour. As
the data shows, with the exception of experiment 7, there was not much difference between each
scenario and the tracking node was able to share all of the data it had recorded up to that point.

In the case of experiment 7, the traffic generator node being active made communicating
successfully whilst moving difficult. This indicates that when there are multiple vehicles present, those
which are moving through the junction without stopping will face difficulty in sharing all of their data.
Whereas those which are stopped, as experiment 8 shows which also had the traffic generator active,
have a greater chance of completing this objective.

5.3. Network Performance

The final task is to evaluate how the network performed during each experiment. With the base
station running headless no SSH terminal outputs could be collected and so the data held in Table 8
relies entirely on those collected from the vehicle tracking node.

Sensors 2019, 19, 347 23 of 48

Table 8. Network performance during experiments.

Experiment Number Scenario Beacons Seen Coordinates Shared Packets Sent

1 Drive By 47 8 12
2 Stop 86 7 13
3 Drive By 82 9 14
4 Stop 110 8 13
5 Drive By 87 10 14
6 Stop 126 8 10
7 Drive By 56 4 13
8 Stop 141 9 21

For the Drive By scenario experiments, an average of 34 beacons was seen by the vehicle tracking
node. As the static experiments showed if the tracking node has more than a few coordinates to share,
it will have difficulty even if there are no other nodes communicating.

On the other hand, the figure was much higher for the Stop scenario experiments at an average of
58 beacons seen. This figure provides greater opportunity, but that is to be expected as the vehicle is
stationary and remains within the range of the base station for longer.

With all the experiments the resending of packets was required. This increased the number
of packets sent overall and added more traffic to the network. This behaviour seemed to mirror
what was discovered during the static experimentation, whereupon beacons were missed and in turn
acknowledgements. In addition, with experiments 7 and 8, the number of back-off periods greatly
increased which again mirrors what was seen when the traffic generator node was used during the
static experimentation.

The dynamic experimentation has demonstrated that the artefact system works well in its intended
setting, it is capable of collecting coordinate data and sharing it when the opportunity arises.

The geofence implementation helps to meet one of the project’s objectives, which was to determine
a method of collecting data in a manner which was anonymised. The use of sessionIDs and their random
generation reduces the chance that a vehicle or individual can be uniquely identified. At the same time
though, sessionIDs will still allow for journeys to be stitched together and full routes identified.

The problem though that was exposed during this dynamic experimentation is the fact that not
all data is collected. If a vehicle tracking node is not within the range of a base station, then no data
can be collected. Even if a tracking node does come within range of one, it may fail to share all of its
recorded coordinates.

There are two factors to discuss in relation to this problem. Firstly, the placement and frequency
of the base stations are important. With this experimentation, a single base station was used directly
in the centre of the geofence. This meant that the tracking node would only have the opportunity to
share coordinates up until that centre point, with any coordinates recorded after going unshared.

With the geofenced area used in the experimentation, there are only three directions out and so
a better strategy could be to use three base stations. One base station on the border of the geofence
in each direction. With this configuration, a tracking node entering and exiting the area will always
pass by two base stations and more coordinates can be collected. This, of course, depends on the road
structure of the area. Future research is needed to understand how placement and frequency of base
stations can affect the number of coordinates that are shared versus unshared.

The second aspect of the problem is to do with the storing of coordinates. The coordinates
recorded are added to a queue array stored during the lifetime of the Python script in RAM. Once the
Raspberry Pi is unpowered the contents of the RAM is lost and so are the coordinates.

If a vehicle fails to re-enter the range of a base station before the ignition is turned off and the
Raspberry Pi loses power, then any unshared data is lost. These experiments were run on the premise
that each was a new journey into the geofence and so the script was stopped between each. If this had
not been done, then upon seeing a beacon this previous journey’s data could have been shared.

Sensors 2019, 19, 347 24 of 48

The storage of coordinates was done in this manner to reduce the number of packets that must
be shared when a base station comes into range. If the tracking node has to deal with keeping the
information about older journeys, then newer data from other nodes have less chance to be shared.
Furthermore, if the tracking node experiences limited opportunity to share its data then the queue
would grow ever larger. At some point, a line needs to be defined as to whether the data is still relevant.

Whether or not the data is still relevant depends what the artefact system is used for. For instance,
if it is used to collect route data with the intention of counting how many vehicles use a particular
section of road, such as many of those alternative solutions discussed in Section 2, then the data will
always be relevant.

If on the other hand, it is being with an ITS (Intelligent Traffic System) then only the most current
data is relevant. Decisions are based on what is currently happening and not what happened a day or
so ago. Historical data has some importance but sharing it may take opportunities away from other
tracking nodes which have newer, more current data to share.

There is a further point to recognise here. If the system artefact system was used for this purpose,
then there is an inherent delay in the information being collected. Once again, a tracking node must
find a base station before it can pass its recorded data over, so it can be processed and the according
ITS actions applied. This point once again feeds back into the need for further research to understand
what effect of placement and frequency of base stations can have.

6. Conclusions and Future Work

With the artefact system evaluated and its known advantages and disadvantages, the project was
drawn to a close. The project saw the creation of a wireless sensor network that was used to collect
GPS location data from vehicles whilst respecting the privacy of its occupants.

Before any of this design and development took place, a systematic literature review of relevant
topics was carried out. The research was conducted from two perspectives: the city and the user.
The city perspective helped the understanding of how the system should be implemented and what
advantages there could be if it was. The user perspective helped to understand how concerned people
are with this type of technology and suggested ways of increasing adoption.

A base station was created to be the hub of the wireless sensor network. Utilising a purposely
designed media access control protocol, the base station not only collected data from local vehicles but
also informed them first that it was present in the form of beacons which acknowledged the data just
received. Spaced at two hundred milliseconds, the beacon intervals allowed vehicles enough time to
share data whilst maintaining an orderly communication method.

Each vehicle tracking node that shared data with the base station, shared only data gathered from
within a geofence. Outside of the software based customisable geofence, no data was collected and,
instead, dropped. Each time the vehicle drove into the geofenced area, a new sessionID was randomly
generated. This sessionID was used as an identifier for that vehicle and the journey it was currently on.
These measures helped to reduce the chance of logs being kept about specific vehicles and their habits
or being able to identify individuals.

A thought towards cost was maintained throughout the project, with both the base station and vehicle
tracking node cost kept to a minimum. The difficulty of installing in a vehicle was also kept in mind, with
the final implementation of the vehicle tracking node only requiring power from the vehicle to operate.

Whilst this project is complete there is still further work that can be done to improve the solution.
This further work has already been alluded to during the evaluation chapter and involves the efficiency
of the MAC protocol. Whilst the protocol operates in a satisfactory manner more work is needed to
perfect it before it can be used on a larger scale. There also is also a requirement for further work to
understand how base station placement and frequency affects how much data can be collected.

Author Contributions: J.H. as the first author of the paper did all the implementation and test work including
system design. H.Q.Y. contribute to verify the system design and testing results as well as supporting on the
algorithm development and idea discussions.

Sensors 2019, 19, 347 25 of 48

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Base Station Vehicle Tracking Node

Timestamp

Packet Got?
1 equals Yes,
0 equals No

Timestamp
Acknowledgement?
1 equals Yes,
0 equals No

Back-Off Value

1538998289285 1 First Message Sent

1538998289495 1 1538998289495 1 0

1538998289705 1 1538998289705 1 0

1538998289915 1 1538998289915 1 0

1538998290125 1 1 0

1538998290335 1 1 0

1538998290545 1 1 0

1538998290755 1 1 0

1538998290975 1 1 0

1538998291185 0 1538998291185 0 4

1538998291405 0 3

1538998291615 0 2

1538998291825 0 1

1538998292035 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1538998294585 0 1 0

1538998294805 1 1538998294805 0 0

1 1538998295015 1 0

1538998295235 0 1 0

1538998295445 1 0 0

1 1538998295655 1 0

1 1 0

Sensors 2019, 19, 347 26 of 48

1 1 0

1 1 0

1 1 0

1538998296725 0

1538998296935 1 1538998296935 0 0

1538998297155 0

0

1538998297575 1 1538998297575 0 0

1 1538998297785 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1538998300325 1 0

1538998300545 0

1538998300755 1 1538998300755 1 0

1 1538998300966 1 0

1 1538998301185 1 0

1538998301395 0

1538998301615 1 1538998301615 0 0

1 1538998301825 1 0

1 1538998302035 1 0

1538998302255 0

1538998302465 1 1538998302465 0 0

1538998302675 0

1538998302885 1 1538998302885 0 0

1 1 0

1 1538998303305 1 0

1 1 0

1 1 0

1 0

Total Packets: 56 Total Packets: 50

Sensors 2019, 19, 347 27 of 48

Base Station Vehicle Tracking Node

Timestamp
Packet Got?
1 equals Yes,
0 equals No

Timestamp
Acknowledgement?
1 equals Yes,
0 equals No

Back-Off Value

1538998349605 1 First Message Sent

1 1538998349815 1 0

1 1 0

1538998350245 0

0

1538998350665 1 1538998350665 0 0

1 1538998350875 1 0

1 1 0

1 1 0

1538998351505 0

1538998351715 1 1538998351715 0 0

1538998351925 0

1538998352135 1 1538998352135 0 0

1 1538998352345 1 0

1 1538998352565 1 0

1538998352775 0

1538998352985 1 1538998352985 0 0

1538998353195 0

1538998353405 1 1538998353405 0 0

1 1538998353615 1 0

1 1538998353825 1 0

1 1538998354035 1 0

1538998354245 0

1538998354455 1 1538998354455 0 0

1 1538998354675 1 0

1 1538998354885 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1538998356815 0

1538998357025 1 1538998357025 0 0

Sensors 2019, 19, 347 28 of 48

1 1538998357235 1 0

1 1 0

1 1 0

1538998357865 0

1538998358075 1 1538998358075 0 0

1 1538998358295 1 0

1 1 0

1 1 0

1 1 0

1538998359155 0 1 0

0 1538998359365 0 4

0 0 3

0 0 2

0 0 1

1538998360215 1 0 0

1 1538998360425 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1538998361685 0

1538998361896 1 1538998361896 0 0

1 1538998362106 1 0

1 1 0

1 1 0

1538998362735 0

1538998362945 1 1538998362945 0 0

1538998363155 0

1538998363365 1 1538998363365 0 0

1 1538998363576 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

Sensors 2019, 19, 347 29 of 48

1 1538998365675 1 0

1538998365886 0

0

1538998366305 1 1538998366305 0 0

1 1538998366515 1 0

1 0

Total Packets: 62 Total Packets: 50

Base Station Vehicle Tracking Node

Timestamp
Packet Got?
1 equals Yes,
0 equals No

Timestamp
Acknowledgement?
1 equals Yes,
0 equals No

Back-Off Value

1538998633735 1 First Message Sent

1538998633946 0 1538998633946 0 3

0 0 2

0 0 1

0

1538998634795 1 0 0

1 1538998635005 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1538998636275 0

1538998636485 1 1538998636485 0 0

1 1538998636695 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1538998638175 0

1538998638385 1 1538998638385 0 0

1 1538998638595 1 0

1 1 0

1 1 0

1538998639235 0

1538998639445 1 1538998639445 0 0

Sensors 2019, 19, 347 30 of 48

1 1538998639655 1 0

1 1 0

1 1 0

1538998640295 0

1538998640505 1 1538998640505 0 0

1538998640716 0 0 3

0 0 2

0 0 1

0 0 0

0 1538998641566 0 3

0

0 0 2

0 0 1

1538998642415 1 0 0

1 1538998642625 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1538998644105 0

0 1538998644315 0 0

0 0 3

0 0 2

0 0 1

0 0 0

0 0 5

0 0 4

0 0 3

0 0 2

0 0 1

1538998646445 1 0 0

1 1538998646656 1 0

1 1 0

1 1 0

1 1 0

1538998647495 0

1538998647705 1 1538998647705 0 0

1 1538998647915 1 0

Sensors 2019, 19, 347 31 of 48

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1538998651065 0 1 0

0 1538998651275 0 2

0 0 1

1538998651695 1 0 0

1538998651905 0

1538998652115 1 1538998652115 0 0

1 1538998652325 1 0

1 1 0

1 1 0

1 0

Total Packets: 59 Total Packets: 50

Base Station Vehicle Tracking Node

Timestamp
Packet Got?
1 equals Yes,
0 equals No

Timestamp
Acknowledgement?
1 equals Yes,
0 equals No

Back-Off Value

1538999314975 1 First Message Sent

1 1538999314975 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

Sensors 2019, 19, 347 32 of 48

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1538999318155 0 1 0

1 1538999318155 0 2

1 0 1

1 0 0

1 1538999318788 1 0

1 1 0

0 1 0

0 1 0

0 1538999319645 0 4

0 0 3

0 0 2

1538999320485 1

1 0 1

1 0 0

1 0 0

1 1538999321335 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1

1 1538999324745 0 0

1 1538999324955 1 0

1 1 0

1 1 0

Sensors 2019, 19, 347 33 of 48

1538999325585 0

1 1538999325795 0 0

1 1538999326005 1 0

1 1 0

1 1 0

1 1 0

1 1538999326845 0 2

1 0 1

1 0 0

1 1538999327475 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 0

Total Packets: 60 Total Packets: 50

Base Station Vehicle Tracking Node

Timestamp
Packet Got?
1 equals Yes,
0 equals No

Timestamp
Acknowledgement?
1 equals Yes,
0 equals No

Back-Off Value

1538999371475 1 First Message Sent

1 1538999371475 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1538999373785 0 1 0

1538999373995 1 1538999373995 0 0

1 1538999374205 1 0

1 1 0

1 1 0

Sensors 2019, 19, 347 34 of 48

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1538999377145 0

1538999377355 1 1538999377355 0 0

1 1538999377565 1 0

1 1 0

1 1 0

1538999378205 0

1538999378415 1 1538999378415 0 0

1 1538999378625 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1

1 1538999380105 0 0

1 1538999380315 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1

1 1538999382655 0 0

1538999382866 0 0 4

Sensors 2019, 19, 347 35 of 48

1538999383085 1 0 3

1

1538999383505 0 0 2

0 0 1

1538999383925 1 0 0

1 1538999384145 1 0

1 1 0

1538999384565 0

1538999384775 1 1538999384775 0 0

1 0 4

1538999385195 0

1538999385405 1

1 0 3

1538999385825 0 0 2

1538999386035 1 0 1

1 1538999386245 0 0

1 1538999386455 1 0

1538999386665 0

1538999386875 1 1538999386875 0 0

1 1538999387085 1 0

1 1 0

1 0

Total Packets: 66 Total Packets: 50

Base Station Vehicle Tracking Node

Timestamp
Packet Got?
1 equals Yes,
0 equals No

Timestamp
Acknowledgement?
1 equals Yes,
0 equals No

Back-Off Value

1538999448065 1 First Message Sent

1538999448275 0 1538999448275 0 4

1538999448485 1

1 0 3

1 0 2

1 0 1

1

1 0 0

0

1 0 0

1 1538999450175 1 0

1 1 0

Sensors 2019, 19, 347 36 of 48

0 1 0

0 1538999450805 0 3

0 0 2

1538999451225 1

1 0 1

1

1 0 0

1 1538999452065 1 0

1 1 0

1 1 0

1 1538999452695 0 4

0 0 3

0 0 2

0 0 1

1538999453535 1 0 0

1 1538999453745 1 0

1538999453955 0

1538999454165 1

1 1538999454375 0 0

1 0 3

1 0 2

1 0 1

1 0 0

1 0 5

1 0 4

0 0 3

0 0 2

1 0 1

1 0 0

0 1538999457125 1 0

1 1 0

1

1 1538999457765 0 0

0 1538999457975 1 0

1 1 0

1 1538999458395 0 0

1 0 5

1 0 4

1 0 3

0 0 2

Sensors 2019, 19, 347 37 of 48

1 0 1

1 0 0

1

1 0 0

1

1

1 0 0

1 0 4

1 0 3

1 0 2

1

1 0 1

1 0 0

1 0 5

0 0 4

1 0 3

1 0 2

1 0 1

1 0 0

1 1538999463235 1 0

1 1 0

1538999463655 0

1 1538999463865 0 0

1 1538999464085 1 0

1

1 1538999464715 0 0

0 0 0

0 0 4

0 0 3

1

1 0 2

1 0 1

1 0 0

1 0 5

0 0 4

0 0 3

1 0 2

0 0 1

1538999467255 1 0 0

1 1538999467465 1 0

Sensors 2019, 19, 347 38 of 48

1 1 0

1 1 0

1 1 0

1 1 0

1 1538999468525 0 3

1 0 2

1 0 1

1 0 0

1 0 3

1538999469575 0 0 2

1 0 1

1 0 0

1 1538999470216 1 0

1 1 0

0

1 1538999470855 0 0

1 0 2

0 0 1

1 0 0

1 1538999471705 1 0

1 1 0

1 1 0

1 1 0

1 1 0

0

1 1538999472985 0 0

0

1 0 0

1

1 0 0

1538999474035 0 0 5

1 0 4

1 0 3

1 0 2

0 0 1

1 0 0

1 0 3

1 0 2

1 0 1

1 0 0

Sensors 2019, 19, 347 39 of 48

1 0 2

1

1 0 1

1 0 0

1 0 3

0 0 2

0 0 1

1 0 0

1 1538999477835 1 0

1 1 0

1

1 1538999478465 0 0

1

1 0 0

0 0 0

1

1 0 3

1 0 2

1 0 1

1 0 0

0

1538999480566 1

1 0 2

1 0 1

1

0

1 0 0

1 1538999481825 1 1

1 1538999482035 0 3

1 0 2

0 0 1

1 0 0

0

1 1538999483295 1 0

1 1 0

1 1 0

1

1 1538999484135 0 0

1 0 0

Sensors 2019, 19, 347 40 of 48

1

1

1 0 5

1 0 4

0 0 3

1 0 2

1 0 1

1 0 0

1 0 5

0 0 4

0 0 3

0 0 2

0 0 1

1

1 0 0

1538999487495 1 1538999487495 1 0

1 1 0

0

1 1538999488125 0 0

1 0 3

0

1 0 2

1

1 0 1

1

1 0 0

1 0 5

1 0 4

1 0 3

1 0 2

1 0 1

0 0 0

1 0 2

1 0 1

1 0 0

0 1538999491275 1 0

1 1 0

1 1538999491905 0 0

1 1538999492115 1 0

1 1 0

Sensors 2019, 19, 347 41 of 48

1 1538999492535 0 5

1 0 4

1 0 3

1 0 2

1 0 1

1 0 0

1 0 5

1 0 4

1 0 3

1 0 2

1 0 1

1

1

1

1 0 0

1538999495895 0 0 0

1

1

1

1

1 0 4

0 0 3

0

1

0 0 2

1 0 1

1 0 0

1 0 3

1 0 2

1 0 1

0 0 0

0 0 5

0 0 4

0 0 3

0 0 2

1 0 1

0 0 0

1

0 1538999500305 1 0

0 1538999500515 0 0

Sensors 2019, 19, 347 42 of 48

0 1538999500725 1 0

1

1

1

1 1 0

1 1 0

0 1 0

1 1538999502195 0 0

1 0 4

0

1 0 3

0 0 2

1 0 1

1 0 0

1 0 3

1

1 0 2

1 0 1

1 0 0

1 0 5

0 0 4

1 0 3

1 0 2

1 0 1

1 0 0

1

1 1538999506186 1 0

1 1 0

0 1 0

0 1 0

1 1 0

1 1 0

1 0

Total Packets: 219 Total Packets: 50

Sensors 2019, 19, 347 43 of 48

Appendix B

Timestamp Within Fence? Shared? SessionID Recorded Coordinates
Send Attempts
until Success

14:15:41 No No

14:15:46 No No

14:15:51 Yes Yes 3978 52.06651439, −0.30822246 2

14:15:56 Yes Yes 3978 52.06626717, −0.30927877 2

14:16:01 Yes Yes 3978 52.06605841, −0.31038304 1

14:16:06 Yes Yes 3978 52.06584746, −0.3114968 1

14:16:11 Yes Yes 3978 52.06564751, −0.31256447 2

14:16:16 Yes Yes 3978 52.06547095, −0.31360452 1

14:16:21 Yes Yes 3978 52.06537098, −0.31455171 1

14:16:26 Yes Yes 3978 52.0653315, −0.31541419 2

14:16:31 Yes No

14:16:36 Yes No

14:16:41 Yes No

14:16:46 Yes No

14:16:51 Yes No

14:16:56 Yes No

14:17:01 Yes No

14:17:06 Yes No

14:17:11 No No

14:17:16 No No

Timestamp Within Fence? Shared? SessionID Recorded Coordinates
Send Attempts
until Success

14:20:17 No No

14:20:22 No No

14:20:27 Yes Yes 6533 52.06308585, −0.31412471 1

14:20:32 Yes Yes 6533 52.06368297, −0.31448173 1

14:20:37 Yes Yes 6533 52.06426095, −0.31478351 1

14:20:42 Yes Yes 6533 52.06480673, −0.31501752 1

14:20:47 Yes Yes 6533 52.06520865, −0.31517696 2

14:20:52 Yes Yes 6533 52.06532235, −0.31524813 3

14:20:57 Yes Yes 6533 52.06531337, −0.3149738 2

14:21:02 Yes Yes 6533 52.06539673, −0.31436448 2

14:21:07 Yes No

14:21:12 Yes No

14:21:17 Yes No

14:21:22 Yes No

14:21:27 Yes No

14:21:32 No No

14:21:37 No No

Sensors 2019, 19, 347 44 of 48

Timestamp Within Fence? Shared? SessionID Recorded Coordinates
Send Attempts
until Success

14:27:17 No No

14:27:22 No No

14:27:27 Yes Yes 5626 52.06653354, −0.30817213 1

14:27:32 Yes Yes 5626 52.06625955, −0.30933655 1

14:27:37 Yes Yes 5626 52.06600928, −0.31058485 2

14:27:42 Yes Yes 5626 52.0657402, −0.31186975 2

14:27:47 Yes Yes 5626 52.06552941, −0.31310313 1

14:27:52 Yes Yes 5626 52.06538453, −0.31416301 2

14:27:57 Yes Yes 5626 52.06532625, −0.31502989 1

14:28:02 Yes Yes 5626 52.06526948, −0.3157568 2

14:28:07 Yes Yes 5626 52.06518256, −0.31645119 2

14:28:12 Yes No

14:28:17 Yes No

14:28:22 Yes No

14:28:28 Yes No

14:28:33 Yes No

14:28:38 Yes No

14:28:43 No No

14:28:48 No No

Timestamp Within Fence? Shared? SessionID Recorded Coordinates
Send Attempts
until Success

14:31:35 No No

14:31:40 No No

14:31:45 Yes Yes 2179 52.06334934, −0.31431263 1

14:31:50 Yes Yes 2179 52.0639734, −0.31466067 1

14:31:55 Yes Yes 2179 52.06458848, −0.31493415 2

14:32:00 Yes Yes 2179 52.06509055, −0.31515036 2

14:32:05 Yes Yes 2179 52.06526948, −0.31524525 1

14:32:10 Yes Yes 2179 52.0653032, −0.31523644 1

14:32:15 Yes Yes 2179 52.0653581, −0.31491941 2

14:32:20 Yes Yes 2179 52.06543028, −0.31425366 3

14:32:25 Yes No

14:32:30 Yes No

14:32:35 Yes No

14:32:40 Yes No

14:32:45 Yes No

14:32:50 No No

14:32:55 No No

Sensors 2019, 19, 347 45 of 48

Timestamp Within Fence? Shared? SessionID Recorded Coordinates
Send Attempts
until Success

14:38:06 No No

14:38:11 No No

14:38:16 Yes Yes 1663 52.0665637, −0.30806064 2

14:38:21 Yes Yes 1663 52.0662831, −0.30921286 1

14:38:26 Yes Yes 1663 52.06605503, −0.31042083 1

14:38:31 Yes Yes 1663 52.06581441, −0.31171183 1

14:38:36 Yes Yes 1663 52.0655938, −0.31292674 2

14:38:41 Yes Yes 1663 52.06543062, −0.31405914 1

14:38:46 Yes Yes 1663 52.06536725, −0.31508309 2

14:38:51 Yes Yes 1663 52.06528931, −0.31599589 2

14:38:56 Yes Yes 1663 52.0652239, −0.31674551 1

14:39:01 Yes Yes 1663 52.06519984, −0.31681798 1

14:39:06 Yes No

14:39:11 Yes No

14:39:16 Yes No

14:39:22 Yes No

14:39:27 Yes No

14:39:32 Yes No

14:39:37 No No

14:39:42 No No

Timestamp Within Fence? Shared? SessionID Recorded Coordinates
Send Attempts
until Success

14:42:27 No No

14:42:32 No No

14:42:37 Yes Yes 2250 52.06343491, −0.31435431 1

14:42:42 Yes Yes 2250 52.06407354, −0.31469642 2

14:42:47 Yes Yes 2250 52.06468863, −0.31497041 1

14:42:52 Yes Yes 2250 52.06516188, −0.31517391 1

14:42:57 Yes Yes 2250 52.06528304, −0.3152278 1

14:43:03 Yes Yes 2250 52.06531286, −0.31521306 1

14:43:08 Yes Yes 2250 52.06536234, −0.31484435 2

14:43:13 Yes Yes 2250 52.06544977, −0.31411302 1

14:43:18 Yes No

14:43:23 Yes No

14:43:28 Yes No

14:43:33 Yes No

14:43:38 Yes No

14:43:43 No No

14:43:48 No No

Sensors 2019, 19, 347 46 of 48

Timestamp Within Fence? Shared? SessionID Recorded Coordinates
Send Attempts
until Success

14:49:01 No No

14:49:06 No No

14:49:11 Yes Yes 5342 52.06647203, −0.30838783 2

14:49:16 Yes Yes 5342 52.06624277, −0.30953311 9

14:49:21 Yes Yes 5342 52.06602978, −0.31077514 1

14:49:27 Yes Yes 5342 52.06573257, −0.31235622 1

14:49:32 Yes No

14:49:37 Yes No

14:49:42 Yes No

14:49:47 Yes No

14:49:52 Yes No

14:49:57 Yes No

14:50:02 Yes No

14:50:07 Yes No

14:50:12 Yes No

14:50:17 Yes No

14:50:22 Yes No

14:50:27 Yes No

14:50:32 No No

14:50:37 No No

Timestamp Within Fence? Shared? SessionID Recorded Coordinates
Send Attempts
until Success

14:53:24 No No

14:53:29 No No

14:53:34 Yes Yes 4361 52.06317498, −0.31419232 1

14:53:39 Yes Yes 4361 52.06377685, −0.31452935 2

14:53:44 Yes Yes 4361 52.06433805, −0.31479809 1

14:53:49 Yes Yes 4361 52.06485536, −0.31503938 1

14:53:54 Yes Yes 4361 52.06516866, −0.31516595 2

14:53:59 Yes Yes 4361 52.06523661, −0.31522543 11

14:54:04 Yes Yes 4361 52.06523949, −0.31522373 1

14:54:09 Yes Yes 4361 52.06530015, −0.31508123 1

14:54:14 Yes Yes 4361 52.06534387, −0.31455781 1

14:54:19 Yes No

14:54:24 Yes No

14:54:29 Yes No

14:54:34 Yes No

14:54:39 Yes No

14:54:44 Yes No

14:54:49 No No

14:54:54 No No

Sensors 2019, 19, 347 47 of 48

References

1. Sharma, A.; Chaki, R.; Bhattacharya, U. Applications of Wireless Sensor Network in Intelligent Traffic System:
A Review. In Proceedings of the 2011 3rd International Conference on Electronics Computer Technology,
Kanyakumari, India, 8–10 April 2011; pp. 53–57.

2. Liu, Y.; Wong, C.K. Refining Lane-Based Traffic Signal Settings to Satisfy Spatial Lane Length Requirements.
J. Adv. Transp. 2017, 2017. [CrossRef]

3. Nower, N.; Hossan, S. Efficient Dynamic Traffic Light Control of ITS. In Proceedings of the Second
International Conference on Internet of things and Cloud Computing, Cambridge, UK, 22–23 March 2017.
[CrossRef]

4. Faye, S.; Chaudet, C.; Demeure, I. A Distributed Algorithm for Multiple Intersections Adaptive Traffic Lights
Control using a Wireless Sensor Networks. In Proceedings of the First Workshop on Urban Networking,
Nice, France, 10 December 2012. [CrossRef]

5. Noei, S.; Santana, H. Reducing Traffic Congestion Using Geo-fence Technology: Application for Emergency
Car. In Proceedings of the 1st International Workshop on Emerging Multimedia Applications and Services
for Smart Cities, Orlando, FL, USA, 7 November 2014. [CrossRef]

6. Highways England. Making Motorways Smarter. Available online: https://assets.publishing.service.gov.
uk/government/uploads/system/uploads/attachment_data/file/537715/S160223_Making_motorways_
smarter_-_A5_Leaflet_-_interactive.pdf (accessed on 19 September 2018).

7. Kolosz, B.; Grant-Muller, S. Comparing smart scheme effects for congested highways. Transp. Res. Pt.
C-Emerg. Technol. 2015, 60, 313–323. [CrossRef]

8. Coffey, C.; Pozdnoukhov, A.; Calabrese, F. Time of arrival predictability horizons for public bus routes.
In Proceedings of the 4th ACM SIGSPATIAL International Workshop on Computational Transportation
Science, Chicago, IL, USA, 1 November 2011. [CrossRef]

9. Krause, A.; Horvitz, E.; Kansal, A. Toward Community Sensing. In Proceedings of the 2008 International
Conference on Information Processing in Sensor Networks (IPSN 2008), St. Louis, MO, USA, 22–24 April
2008. [CrossRef]

10. Milton Keynes Council. Car Share. Available online: https://www.milton-keynes.gov.uk/highways-and-
transport-hub/parking/car-share (accessed on 19 September 2018).

11. Leduc, G. Road Traffic Data: Collection Methods and Applications. Available online:
https://www.researchgate.net/profile/Guillaume_Leduc2/publication/254424803_Road_Traffic_
Data_Collection_Methods_and_Applications/links/55645c3008ae8c0cab37c8c8/Road-Traffic-Data-
Collection-Methods-and-Applications.pdf (accessed on 31 October 2018).

12. MetroCount®Traffic Data Specialists. RoadPod®VT5900—Operator Guide. Available online: http://
metrocount.com/downloads/flyers/RoadPodVT-OperatorGuide.pdf (accessed on 19 September 2018).

13. Ministry of Works and Transport. Traffic Data Collection and Analysis. Available online: https://www.
vegvesen.no/_attachment/336339/binary/585485 (accessed on 19 September 2018).

14. Intellivision. Smart City/Transportation. Available online: https://www.intelli-vision.com/smart-city/
(accessed on 19 September 2018).

15. UK Government. Government Backs Smartphone App to Pinpoint Potholes. Available online: https:
//www.gov.uk/government/news/government-backs-smartphone-app-to-pinpoint-potholes (accessed
on 19 September 2018).

16. Ofcom. License Exempt Short Range Devices. Available online: https://www.ofcom.org.uk/__data/assets/
pdf_file/0028/84970/ir-2030-july-2017.pdf (accessed on 19 September 2018).

17. AliExpress. WAVGAT APM2.5 NEO-6M NEO-M8N NEO-M7N-0-000 GPS Module GYGPSV1-8M 3-5V
GYGPSV5-NEO for Pixhawk APM. Available online: https://www.aliexpress.com/store/product/
WAVGAT-APM2-5-NEO-6M-NEO-M8N-NEO-M7N-0-000-GPS-Module-GYGPSV1-8M-3/1962508_
32948172227.html (accessed on 31 October 2018).

18. Abramson, N. Development of the ALOHANET. IEEE Trans. Inf. Theory 1985, 31, 119–123. [CrossRef]
19. GitHub (2018a). RFM69 Library. Available online: https://github.com/LowPowerLab/RFM69 (accessed on

31 October 2018).
20. Ye, N.; Wang, Z.Q.; Malekian, R.; Zhang, Y.Y.; Wang, R.C. A Method of Vehicle Route Prediction Based on

Social Network Analysis. Sensors 2015, 2015. [CrossRef]

http://dx.doi.org/10.1155/2017/8167530
http://dx.doi.org/10.1145/3018896.3056807
http://dx.doi.org/10.1145/2413236.2413240
http://dx.doi.org/10.1145/2661704.2661709
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/537715/S160223_Making_motorways_smarter_-_A5_Leaflet_-_interactive.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/537715/S160223_Making_motorways_smarter_-_A5_Leaflet_-_interactive.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/537715/S160223_Making_motorways_smarter_-_A5_Leaflet_-_interactive.pdf
http://dx.doi.org/10.1016/j.trc.2015.09.004
http://dx.doi.org/10.1145/2068984.2068985
http://dx.doi.org/10.1109/IPSN.2008.37
https://www.milton-keynes.gov.uk/highways-and-transport-hub/parking/car-share
https://www.milton-keynes.gov.uk/highways-and-transport-hub/parking/car-share
https://www.researchgate.net/profile/Guillaume_Leduc2/publication/254424803_Road_Traffic_Data_Collection_Methods_and_Applications/links/55645c3008ae8c0cab37c8c8/Road-Traffic-Data-Collection-Methods-and-Applications.pdf
https://www.researchgate.net/profile/Guillaume_Leduc2/publication/254424803_Road_Traffic_Data_Collection_Methods_and_Applications/links/55645c3008ae8c0cab37c8c8/Road-Traffic-Data-Collection-Methods-and-Applications.pdf
https://www.researchgate.net/profile/Guillaume_Leduc2/publication/254424803_Road_Traffic_Data_Collection_Methods_and_Applications/links/55645c3008ae8c0cab37c8c8/Road-Traffic-Data-Collection-Methods-and-Applications.pdf
http://metrocount.com/downloads/flyers/RoadPodVT-OperatorGuide.pdf
http://metrocount.com/downloads/flyers/RoadPodVT-OperatorGuide.pdf
https://www.vegvesen.no/_attachment/336339/binary/585485
https://www.vegvesen.no/_attachment/336339/binary/585485
https://www.intelli-vision.com/smart-city/
https://www.gov.uk/government/news/government-backs-smartphone-app-to-pinpoint-potholes
https://www.gov.uk/government/news/government-backs-smartphone-app-to-pinpoint-potholes
https://www.ofcom.org.uk/__data/assets/pdf_file/0028/84970/ir-2030-july-2017.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0028/84970/ir-2030-july-2017.pdf
https://www.aliexpress.com/store/product/WAVGAT-APM2-5-NEO-6M-NEO-M8N-NEO-M7N-0-000-GPS-Module-GYGPSV1-8M-3/1962508_32948172227.html
https://www.aliexpress.com/store/product/WAVGAT-APM2-5-NEO-6M-NEO-M8N-NEO-M7N-0-000-GPS-Module-GYGPSV1-8M-3/1962508_32948172227.html
https://www.aliexpress.com/store/product/WAVGAT-APM2-5-NEO-6M-NEO-M8N-NEO-M7N-0-000-GPS-Module-GYGPSV1-8M-3/1962508_32948172227.html
http://dx.doi.org/10.1109/TIT.1985.1057021
https://github.com/LowPowerLab/RFM69
http://dx.doi.org/10.1155/2015/210298

Sensors 2019, 19, 347 48 of 48

21. Margolis, M. Arduino Cookbook, 2nd ed.; Sebastopol: O’Reilly, CA, USA, 2012.
22. Ublox. NEO-6-u-blox 6 GPS Modules-Data Sheet. Available online: https://www.u-blox.com/sites/default/

files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf (accessed on 31 October 2018).
23. GitHub (2018b). RFM69 Python Library. Available online: https://github.com/jkittley/RFM69 (accessed on

31 October 2018).
24. RS Components (2018b). Microchip MCP1700-3302E/TO, LDO Regulator, 250mA, 3.3 V, ±2%, 2.3 → 6

Vin 3-Pin, TO-92. Available online: https://uk.rs-online.com/web/p/low-dropout-voltage-regulators/
0403888/ (accessed on 31 October 2018).

25. Google (2018a). Google Maps. Available online: https://www.google.com/maps/@52.0651114,-0.3117203,
2906m/data=!3m1!1e3 (accessed on 31 October 2018).

26. Google (2018c). Google Maps. Available online: https://www.google.com/maps/@52.0649087,-0.3150466,
182m/data=!3m1!1e3 (accessed on 31 October 2018).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf
https://www.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf
https://github.com/jkittley/RFM69
https://uk.rs-online.com/web/p/low-dropout-voltage-regulators/0403888/
https://uk.rs-online.com/web/p/low-dropout-voltage-regulators/0403888/
https://www.google.com/maps/@52.0651114,-0.3117203,2906m/data=!3m1!1e3
https://www.google.com/maps/@52.0651114,-0.3117203,2906m/data=!3m1!1e3
https://www.google.com/maps/@52.0649087,-0.3150466,182m/data=!3m1!1e3
https://www.google.com/maps/@52.0649087,-0.3150466,182m/data=!3m1!1e3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Traffic Flow Data Collection Methods and Wireless Communication
	Traffic Flow Data Collection Methods
	Pneumatic Road Tubes
	Induction Loop
	Video Image Detection
	Piezoelectric Sensors
	Smartphone App
	Comparing Results

	Wireless Communication Protocols
	Pure ALOHA
	Slotted ALOHA

	Proposed Solutions
	The Software Used
	The New Beacon-Slotted ALOHA MAC
	Privacy Control

	Implementation
	Hardware
	Transceiver
	Initial Testing
	Range
	GPS Module
	Initial Testing
	Interference
	Together
	Final Implementation
	Code
	Vehicle Tracking Node
	Base Station

	Evaluation
	Static Experiment
	Dynamic Experiment
	Geofence
	Data Sharing

	Network Performance

	Conclusions and Future Work
	
	
	References

