
sensors

Article

EffFeu Project: Towards Mission-Guided Application
of Drones in Safety and Security Environments

Christopher-Eyk Hrabia * , Axel Hessler, Yuan Xu, Jacob Seibert , Jan Brehmer
and Sahin Albayrak

DAI-Labor, Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany;
axel.hessler@dai-labor.de (A.H.); yuan.xu@dai-labor.de (Y.X.); j.seibert@campus.tu-berlin.de (J.S.);
jan.brehmer@dai-labor.de (J.B.); sahin.albayrak@dai-labor.de (S.A.)
* Correspondence: christopher-eyk.hrabia@dai-labor.de; Tel.: +49-30-314-74000

Received: 18 January 2019; Accepted: 20 February 2019; Published: 25 February 2019
����������
�������

Abstract: The number of unmanned aerial system (UAS) applications for supporting rescue forces is
growing in recent years. Nevertheless, the analysis of sensed information and control of unmanned
aerial vehicle (UAV) creates an enormous psychological and emotional load for the involved humans
especially in critical and hectic situations. The introduced research project EffFeu (Efficient Operation
of Unmanned Aerial Vehicle for Industrial Firefighters) especially focuses on a holistic integration of
UAS in the daily work of industrial firefighters. This is done by enabling autonomous mission-guided
control on top of the presented overall system architecture, goal-oriented high-level task control,
comprehensive localisation process combining several approaches to enable the transition from and to
GNSS-supported and GNSS-denied environments, as well as a deep-learning based object recognition
of relevant entities. This work describes the concepts, current stage, and first evaluation results of the
research project.

Keywords: decisional autonomy; decision-making; planning; object recognition; deep learning;
GNSS-denied localisation

1. Introduction

The number of unmanned aerial system (UAS) applications for supporting common firefighters
and industrial firefighters is growing in recent years [1,2]. In particular exploration, surveillance,
monitoring and documentation of accidents, dangerous places and critical infrastructure are evaluated.
Up to this point, most gathered information, for instance, video footage, is analysed manually by
trained professionals without any additional support. Moreover, aerial systems do always require
a trained pilot, an extra person who is using either semi-automated control based on GNSS (global
navigation satellite system) or full manual control in GNSS-denied environments (e.g., indoors or close
to environmental structures such as buildings or trees). Such analysis and control creates an enormous
psychological and emotional load especially in critical and hectic situations, apart from the fact that
needing two extra persons to operate the drone is unacceptable.

Other research projects have already investigated the application of UAS in related areas of civilian
safety. The project NExt UAV [3] tested single and multiple UAS in disaster rescue scenarios, and
the particular focus lies on navigation and communication of the drones. Other projects in the domain of
disaster rescue are ICARUS [4] and SENEKA [5], which aim for terrain exploration and the application of
sensor networks. AirShield [6] concentrates on the protection of critical infrastructure through danger
prognosis and visualisation of situation information. Here, the information gathering is based on a sensor
network with multiple drones that are flying on a priori defined trajectories. Surveying radioactivity
pollution with a drone swarm from a greater distance is the aim of ANCHORS [7]. The interaction between

Sensors 2019, 19, 973; doi:10.3390/s19040973 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5220-1627
https://orcid.org/0000-0002-3079-5022
http://www.mdpi.com/1424-8220/19/4/973?type=check_update&version=1
http://dx.doi.org/10.3390/s19040973
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 973 2 of 22

the user and the system is researched in ORCHID [8]. In this project, artificial intelligence is applied to
manage and control both humans and robots based on gathered information in a disaster scenario.

The related work is concentrating on research about UAS communication, application of sensor
networks, and information sensing. A holistic integration into existing IT infrastructure, such as
in safety and security management tools, and autonomous application from a mission-oriented
perspective is not considered yet. Furthermore, the perceived information is not further processed and
annotated to simplify the analysis for the human operator. Moreover, the integrated application of
drones in GNSS-denied environments is also missing attention.

In order to address the open points, our project EffFeu enables a mission-guided application of
drones that is tightly integrated into a safety and security management system, while reducing the load
of manual control and analysis through automated object recognition that is augmented to the video
footage by our partners. Moreover, EffFeu targets the challenge of a robust localisation in the transition
between environments with reliable GNSS-based localisation and localisation in a priori known but
GNSS-denied environments. All parts of the project EffFeu are aiming for a holistic integration of UAS
in the daily work of industrial firefighters.

This paper is a revised and extended version of [9]. This extension provides especially additional
information about the general architecture, used software components as well as new experiments,
insights and details about the object recognition, localisation in the transition between indoors and
outdoors as well as mission-guided control components. For the object recognition, we conducted in
particular experiments to empirically show the effectiveness of different popular design choices to
select the most suitable one for our scenario. The experiments about our localisation process determine
the most suitable map alignment approach for our setup as well as if partially available GNSS allows
us to improve the overall accuracy. Regarding our mission-guided control component, additional
details about the architecture for the User Interface (UI) integration are provided, while complementary
experiments study how our solution performs in a more complex scenario with different configurations
and dynamically adjusted mission boundaries.

The contributions of this paper are manifold. First, the proposed architecture allows, to our best
knowledge, for the first time, the comprehensive integration of drones in an industrial Safety and Security
Management System. Secondly, we propose an object-recognition approach for drones tailored to the
requirements of industrial firefighters. Thirdly, our localisation and navigation process addresses the
problem of operation in partially GNSS-denied environments making use of a priori known information.
Fourthly, we present the realisation of a mission-guided control of drones as well as its integration in the
overall approach on the foundation of a hybrid decision-making and planning system.

In the remainder of the paper, we first introduce the research project with partners and responsibilities
in more detail before we present the overall project system architecture. In the following sections,
we provide more details about the mentioned contributions discussing concepts, current stage and first
results of the project parts that our department realised.

2. Project

The goal of the EffFeu project is the comprehensive integration of UAS into the Safety and
Security Management as it is used by industrial firefighters, while increasing the robustness and
efficiency through the development of intelligent support functionalities. Portability, openness and
extendibility of the solution as well as connectivity, acceptance and application of common standards
are consequently considered during the development of the project.

The project is organised into three subprojects, one for each of the three consortial partners:
Gemtec GmbH (Königs Wusterhausen, Germany) is dealing with the integration of UAS into the
management system and the development of the drone hardware, ART+COM AG (Berlin, Germany)
investigates interactive user interfaces for UAS, and Distributed Artificial Intelligence (DAI)-Labor of
the Technische Universität Berlin (TU Berlin) extends the intelligence of the UAS. All three partners

Sensors 2019, 19, 973 3 of 22

have a large integration work package where they are enforced to integrate and test their components
into the overall system and context.

In detail, the Gemtec subproject is focused on integrating sensory output of drones, its sensor
payloads and UAS controls into their safety and security management system WotanEx (http://
wotanex.de/loesungen/security.html) so that data and information acquired can be seamlessly used
by control room personnel and task force for human decision-making.

The ART+COM subproject works on the augmentation of the drone camera streams with additional
relevant information in real time. They also develop user interfaces that guarantee the intuitive and
goal-oriented interaction with the drone, either by the control room personnel or the task force on-site.

The subproject of the DAI-Labor focuses especially on objects and situation recognition, autonomous
navigation in the transition from absolute GNSS localisation to relative localisation and mapping
approaches (e.g., simultaneous localisation and mapping (SLAM)), and the intelligent, application- and
mission-oriented control of aerial systems.

The following section introduces the system architecture of the project that reflects the complementary
responsibilities of the project partners.

3. Architecture

The nature of the EffFeu architecture is a holistic structure of a distributed system of distributed
systems. It can also be characterised as a cyber-physical system utilising standard communication
infrastructures and protocols between mechanical and electronic components, tightly coupled with
intelligent algorithms and users. The overall architecture is shown in Figure 1.

UAS System

Planner

Object
Recognition

Websocket

HTTP

REST/JSON

Telemetry

Goals + ParamsREST/XML

REST/JSON

Sensors List
Sensor Status Updates

Application
status

Backend

Websocket

REST/XML

REST/JSON

Websocket

Frontend

REST/JSON

HTTP

Websocket

Telemetry
Detected objects

Goals + Params

Video Stream

Ground Station Drone

Localisation

Sensors

Detected
Objects

Goals + Params

Safety Remote

Telemetry

Video Server

Converted
Video Stream

Pixhawk/MAVROS

Telemetry

Commands

Sensor States

Telemetry
Compressed
Video Stream

Position + Attitude

Control
Commands

Safety and Security
Management System

MissionControlUI

Figure 1. EffFeu system architecture.

The main components of the system are reflecting the responsibilities of the project partners,
namely the Safety and Security Management System, the The Mission-Control-UI, and the UAS System.

The Safety and Security Management System software allows for integrating, monitoring and
controlling various sensors and actors of industrial plants, for instance fire warning devices, video
systems, and access control systems. Responsible for the operation of the software are experts that
manage occurring alarms and events in a central control room, e.g., on an industrial plant with own
fire brigade, like a chemical plant.

The Mission-Control-UI is an intuitive and goal oriented user interface that is used by the rescue
forces in operation on a ruggedized mobile tablet computer. It allows for selecting and configuring
high-level mission goals for the drones and gives access to the automatically gathered information, like
recognised objects, as well as the current system state. To manage several parallel clients, the component
is split into a Frontend and Backend.

DAI-Labor is concentrating on the drone and ground station components and the provisioning of
interfaces, which can be used by the partners both for monitoring the drone and its sensor outputs

http://wotanex.de/loesungen/security.html
http://wotanex.de/loesungen/security.html

Sensors 2019, 19, 973 4 of 22

as well as for controlling it using high-level mission goals. The UAS system consists of the major
components: Planner, Object Recognition, Localisation, and Web Video Server. Each component is
embedded in several Robot Operating System (ROS) processes and can reside and run either on
the drone or on the ground station computer.

The Planner component is responsible for the task-level decision-making and planning of the
system. It is instructed by high-level mission goals that are selected and parametrised in the user
interface of the Safety and Security Management System component or the Mission-Control-UI. The planner
interprets the goals and creates the flow of activities that are then translated to low-level drone
behaviours and executed. More details are given in Section 4.3.

The Localisation component enables a seamless operation of the drones indoor and outdoor based
on GNSS information, R-GBD (Red Green Blue-Depth)-based SLAM, visual odometry and prior known
environment maps. Section 4.2 provides additional information about our approach.

The Object Recognition component is a one-shot multi-object detector for multiple categories and
varying resolutions. The pre-trained part may reside on the drone itself, and the online training unit
is running on the ground station. According to the firefighter’s priorities, it is capable of detecting
persons, vehicles and hazardous goods in real time, also reconstructing the 3D world coordinates of
objects in the image. Further details about the object recognition are given in Section 4.1.

The main task of the ground station is to provide gateway-like functions such as converting
telemetry data and sensor information into needed representations and providing them over different
interfaces. The function of the ground station is bilateral, also incoming control messages will be
translated and delivered to according components.

The Safety Remote is only a backup control instance that allows taking over control in case the
system behaves maliciously aside from being currently required for regulatory reasons.

The drone itself is controlled on low-level by a Pixhawk autopilot system with a PX4 software stack
that is instructed by the Planner. All higher-level components of the UAS, including Planner, Localisation,
and Object Recognition are implemented with ROS. The ROS component instances, so-called nodes, can
be freely distributed between the ground station computer and the drone itself. The ROS nodes on the
drone are running on a comparable powerful small-size x86 companion computer (Intel® NUC7i7BNH)
that has a serial connection with MAVLink protocol to the Pixhawk. The automated conversion
between MAVLink commands and the ROS communication infrastructure is realised with the MAVROS
(http://wiki.ros.org/mavros) package. In order to provide REST/JSON, Websocket, and HTTP video
stream interfaces, we make use of the ROS packages ROStful (https://github.com/pyros-dev/rostful),
Rosbridge suite (http://wiki.ros.org/rosbridge_suite), and a customised and extended version of
the web_video_server (https://gitlab.tubit.tu-berlin.de/breakdowncookie/web_video_server). These
packages allow us to automatically generate required interfaces for the partner systems based on
an Application Programming Interface (API) we conveniently have defined with standard ROS
functionalities.

The novelty of the project architecture is the realisation of a holistic integration of UAS based
on ROS with additional components that are required to achieve a seamless and mission-oriented
workflow for rescue forces. Here, the additional components from the perspective of the UAS are
the Safety and Security Management System and the Mission-Control-UI. To our best knowledge,
this is the first time that an industrial Safety and Security Management System is equipped with
means for controlling and monitoring drones in operation. Furthermore, the integration with
the Mission-Control-UI is different to existing control approaches because it entirely focuses on
a mission-oriented and task-based perspective instead of a traditional motion-oriented control.

4. UAS System Details and Results

In the following subsections, we present the approaches, first results and insights about the core
research topics of the DAI-Labor within the EffFeu project that are focussing on the realisation of an
intelligent UAS system.

http://wiki.ros.org/mavros
https://github.com/pyros-dev/rostful
http://wiki.ros.org/rosbridge_suite
https://gitlab.tubit.tu-berlin.de/breakdowncookie/web_video_server

Sensors 2019, 19, 973 5 of 22

4.1. Object Recognition

Object detection is the problem of finding and classifying a variable number of objects on an image.
With the development of deep learning, backed by big training data and advanced computing technology,
the ability of immediately recognizing all the objects in a scene seems to be no longer a secret of evolution.
One popular approach is Region-based Convolutional Neural Network (R-CNN) framework [10], which
is based on a two-stage, proposal-driven mechanism. Through a sequence of advances, this two-stage
framework consistently achieves top accuracy on the challenging COCO [11] benchmark. On the other
hand, one stage detectors are applied over a regular, dense sampling of object locations, scales, and
aspect ratios. Recent work on one-stage detectors, such as You Only Look Once (YOLO) [12] and Single
Shot MultiBox Detector (SSD) [13], demonstrates promising results, yielding faster detectors with lower
accuracy. These algorithms are not usually optimal for dealing with sequences or images captured
by drones, due to various challenges such as viewpoint changes and scales. In this project, we have
developed a modular object recognition based on deep convolutional neural networks to experiment
and tune different submodules for images captured by drones. There was no big dataset available for
drone-based object recognition applications until recently [14,15]; therefore, we have applied transfer
learning, e.g., our model firstly was trained with the big dataset (COCO), and then fine-tuned with the
small drone dataset, which is created in house.

4.1.1. Architecture of Object Recognition Module

Considering computation limits, one stage deep convolutional neural network based method
is chosen, our development was started with the static graph framework [16], and switched to
PyTorch [17] for dynamic graph support, which allows us to enjoy fast prototyping and GPU computation.
The software evolves from monolithic to modular as well, the basic concepts of SSD becomes the
meta-architecture, as illustrated in Figure 2. Different submodules are developed and tested following
recent deep learning advances, specifically [10,18]:

backbone net is responsible for computing a convolutional feature map over an entire input image and
is an off-the-self pretrained convolutional network. We have choices between VGG [19], ResNet [20],
ResNext [21], and SE-ResNet [22] for achieving the right speed/memory/accuracy balance [23].

pyramid net augments a standard convolutional network with a top-down pathway and lateral
connections so the network efficiently constructs a rich, multi-scale feature pyramid from a single
resolution input image. LateralBlock [24], ThreeWayBlock [25], and TransferConnectionBlock [26]
have been implemented.

anchor boxes associates every feature map cell to a default bounding boxes of different dimensions
and aspect ratios. These are manually chosen for different applications.

multi-heads net predicts the probability of object presence at each spatial position for each of the
anchors and object classes. Bottle Net Block [20], DeformbleConv [27] and Receptive Field
Block [28] have improved over basic convolutional block.

post processing merges and applies non-maximum suppression to all detections to yield the final results.

Sensors 2019, 19, 973 6 of 22

Image
Multi-scale
Features

Multi-
Heads
Multi-
Heads
Multi-
Heads
Multi-
Heads Detections Results

Anchor Boxes

Pyramid
Net

backbone
NMS

Figure 2. Meta architecture of one stage deep Convolutional Neural Network (CNN) based object
recognition. (Top): Tensor data representation in different steps. (Below): Submodules and processing
steps, see text for more details.

4.1.2. Implementation and Experiments

While our implementation has the flexibility to combine different submodules, e.g., backbone,
pyramid, etc., it is not clear which combination achieves the right speed/memory/accuracy balance
for our application and platform. Previous work typically only states that they achieve some accuracy
with some frame-rate but do not give a full picture of the speed/accuracy trade-off, which depends on
many other factors, such as which framework is used, which post-processing is used, etc. Though it is
impractical to evaluate every combination of our submodules, we are fortunate that many of them
can be excluded by desired speed and accuracy. In this paper, we seek to explore the speed/accuracy
trade-off of different submodules in an exhaustive and fair way.

In order to experiment with different configurations, we investigated techniques which train
neural network faster. In the end, we use AdamW [29] as an optimizer, it improves Adam’s
generalization performance and trains much faster than the stochastic gradient descent (SGD).
Mixed-Precision training [30] is also used in new Nvidia GPUs, and it decreases the required amount
of memory and shortens the training.

The training and inference pipelines of our detection system are shown in more detail in Figure 3.

PyTorch runtime

weights

preprocessing postprocessing
Image

(ROS msg)
Object

(ROS msg)

neural network design

PyTorch
(GPU backend)

preprocessingDataset

training

inference

Figure 3. Object detection training and inference pipelines.

Inspired by [23], experiments are taken to empirically show the effectiveness of different design
choices. We conduct training and evaluation on the Microsoft COCO dataset [11]. This dataset
involves 115,000 training images and 5000 validation images as recommended train/eval split in 2017.
The predictions of models are evaluated by Intersection over Union (IoU), which is essentially a method
to quantify the percent overlap between the target bounding box and prediction output. The overall
Mean Average Precision (mAP) over different IoU thresholds from 0.5 to 0.95 (official COCO metric,

Sensors 2019, 19, 973 7 of 22

or mAP@0.5:0.95) is used for model evaluation, and mAP at single threshold 0.5 (official Visual Object
Classes (VOC) metric, or mAP@0.5) as well. The COCO metric emphasizes better bounding boxes
than classification accuracy, but it has its weakness in practice: the dataset can have inaccuracies in
bounding boxes due to human labelling. On the other hand, classification accuracy is more important
than bounding boxes in real applications where false detection can be a disaster and rough bounding
boxes can be tolerant. This is especially relevant in the potentially dangerous scenario addressed in the
EffFeu project.

All the models are trained with exactly the same setup except the backbone because we want
to keep a similar setup as [18] for comparing the performance of our implementation with a known
record. The input images are resized to 512 × 512, varies of data augmentations were used, including
horizontal flip, random crop, and photometric distort which randomly adjusts brightness, contrast,
saturation and hue.

Figure 4 shows scatterplots visualizing the results of models trained 100 epochs on COCO dataset,
colours indicating backbone net, and size indicating number of parameters. The inference benchmark
was done with Nvidia Titan Black GPU, Intel i7 4 GHz CPU, and 16 G RAM. Generally, we observe
that a bigger backbone network achieves better accuracy, while trading off the speed. Furthermore,
detailed results in Table 1 show that: (1) very small network (such as mobilenet_v2) speed is limited
by post-processing; (2) bigger networks improve both bounding boxes and classification accuracy
as shown in mAP@0.5:0.95 and mAP@0.5; (3) the model with resnet50 as backbone achieves 0.52
mAP@0.5 with 6.3 frames per second, and we identify it is the sweet spot on the accuracy/speed
trade-off curve.

(a) accuracy measured by mAP@0.5:0.95 (b) accuracy measured by mAP@0.5

Figure 4. Accuracy vs. memory vs. time, with marker colours indicating backbone net and size
indicating number of parameters. The accuracy metrics are different in (a) and (b): mean average
precision over different IoU threshold from 0.5 to 0.95 is used in (a), and mean average precision with
IoU threshold at 0.5 is used in (b).

Sensors 2019, 19, 973 8 of 22

Table 1. Benchmark of different backbone network trained on COCO dataset.

Backbone Net No. of Parameters Inference Time mAP@0.5 mAP@0.5:0.95

mobilenet v2 12 M 110 ms 0.4884 0.2986
vgg16 47 M 200 ms 0.4911 0.3094

resnet50 47 M 160 ms 0.5211 0.3346
resnet101 72 M 180 ms 0.5343 0.3476

resnext101_32x4d 72 M 210 ms 0.5348 0.3501
se_resnext50_32x4d 56 M 200 ms 0.5257 0.3334

se_resnext101_32x4d 76 M 240 ms 0.5405 0.3553
senet154 142 M 370 ms 0.5461 0.3619

4.1.3. Results on Drone Dataset

For the EffFeu project, the three most important classes of objects are vehicle, person, and GHS
(Globally Harmonized System of Classification, Labelling and Packaging of Chemicals) pictogram, for
which we have labelled 267 images as our project-specific dataset. The original images are selected
from footage recorded during project workshops as well as drone videos of firefighting missions
from the internet. Figure 5 shows example images and labels of the dataset. Because our dataset is
really small, we used transfer learning: the network was trained with COCO dataset first, and then
fine-tuned with a mix of VOC dataset and our project-specific dataset.

Figure 5. Example images and labels of EffFeu project-specific dataset.

According to our experiments on different backbones earlier, the sweet model with resnet50
as backbone was trained for our speed/accuracy requirements. Overall, the mAP of our solution
is 0.875 for intersection over the union between prediction and ground truth bigger than 0.5.
The Precision–Recall for individual classes is shown in Figure 6 with mAP for vehicle: 0.905, person:
0.811, and GHS pictogram: 0.909. Example images with detection results are presented in Figure 7.

Sensors 2019, 19, 973 9 of 22

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

vehicle

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

person

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

ghs-pictogram

IoU > 0.5 IoU > 0.55 IoU > 0.6 IoU > 0.65 IoU > 0.7 IoU > 0.75 IoU > 0.8 IoU > 0.85 IoU > 0.9 IoU > 0.95

Figure 6. The precision–recall curve of object detection for individual classes.

Figure 7. Object detection example: GHS (Globally Harmonized System of Classification, Labelling and
Packaging of Chemicals) pictogram, person and vehicle. Number corresponds to confidence in [0,1].

4.2. Localisation and Navigation in the Transition of Indoor and Outdoor Environments

Today, the application of drones in firefighting scenarios is focusing on open areas that allow
for GNSS-based control [1,2]. The problem is that, especially in large industrial sites, it would also
be beneficial to inspect and explore shop floors, but indoor drones cannot rely on the GNSS signal.
In EffFeu, we strive for an integrated approach that combines GNSS-based control with SLAM
(Simultaneous Localisation and Mapping), prior known maps and other odometry information. Our
approach is based on the experience we made in [31]. A challenge in our former approaches was the
determination of the indoor world scale while using the monocular ORB-SLAM [32], for this reason
we switched to the further continued version ORB-SLAM2 [33] that also supports RGB-D and stereo
cameras to enable a direct determination of scale. For our scenario, we further extended ORB-SLAM2
(https://gitlab.tubit.tu-berlin.de/breakdowncookie/ORB_SLAM2). In particular, we integrated it
into ROS, added additional interfaces, and developed a mapping component that generates an octree
representation for navigation out of the sparse internal feature map of the algorithm. As an input
sensor for SLAM, the RGB-D camera Intel®RealSense™ D435 is selected due to its low weight, small
size, and outdoor functionality. In order to enable the application of the RGB-D sensor with the
limited available computer power, we implemented an improved depth registration module. This
performance optimised depth registration module enables us to use the RGB-D camera together with
other modules in our system in contrast to the original version.

Moreover, we use a priori available ground plans with GNSS anchor to infer the absolute robot
position through an alignment with SLAM generated maps. This is possible in our scenario because
industrial firefighters are operating in known environments. Furthermore, our system allows for
improving the accuracy and robustness through filtering with partially available GNSS signals, which
is especially applicable during the transition between outdoor and indoor environment. In particular,

https://gitlab.tubit.tu-berlin.de/breakdowncookie/ORB_SLAM2

Sensors 2019, 19, 973 10 of 22

the available 2D ground plans are preprocessed to get a similar visual representation as the SLAM
maps that are projected to 2D before we align both maps with a map alignment algorithm. In case of
partially available GNSS information, we use this to filter out implausible map alignments. Finally, the
best-found alignment hypothesis and the GNSS anchor from the known map is used to estimate the
global position of the drone. This decision is based on the quality of the current map alignment, the
GNSS signal quality and the coverage of the SLAM map in relation to the known map. All the process
steps are separated into individual software components that can be easily exchanged and configured.
In consequence, this modular architecture allows for conveniently selecting particular algorithms for
filtering and alignment or replacing and extending them in future. The entire localisation process is
visualised in Figure 8.

K
no
w
n
M
ap
 L
oc
al
is
at
io
n K
no
w
n

M
ap

S
LA

M
G
N
S
S

Load Map Preprocess

Receive
Map
Update

Preprocess

Receive Position
Update Store GNSS Hint

Align Maps Filter
Hypotheses

Localize in
Known MapSLAM Map

Known Map
GNSS Anchor

GNSS Hint

Select
localization

Estimate GNSS
Accuracy

Provide
Localization

Figure 8. Localisation process combining information from prior known maps, SLAM and GNSS.

Even though ORB-SLAM2 shows superior performance compared to other available SLAM
approaches, it is possible to lose track. In order to recover from such situations and to get a faster
but less accurate short term estimation, we use an additional high-speed camera, distance sensor,
and visual odometry. In [31], we used the PX4Flow, but it turned out that we had to make various
workarounds to get reasonable performance. For this reason, we implemented a comparable ROS
module that runs directly on our companion computer based on [34].

4.2.1. Experiments

In order to evaluate our localisation process in several complex settings with available known
maps, GNSS signals and ground truth information we used the MORSE simulator [35] for which we
created four environment models, two indoor and two outdoor scenes. Using a simulated environment
has the advantage of providing a valid ground truth that would not be available in the necessary scale
outdoors since we would need an external tracking system. In particular, we investigated which of
the following approaches for the map alignment between the SLAM-generated map and the a priori
available environment map provides the best performance in our use case. Furthermore, we tested if
the implemented additional GNSS-filtering allows for improving the localisation result.

The first considered approach is called mapmerge [36] and uses Hough lines and the concept of
Hough spectra to align two binary occupancy maps. The ROS package mapstitch (http://wiki.ros.org/
mapstitch) extracts ORB features from the maps and calculates the alignment transformation via feature
matching. Two further algorithms are from the ROS package cs_merge (http://wiki.ros.org/cs_merge)
and are both variations of the Iterative Closest Point (ICP) algorithm. The first algorithm, ICP gradient,
is based on [37] and ICP SVD is based on [38].

The known maps we used for the experiments are shown in Figure 9 together with renderings of
the corresponding simulation models.

http://wiki.ros.org/mapstitch
http://wiki.ros.org/mapstitch
http://wiki.ros.org/cs_merge

Sensors 2019, 19, 973 11 of 22

(a) Indoor 1—20 m × 20 m

(b) Indoor 2—120 m × 90 m

(c) Outdoor 1—100 m × 100 m

(d) Outdoor 2—500 m × 450 m

Figure 9. Known maps (left) and renderings (right) of simulation environments with their rough sizes.
These occupancy maps show occupied (black) and free (white) regions.

Sensors 2019, 19, 973 12 of 22

The models are of different complexity and size, so that we could get an impression of how well
our approach works in different environments. During the test flights with a UAV model, our estimated
robot pose was logged as well as the ground truth data provided by the simulator. The trajectory of
the drone is scripted and independent of the evaluated localisation.

4.2.2. Discussion

The error, which is the deviation of the computed pose from the real pose, is shown in Figure 10.
We split the pose error into position error ep and orientation error eθ. The plot over time shows that the
error is strongly fluctuating. This is due to incorrect hypotheses being selected to compute the robot
pose. Especially if no GNSS hints are available and only basic filtering is applied, the deviation is very
high as visualised in the box plot. Additionally, not all alignment algorithms perform equally well.
The mapstitch and ICP SVD algorithms did not find any approximately correct map alignments; therefore,
even with the GNSS fusion filtering, the variance is very high. In the other cases, GNSS fusion was able
to significantly lower the median error and reduce variance. A median ep of 0.77 meters as with mapmerge
is a suitable accuracy for localization in larger outdoor environments. In small indoor environments
(indoor 1 in Figure 9), we even achieved a smaller median error ep of 0.3 meters and eθ of 0.7 degrees.

0 100 200 300 400 500 600 700 800

0.1

10

1,000

time [sec]

e p
[m

]

mapmerge
mapstitch

ICP Gradient
ICP SVD

0 100 200 300 400 500 600 700 800
0.001

0.1

10

time [sec]

e θ
[d
eg
re
e]

(a) Position error ep and orientation error
eθ over time using the basic filtering (no
use of GNSS hints).

0 20 40 60 80 100 120 140

mapmerge (GPS)

mapmerge

mapstitch (GPS)

mapstitch

ICP Gradient (GPS)

ICP Gradient

ICP SVD (GPS)

ICP SVD

0.5

0.77

1.29

0.6

14.26

31.97

29.16

55.69

93.98

30.45

63.83

95.67

1.29

2.78

4.63

2.67

4.91

7.69

20.29

48.89

74.44

12.3

46.35

76.4

ep [m]

(b) Box plot comparison of basic filtering
and GNSS fusion filtering.

Figure 10. Position and orientation error plots for a simulated flight in the 100 m × 100 m sized outdoor
1 environment.

Over the series of simulated test flights in different environments and with varied settings
mapmerge turned out to be the most robust and reliable algorithm.

However, the localization accuracy of our approach highly depends on size and geometric
complexity of the known map. Simple geometric shapes proved to be easier to match than cluttered
maps. The resolution of maps also plays an important role as a low resolution obviously makes exact
matching difficult.

For several reasons, the error goes up with the size of the mapped environment. One reason is
that a small error in rotation of the alignment leads to bigger positional errors the further away the
robot’s current position is from the rotation pivot. A second reason is SLAM drifts. In big SLAM maps,
we are often facing a significant error due to drift over time. This leads to a SLAM map that is slightly
distorted compared to the known map. Such a map might only locally match the known map, hence it
is difficult to find a globally valid alignment.

Sensors 2019, 19, 973 13 of 22

4.3. Mission-Guided Control

Today’s control of drones is very much focused on the spatial control of the systems. Drones
are either controlled manually or follow preprogrammed GNSS trajectories in an automated fashion.
However, most professional users are not interested in the actual aerial system and which trajectories
it has to fly in order to perform its task like collecting the required information. An alternative is
a mission-guided control that defines the scope of operation for the drone with goal specifications.
In order to apply goal specifications in an autonomous mission execution, we utilise decision-making
(action selection) and planning.

4.3.1. Decision-Making and Planning

In EffFeu, we use the task-level decision-making and planning framework ROS Hybrid Behaviour
Planner (RHBP) [39] to implement the execution and decision-making in the EffFeu project. The RHBP
framework builds on top of the ROS framework. The RHBP framework combines the advantages of
reactive opportunistic decision-making and goal-oriented proactive planning in a hybrid architecture.
The decision-making layer is based on the idea of behaviour networks that allow for dynamic state
transitions and the definition of goals. The deliberative layer makes use of state-of-the-art planners
through its Planning Domain Description Language (PDDL) interface. In particular, we integrated a
further improved version of the planner Metric-FF [40], a version of FF extended by numerical fluents,
support for optimization criteria and conditional effects. It meets all requirements and, due to its
heuristic nature, favours fast results over optimality.

In RHBP, a problem is modelled with behaviours, preconditions, effects and goals, whereby
conditions are expressed as a combination of virtual sensors and activation functions. Activation
functions allow for a heuristical evaluation of the influence of particular information, which is gathered
by a sensor, on the decision-making. The sensors are providing an abstract interface to arbitrary
information sources such as ROS topics, the ROS parameter server, the RHBP knowledge base (a tuple
space) or any other self-implemented information source. A behaviour represents any task or action a
robot can execute which has an influence on the environment that is perceived by the sensors. Which
abstraction level is chosen here is up to the user and depends as well on the application scenario. It is
also possible to model higher-level behaviours that again consists of an own decision-making and
planning model.

The actual operational drone behaviour is modelled and implemented on the foundation of RHBP
base classes for goals, behaviours, sensors, activators, and conditions. These components allow for
modelling a dependency network of conditions and effects between goals and behaviours, which
results in a behaviour network. The activators are applied to interpret discretised sensor values for
decision-making. The symbolic planning is automatically executed by the manager component after it has
compiled a PDDL domain and problem description from the current behaviour network representation.

In RHBP, the planner is used to guide the behaviour network towards a goal supporting direction
instead of forcing the execution of an exact plan; this fosters opportunistic behaviour of the robot.
Moreover, this results in a very adaptive and reactive behaviour that is frequently updated by the
current perception.

In detail, the actual behaviours are selected based on their current activation. The activation value
is calculated from seven activation/inhibition sources: activation from the precondition satisfaction,
activation from succeeding behaviours, activation from preceding behaviour, activation from goals,
inhibition from conflicting goals, inhibition from conflicting behaviours, and activation from the
planner. Each activation value from the sources describes how much a behaviour is supporting or
disapproving a particular behaviour or goal relationship. The combination of the activation sources is
a weighted sum that allows adjusting the influence of the specific activation sources in order to direct
the decision-making into a certain direction. The seven activation sources result in six weights [0,1]
because we use the same weight for both inhibition sources. The influence of the activation sources

Sensors 2019, 19, 973 14 of 22

respectively weights is described in the following. The meaning of larger and smaller weight values
has to be considered always in respect to other weights.

The activation from preconditions only depends on the environment. It is completely independent
from other behaviours and their activation. The activation from preconditions describes the level of
fulfilment of the preconditions of a behaviour. The corresponding situation weight allows for striving
for fast reactions to environmental changes, more opportunistic and egocentric decisions with larger
values in comparison to other behaviour-dependent activation weights. Too large values can be
problematic if a certain order of goals needs to be guaranteed.

The predecessor weight can be used to adjust the influence of executable predecessors on their
successors. It supports to spread opportunities from the bottom up (from the perception in direction of
the goals) and activates behaviours whose preconditions are most likely fulfilled in the future.

The successor weights accounts for the positive influence of a behaviour to its successors
independent of a goal. The successor weight influences the thrustfulness of a network path. Due to
only positive effects being considered, too large values might lead to the execution of behaviours that
are perhaps regretted in the future.

The inhibition sources for behaviours and goals as well as the corresponding conflictor weight are
used to prevent or reduce undesirable situations. A large conflictor weight results in more cautious
and slow decisions, while too large values might result in decisions leading to a dead end of unpopular
behaviours and prevents to reach certain goals.

The goal weight emphasises a goal-driven character of decision-making with larger values, while
it encounters the risk of being too opportunistic so that it favours goal-fulfilling but otherwise
mission-breaking behaviours.

It is important to remark that goal weight and successor weight both support activation flow towards
the goals, although they are very different. The goal weight acts only on behaviours directly contributing
to (or conflicting with) goals, while the successor weight also affects intermediate behaviours.

As already stated above the symbolic planner and corresponding planner weight are used to guide
the behaviour network component with the determined sequential plan of the particular PDDL planner.
A larger value results in a more dominant influence, while a smaller value will give only little guidance.
Applying the planner allows supporting a certain order of behaviour but relies on the existence of
plans, which is not always possible or feasible in time in the considered dynamic environments.

4.3.2. End-User and UI Integration

In EffFeu, the user interfaces are connected to RHBP through an external goal API that lists all
available goals and possible parametrisations. Subsequently, the user interface allows for activating
and configuring goals on demand through the external goal API. The high-level goals that are enabled
by the user are mapped to corresponding RHBP goals that are automatically instantiated or configured
by the interface component. Here, it is also possible that a single goal from the user perspective, like
following a person, is internally decomposed to several RHBP components. We differentiate such user
goals from the internal RHBP goal components. A user goal might be, for instance, a combination
of internal safety goals considering the battery consumption and the actual goal of holding a certain
distance to the tracked object. Moreover, in some cases, user goals are a composition of RHBP goals,
behaviours, and sensors’ instances to be able to parametrise and configure the behaviours. This
is necessary because RHBP does not support passing of parameters on the logical planning level,
which are required for a behaviour to be executable. In consequence, running behaviour instances
that require additional information like the flight destination need to be dynamically instantiated
or adjusted during runtime independent from RHBP’s plan execution. In the EffFeu scenario, we
dynamically create instances of the behaviours with the goal specific parameters because altering
existing instances is problematic as the goals are allowed to be instantiated multiple times. For other
more abstract behaviours such as take-off, landing, and collision avoidance, the corresponding user
goal does only contain goals that consist of conditions formed with RHBP sensors and activators.

Sensors 2019, 19, 973 15 of 22

The detailed relationships and communications of the so-called Planner component introduced in
Section 3 is visualised in Figure 11. Furthermore, the diagram highlights that the management of the
user goals is handled in a scenario, respectively an application specific manager component, which is
responsible for creating or deleting the RHBP components that are used to model the achievement of a
certain goal.

UAS System

Add UserGoal Ground Station Drone

Params

publishTelemetryTopic()

placeCommand()

Remove
UserGoal

Update
UserGoal

Get available
UserGoals

Get registered
UserGoals

UserGoal
Status

publishStatusTopic()

:Scenario Manager
user_goals
drone_agents

:RHBP manager
goals
behaviours

:Behaviours
parameters

:RHBPSensors

:MAVROS

:Goals

getStatus()
activate/deactive()

createGoal()
deleteGoal()

getStatus()

:Conditions

:Activators
getStatus()

applyActivation()

getStatus()

getStatus()

createSensor()
deleteSensor()

createBehaviour()
deleteBehaviour()

:OtherSensor
s

publishTopic()

Figure 11. Planner component relationships and external user goal Application Programming
Interface (API) in Unified Modeling Language (UML) communication diagram style without particular
communication sequence. Arrows show messages and directions. Plural names of object instances
indicate that multiple objects of this type are possible.

4.3.3. Milestone Scenario

A first simple example of the application of RHBP is illustrated in Figure 12. The shown
behaviour model was used as the mid-project milestone demonstrator as the first proof of concept.
In the scenario, the mission goal is to explore a selected environment and once a person is found
to circumfly (inspect) the found person to gather more information about the situation. To model
this scenario, we use two goals, one for initiating the exploration behaviour and one for detecting
a person. The recognised_objects_sensor connects to the results of our object detection, whereas the
coverage_sensor describes the exploration completion of the selected area percentagewise. Additionally,
the implemented behaviour model considers the current battery level of the drone to safely land in
case of an empty battery or prevent mission launches without sufficient battery.

Undoubtedly, the given scenario is comparably simple and would not require a complex planning
and decision-making system. Nevertheless, the implemented model performed well in a qualitative
evaluation during the milestone demonstration, where the drone showed the intended behaviour
after the corresponding user goal was created. Creating the goal was both demonstrated through the
Mission-Control-UI as well as the Safety and Security Management System of our partners. The intention
of this example is to illustrate the application and integration options with a simple scenario. A further
developed system being equipped with more different behaviours and other goal sets is described and
evaluated in the following section.

Sensors 2019, 19, 973 16 of 22

inspect

explore_environment

take_off
land

battery_criticalThresholdActivator

person_detected

recognised_objects_
sensor

BooleanActivator

in_air
landed_sensor

ThresholdActivator

battery_takeoff

battery_sensor

ThresholdActivator

exploration_completed

coverage_sensor

ThresholdActivator

exploration

find_person

Sensor

Activator

ConditionBehaviour

Precondition

Effect

Goal

Aggregation

Negated Precondition

Figure 12. Behaviour network model of the milestone demonstrator scenario.

4.3.4. Evaluation: Dynamic Scenario

The milestone scenario explained in the last section is statically initialised and executed without
showing the benefits of such an approach in a dynamic environment. In particular, different behaviours
that can be used to achieve the same result but different in their particular characteristics, such as
specific preconditions and effects, as well as changing the mission goal during runtime, make the
application of a planning component meaningful because it allows for efficiently choosing the most
suitable behaviour depending on the current situation. In the following, we will explore such more
complex and dynamic application scenarios that have been realised after the project milestone.

The complex scenario comprises some changes with respect to the milestone scenario. First, the main
task of the scenario is modified in the way that now finding a person and inspecting the environment
as well as exploring the given area for the purpose of creating a map have the same priority. This is in
contrast to the milestone scenario wherein the exploration is only necessary to find the person.

Secondly, additional possible behaviours have been integrated, namely arm for arming the drone
automatically, idle to model an option of doing nothing on the ground, hover to wait in the air, and two
alternative exploration behaviours. The exploration behaviours differ in the exploration speed and the
quality of exploration. The slow exploration is traversing the area of interest in parallel lines with a
smaller distance and higher overlap in comparison to the fast exploration. This difference results in a
longer flight trajectory for the slow exploration but a higher probability of finding objects with object
recognition. The remember_position is an example of a behaviour that is only affecting internal system
states by storing the position of the person after it has been found.

The new behaviour network model is illustrated in Figure 13. The diagram shows also that
we added additional goals to improve the overall mission execution. The exploration goal is fulfilled
by completing the exploration of the area of interest. This can be potentially achieved by running
both exploration behaviours; however, they have been modelled with different effect intensities

Sensors 2019, 19, 973 17 of 22

to represent the above-described differences—in detail, exploration_slow has a greater influence on
the recognised_objects_sensor and a smaller influence on the progress of the mission_coverage_sensor.
The inspect_object goal is achievable by inspecting the area around the found object.

The additional battery goal is a maintenance goal that tries to minimise the usage of the battery.
Here, the so-called GreedyActivator of RHBP is used to model a condition that is never satisfied and
always aiming for a maximisation of the particular sensor.

inspect

explore_slow

take_off

land

battery_critical

ThresholdActivator

person_was_detected

recognised_objects_
sensor

BooleanActivator

in_air

landed_sensor
ThresholdActivator

battery_takeoff

battery_sensor

ThresholdActivator

exploration_completed

mission_coverage
_sensor

ThresholdActivator

explore

find_person

explore_fast

exploration_completed

inspection_coverage
_sensor

ThresholdActivator inspect_object

idle

hover

arm

BooleanActivator

armed_sensor
armed

batterymaintain_battery

GreedyActivator

remember_position

person_was_found_
sensor

person_detected

BooleanActivator

Sensor

Activator

ConditionBehaviour

Precondition

Effect

Goal

Negated Precondition

Aggregation

Figure 13. More complex behaviour network model including more and alternative behaviours for
similar effects and additional goals.

In order to evaluate the complex behaviour model, we are using a simulation environment that we
implemented with the generic Morse simulator [35]. The simulation environment has been extended
to mimic the same ROS API as we are using on the real drone for external control. The original API
in use is a combination of the MAVLink protocol of the PX4 firmware and the MAVROS package for
the automated creation of ROS bindings. This approach allows us to easily test our implementations
before they can be seamlessly transferred to the actual hardware. This works especially well for the
mission-guided control because here we are mostly interested in the high-level decision made and not
in the detailed motion of the drone, which is not simulated precisely. Using a simulator for evaluating
the higher-level behaviour has the advantage of always having the same conditions.

A difference to former applications of the RHBP framework is that in the EffFeu project goals are
dynamically created, enabled and disabled during runtime through the above-described external user
interface. Aside from simple test scenarios in [39,41], RHBP has so far been used only with a single

Sensors 2019, 19, 973 18 of 22

drone in a static mission of the SpaceBot Cup [31], as well as with static mission goals in simulated
multi-robot scenarios in the Multi-Agent Programming Contest [42,43].

In the following experiments, we wanted to see if our framework is able to properly handle
the adaptation to dynamically enabled/disabled goals. Moreover, we investigated to what extent
the influence of the symbolic planner in our hybrid approach is supporting the overall mission
accomplishment and adaptation in such scenarios. Particularly, we analysed the influence on the
efficiency, how fast the mission is accomplished, as well as the adaptation capabilities, and how fast is
the system reacting to environmental and mission changes.

In order to examine the influence of dynamically created, enabled and disabled goals, we have
scripted a scenario within the simulation environment for the above described behaviour model.
The scenario starts with the goals find_person, explore, and battery enabled. After 18 decision-making
steps, the find_person and explore goal are disabled and enabled again after step 24. An additional
inspect_object goal is then created after step 30. In this scenario, all goals except for the battery goal
are achievement goals that are removed after they are completed. Moreover, environmental changes,
respectively, perception changes are simulated through the suddenly detected target object.

For the investigation of the influence of the symbolic planner in such dynamic scenarios, we
repeated the experiment with different weights for the influence of the symbolic planner, which have to
be in a range of 0 to 1. Furthermore, we limited RHBP to enable only one behaviour at a time because,
in the given setup, behaviours would heavily conflict with each other by sending different low-level
control commands at the same time. Other activation weights: activation by situation, predecessors,
successors, and conflictors (see [39] for details) that are used in the RHBP decision-making are set
to a medium influence of 0.5 except for the activation by goals that we empirically configured to 0.7
to foster goal pursuance in all experiments. We have fixed the weights except the planner weight to
empirically determined values because we are especially interested in the influence of the planner as a
major component of our hybrid approach. All other weights are only relevant for the decision-making
of the behaviour network layer itself and the fine-tuning of its decision-making, which influences the
stability but not the overall adaptation means.

The diagrams in Figure 14 visualise a selection of the most characteristic experiment runs with
logged decisions and corresponding goals. The drawn bars describe which behaviour is selected for
execution as well as which goals are enabled in a particular decision-making step. We decided to show
the run with very little symbolic planning influence (weight = 0.1) instead of the run without influence.
The reason is that both result sequences are very similar but with weight = 0.0 the complete execution
takes just longer (230 decision steps), which makes it more difficult to compare the diagram with the
other results. Decision steps without a decision taken are possible if the current sensor’s respective
drone state together with precondition setup do not allow for any behaviour to be activated. This is
sometimes occurring due to some not in the behaviour model specified drone states when the drone is
in the transition between being in-air and landed.

In general, the results show that, in all configurations, the given mission is completed after
some time. Furthermore, RHBP is able to handle dynamically created or enabled and disabled goals
during runtime (see (a) and (b)). The goal pursuance of the system without (much) influence from
the planner (c) is not sufficient, the system is having problems to handle the conflicting goals of
maintaining the battery and completing all other tasks, which require battery capacity. This becomes
visible already in (b) where the system suddenly decides for landing one time after step 30. In (c),
this is more obvious because, without the additional inspect_goal, the overall activation of the battery
consuming goals is not high enough to start the overall mission. Alternative exploration behaviours
are correctly selected in (a) and (b) depending on the currently available boundary conditions. First,
the exploration_slow is selected until the person is found. After the person is found, the exploration_fast
is favoured to fasten the exploration. Adaptation capabilities in the sufficiently completed missions
of (a) and (b) are indicated by the number of required steps after the goals are activated, deactivated,
completed, and time to consider the detected person. Both configurations (a) and (b) show a very

Sensors 2019, 19, 973 19 of 22

similar performance. The adaptation time to the found person is two steps, to reactivated goals
(find_person, explore) two steps, and to completed goals (inspect_object, explore) one step for both
(a) and (b). Only the response to the temporary deactivation of the goals (find_person, explore) at
the beginning of the mission is slightly different. Here, configuration (a) is adapting after three steps,
while (b) requires four steps.

(a) Plan weight = 1.0

(b) Plan weight = 0.5

(c) Plan weight = 0.1

Figure 14. Selected behaviours and enabled goals over time (step
s). Comparison between different

characteristic symbolic planning influences specified by weights.

Greater influence from the planner fosters the efficiency, the entire mission is completed in a
shorter time, (a) is faster than (b), and (b) is faster than (c). The adaptation capabilities, once the goals
are sufficiently pursued, are not much affected by the influence of the symbolic planner. Reducing
the influence of the planner makes decision-making less stable, and see unnecessary take-offs and
landings in (c). Even though a more stable decision-making could also be achieved by tuning the
model and weights more carefully, the result would depend on the particular scenario implementation
and would have to be revised every time when the implementation is changed.

Results underpin that the hybrid RHBP approach, which applies long-term planning to direct
the short-term decision making, is reasonable to foster the goal pursuance of the system as well as
the efficiency. Furthermore, influence of the symbolic planner is especially useful in situations of
conflicting and dynamically changed goals, whereas influence on adaptation time is negligible.

Sensors 2019, 19, 973 20 of 22

Furthermore, as our results indicate the usefulness of long-term planning within a hybrid
approach, where the planner is guiding the short-term decision-making, it would also be interesting to
conduct research about an alternative inverted approach, where long-term planning is guided by the
weights of short-term decision-making as some kind of utility function.

5. Conclusions

The EffFeu project developed the foundation to make the integration of UAVs into the safety
and security management system easy and easy to use. The efficient use of drones in the daily
routine of industrial firefighters and in case of emergency is still challenging. With our system under
development, firefighters can already benefit from a mission-guided control and enhanced autonomy
of the system in known indoor and outdoor environments that reduces their cognitive load. They can
already assign mission goals with priorities to drones, which are then reassembled and planned as
sequences of actions by the drones. Further autonomy in object recognition and situation assessment
has been added to the drone to automate the analysis of recorded video footage. All together, this
already enables a transition from motion and trajectory-based drone control towards a goal and
mission-oriented control and application in the operation of autonomous drones.

The next steps will include work on object tracking (preserve the object identity over consecutive
images, object lost regain) and situation assessment (analyse the temporal, and spatial object
environment and context, correlations between objects). Additionally, it is planned to apply user
feedback about false positives to improve the object recognition during runtime. Moreover, we
will extend the decision-making and planning model over multiple drones and combine it with
self-organisation concepts for decentralised coordination based on our work presented in [41].
Additionally, the realised localisation approach will be further analysed in qualitative tests in real
mission environments.

The work will flow into a complex demonstrator, which shows the full potential of our approach
and which will undergo extensive tests by industrial firefighters.

Author Contributions: Conceptualization, C.-E.H., A.H. and Y.X.; Software, C.-E.H., Y.X., J.S. and J.B.; Investigation,
Y.X., J.S. and J.B.; Data Curation, A.H., Y.X., J.S. and J.B.; Visualization, C.-E.H., Y.X. and J.S.; Writing—Original
Draft Preparation, C.-E.H., A.H. and Y.X.; Writing—Review & Editing, C.-E.H. and A.H.; Resources, S.A.; Project
Administration, C.-E.H. and A.H.; Funding Acquisition, C.-E.H. and A.H.

Funding: We acknowledge support by the German Research Foundation and the Open Access Publication Fund
of TU Berlin. Moreover, this research was partially funded by the German Federal Ministry of Education and
Research (BMBF grants 13N14093, project EffFeu, http://www.dai-labor.de/en/cog/ongoing_projects/efffeu/).

Acknowledgments: We wish to acknowledge the contribution and dedicated work of our industrial partners in
the project consortium Gemtec GmbH and ART + COM AG. We are especially thankful for the fruitful meetings,
discussions and integration workshops with Felix Köhler, Kristine Weißbarth, Lea Schorling, and Julian Krumow.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Skorput, P.; Mandzuka, S.; Vojvodic, H. The use of Unmanned Aerial Vehicles for forest fire monitoring.
In Proceedings of the 2016 International Symposium ELMAR, Zadar, Croatia, 12–14 September 2016;
pp. 93–96. [CrossRef]

2. Twidwell, D.; Allen, C.R.; Detweiler, C.; Higgins, J.; Laney, C.; Elbaum, S. Smokey comes of age: Unmanned
aerial systems for fire management. Front. Ecol. Environ. 2016, 14, 333–339. [CrossRef]

3. Meiboom, M.; Andert, F.; Batzdorfer, S.; Schulz, H.; Inninger, W.; Rieser, A. Untersuchungen zum Einsatz
von UAVs bei der Lawinenrettung; Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV: Bonn,
Germany, 2014.

4. De Cubber, G.; Doroftei, D.; Serrano, D.; Chintamani, K.; Sabino, R.; Ourevitch, S. The EU-ICARUS
project: Developing assistive robotic tools for search and rescue operations. In Proceedings of the 2013
IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Linkoping, Sweden, 21–26
October 2013; pp. 1–4.

http://www.dai-labor.de/en/cog/ongoing_projects/efffeu/
http://dx.doi.org/10.1109/ELMAR.2016.7731762
http://dx.doi.org/10.1002/fee.1299

Sensors 2019, 19, 973 21 of 22

5. Kuntze, H.B.; Frey, C.W.; Tchouchenkov, I.; Staehle, B.; Rome, E.; Pfeiffer, K.; Wenzel, A.; Wöllenstein, J.
SENEKA-sensor network with mobile robots for disaster management. In Proceedings of the 2012 IEEE
Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 13–15 November 2012;
pp. 406–410.

6. Daniel, K.; Dusza, B.; Lewandowski, A.; Wietfeld, C. AirShield: A system-of-systems MUAV remote sensing
architecture for disaster response. In Proceedings of the 2009 3rd Annual IEEE Systems Conference,
Vancouver, BC, Canada, 23–26 March 2009; pp. 196–200.

7. Mekki, S.; Kamoun, M. ANCHORS, an UAV Assisted Integrated Approach to Crisis Management. 2014.
Available online: www.agence-nationale-recherche.fr/fileadmin/documents/2014/wisg/actes/ANCHORS.
pdf (accessed on 10 April 2016).

8. Ramchurn, S.D.; Wu, F.; Jiang, W.; Fischer, J.E.; Reece, S.; Roberts, S.; Rodden, T.; Greenhalgh, C.;
Jennings, N.R. Human—Agent collaboration for disaster response. Auton. Agents Multi-Agent Syst.
2016, 30, 82–111. [CrossRef]

9. Hrabia, C.E.; Hessler, A.; Xu, Y.; Brehmer, J.; Albayrak, S. EffFeu Project: Efficient Operation of Unmanned
Aerial Vehicles for Industrial Fire Fighters. In Proceedings of the 4th ACM Workshop on Micro Aerial
Vehicle Networks, Systems, and Applications, Munich, Germany, 15–18 June 2018; ACM: New York, NY,
USA, 2018; pp. 33–38. [CrossRef]

10. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. arXiv 2017, arXiv:1703.06870.
11. Lin, T.; Maire, M.; Belongie, S.J.; Bourdev, L.D.; Girshick, R.B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.;

Zitnick, C.L. Microsoft COCO: Common Objects in Context. arXiv 2014, arXiv:1405.0312.
12. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2016, arXiv:1612.08242.
13. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox

Detector. arXiv 2015, arXiv:1512.02325.
14. Du, D.; Qi, Y.; Yu, H.; Yang, Y.; Duan, K.; Li, G.; Zhang, W.; Huang, Q.; Tian, Q. The Unmanned Aerial

Vehicle Benchmark: Object Detection and Tracking. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 375–391.

15. Zhu, P.; Wen, L.; Bian, X.; Haibin, L.; Hu, Q. Vision Meets Drones: A Challenge. arXiv 2018, arXiv:1804.07437.
16. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:

Convolutional Architecture for Fast Feature Embedding. arXiv 2014, arXiv:1408.5093.
17. Facebook. PyToch. 2018. Available online: http://pytorch.org/ (accessed on 6 November 2017).
18. Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2017,

arXiv:1708.02002.
19. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv

2014, arXiv:1409.1556.
20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
21. Xie, S.; Girshick, R.B.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural

Networks. arXiv 2016, arXiv:1611.05431.
22. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. arXiv 2018, arXiv:1709.01507.
23. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.;

Guadarrama, S.; et al. Speed/accuracy trade-offs for modern convolutional object detectors. arXiv
2016, arXiv:1611.10012.

24. Lin, T.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object
Detection. arXiv 2016, arXiv:1612.03144.

25. Lee, K.; Choi, J.; Jeong, J.; Kwak, N. Residual Features and Unified Prediction Network for Single Stage
Detection. arXiv 2017, arXiv:1707.05031.

26. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-Shot Refinement Neural Network for Object Detection.
arXiv 2017, arXiv:1711.06897.

27. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. arXiv 2017,
arXiv:1703.06211.

28. Liu, S.; Huang, D.; Wang, Y. Receptive Field Block Net for Accurate and Fast Object Detection. arXiv 2017,
arXiv:1711.07767.

29. Loshchilov, I.; Hutter, F. Fixing Weight Decay Regularization in Adam. arXiv 2017, arXiv:1711.05101.

www. agence-nationale-recherche. fr/fileadmin/documents/2014/wisg/actes/ANCHORS.pdf
www. agence-nationale-recherche. fr/fileadmin/documents/2014/wisg/actes/ANCHORS.pdf
http://dx.doi.org/10.1007/s10458-015-9286-4
http://dx.doi.org/10.1145/3213526.3213533
http://pytorch.org/

Sensors 2019, 19, 973 22 of 22

30. Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.F.; Elsen, E.; García, D.; Ginsburg, B.; Houston, M.;
Kuchaiev, O.; Venkatesh, G.; et al. Mixed Precision Training. arXiv 2017, arXiv:1710.03740.

31. Hrabia, C.E.; Berger, M.; Hessler, A.; Wypler, S.; Brehmer, J.; Matern, S.; Albayrak, S. An autonomous
companion UAV for the SpaceBot Cup competition 2015. In Robot Operating System (ROS)—The Complete
Reference (Volume 2); Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [CrossRef]

32. Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System.
IEEE Trans. Robot. 2015, 31, 1147–1163. [CrossRef]

33. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D
Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [CrossRef]

34. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision
(DARPA). In Proceedings of the 1981 DARPA Image Understanding Workshop, Vancouver, BC, Canada,
24–28 August 1981; pp. 121–130.

35. Echeverria, G.; Lassabe, N.; Degroote, A.; Lemaignan, S. Modular open robots simulation engine: MORSE.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai,
China, 9–13 May 2011; pp. 46–51.

36. Carpin, S. Fast and accurate map merging for multi-robot systems. Auton. Robot. 2008, 25, 305–316.
[CrossRef]

37. Martínez, J.L.; González, J.; Morales, J.; Mandow, A.; García-Cerezo, A.J. Genetic and ICP laser point
matching for 2D mobile robot motion estimation. J. Field Robot. 2006, 23, 21–34. [CrossRef]

38. Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-Squares Fitting of Two 3-D Point Sets. IEEE Trans. Pattern Anal.
Mach. Intell. 1987, 9, 698–700. [CrossRef] [PubMed]

39. Hrabia, C.E.; Wypler, S.; Albayrak, S. Towards Goal-driven Behaviour Control of Multi-Robot Systems.
In Proceedings of the 2017 3nd International Conference on Control, Automation and Robotics (ICCAR),
Nagoya, Japan, 24–26 April 2017; pp. 166–173.

40. Hoffmann, J. The Metric-FF Planning System: Translating “Ignoring Delete Lists” to Numeric State Variables.
J. Artif. Intell. Res. 2003, 20, 291–341. [CrossRef]

41. Hrabia, C.E.; Kaiser, T.K.; Albayrak, S. Combining self-organisation with decision-making and planning.
In Multi-Agent Systems and Agreement Technologies; Springer: Berlin/Heidelberg, Germany, 2017; pp. 385–399.

42. Hrabia, C.E.; Lehmann, P.M.; Battjbuer, N.; Hessler, A.; Albayrak, S. Applying robotic frameworks in a
simulated multi-agent contest. Ann. Math. Artif. Intell. 2018. [CrossRef]

43. Krakowczyk, D.; Wolff, J.; Ciobanu, A.; Meyer, D.J.; Hrabia, C.E. Developing a Distributed Drone
Delivery System with a Hybrid Behavior Planning System. In Proceedings of the Joint German/Austrian
Conference on Artificial Intelligence (Künstliche Intelligenz), Berlin, Germany, 24–28 September 2018;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 107–114.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-319-54927-9
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1007/s10514-008-9097-4
http://dx.doi.org/10.1002/rob.20104
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://www.ncbi.nlm.nih.gov/pubmed/21869429
http://dx.doi.org/10.1613/jair.1144
http://dx.doi.org/10.1007/s10472-018-9586-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Project
	Architecture
	UAS System Details and Results
	Object Recognition
	Architecture of Object Recognition Module
	Implementation and Experiments
	Results on Drone Dataset

	Localisation and Navigation in the Transition of Indoor and Outdoor Environments
	Experiments
	Discussion

	Mission-Guided Control
	Decision-Making and Planning
	End-User and UI Integration
	Milestone Scenario
	Evaluation: Dynamic Scenario

	Conclusions
	References

