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Abstract: Pedestrian trajectory prediction under crowded circumstances is a challenging problem
owing to human interaction and the complexity of the trajectory pattern. Various methods have been
proposed for solving this problem, ranging from traditional Bayesian analysis to Social Force model
and deep learning methods. However, most existing models heavily depend on specific scenarios
because the trajectory model is constructed in absolute coordinates even though the motion trajectory
as well as human interaction are in relative motion. In this study, a novel trajectory prediction model
is proposed to capture the relative motion of pedestrians in extremely crowded scenarios. Trajectory
sequences and human interaction are first represented with relative motion and then integrated to
our model to predict pedestrians’ trajectories. The proposed model is based on Long Short Term
Memory (LSTM) structure and consists of an encoder and a decoder which are trained by truncated
back propagation. In addition, an anisotropic neighborhood setting is proposed instead of traditional
neighborhood analysis. The proposed approach is validated using trajectory data acquired at an
extremely crowded train station in Tokyo, Japan. The trajectory prediction experiments demonstrated
that the proposed method outperforms existing methods and is stable for predictions of varying
length even when the model is trained with a controlled short trajectory sequence.

Keywords: trajectory prediction; human interaction; LSTM; crowded scenarios; encoder–decoder
model; deep learning

1. Introduction

Pedestrian trajectory prediction is a challenging, open task attracting increasing attentions owing
to its potential applications in multi-object tracking, human surveillance, socio-robot navigation, and
autonomous driving [1–5]. Although a number of related studies have appeared, this problem is far
from being solved, particularly under crowded scenarios. In general, pedestrian trajectory prediction
can be considered as a sequence generation problem based on the observation of past trajectories.
Trajectory prediction under crowded scenarios is highly complex because it can be affected by various
factors, such as trajectory pattern, human interaction, and obstacles. Among these, trajectory pattern
and human interaction are considered the most crucial [6–8]. In the ideal case, the trajectory pattern
can be obtained by the pedestrian’s walking destination. However, in the real world, it is not possible
to know a pedestrian’s destination all the time. Thus, a more realistic method is to learn the trajectory
pattern through past trajectory sequences. Human interaction follows certain common rules based on
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social etiquette [9]. Usually, a pedestrian will try to avoid collision, keep a comfortable distance from
nearby strangers when they approach, and mimic partners when walking with friends as a group.
However, under extremely crowded scenarios, multi-person interactions occur, which are dynamic
and even more complicated.

The approaches addressing the trajectory prediction problem firstly are based on hand-crafted
features. Those methods are designed manually with an eye for overcoming specific issues [10,11]. The
features derived from these algorithms are hand-crafted features. Despite considerable success of old
fashioned methods, they are limited to models of both sequence trajectory and human interaction, such
as the Social Force model (SFM) [12], Particle filter [13], Kalman filter [14], and Gaussian process [15,16].
These methods predict the position at the next step based on the current state, and thus it is difficult to
learn more trajectory cues because a long sequence of past trajectories cannot be encoded. In theory,
sequence prediction can be performed through a loop, but the results rapidly degrade with prediction
length. SFM is the most classic model for human interaction. It is based on certain definite rules and is
limited to complex and dynamic real-world human interaction.

Deep learning is a subfield of machine learning which can learn different levels of abstraction
by using hierarchical architectures [17–19]. Deep learning methods are highly successful recently,
in particular, LSTM [20] on natural language process [21,22], which has also been introduced to
trajectory prediction and has achieved exceptional performance [6,7,23,24]. LSTM can model long
sequence data, unlike methods based on hand-crafted features, so that it can learn more trajectory
cues, including the trajectory pattern, from past observation sequences. Originally, LSTM-based
models were designed for uncrowded scenarios [25,26]. In fact, they consider all persons isolated
and without any “communication” even under crowded scenarios where human interaction occurs
frequently. Recently, Social LSTM, a prediction model proposed for crowded scenarios, has attracted
attention. It models human interaction by pooling the latent states of all people inside a controlled
neighborhood [24,27].

Most of the existing methods model motion trajectory and human interaction in absolute
coordinates. Furthermore, they normalize the trajectory data and then feed the normalized data
into the prediction network, which is also evaluated under a normalized scale [23]. Not only motion
trajectory but also human interaction is modeled based on the normalized positions, which take values
in the range [−1, 1] or [0, 1]. There are two reasons for that: (1) As many datasets as possible should
be used to train the model. The datasets are acquired in various scenarios, and the coordinates are
different. If data in real coordinates are fed to train the model directly, the model will obtain inaccurate
results if the range of the test data is outside that of train data. (2) Normalized data not only stabilize
the learning process but also improve the evaluation process.

Certain studies have demonstrated that both motion trajectory and human interaction are
relative concepts rather than absolute [23,28]. Trajectory changes with time as pedestrians navigate
themselves to the next position based on their current state. The walking speed of an average person is
0.8 m/s–1.5 m/s. Thus, the offset, which can describe the relative motion between the current position
and the next position, has a certain range. The concept of offset is similar to that of Resnet [29], where
performance is improved by adding residual connections. For moving persons, the major factors
affecting human interaction are exactly certain critical low-level features, namely, relative walking
direction and speed, and distance between two persons. To the authors’ knowledge, all existing
LSTM-based methods model human interaction using absolute coordinates by pooling current-state
features, as in the case of Social LSTM.

In this study, the focus is on the characteristic “relativity” of pedestrian motion, and an LSTM
based data-driven architecture is proposed for trajectory prediction in extremely crowded scenarios.
To capture the “relativity” of pedestrian motion, the relative motion of the trajectory sequence and
human interaction is modeled using different strategies. Then, they are integrated into a trajectory
prediction model. It has an encoder–decoder architecture, where both the encoder and the decoder are
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trained using truncated back propagation through time (TBPTT) [30,31]. The main contributions of
this study are as follows:

• An LSTM based prediction model for extremely crowded scenarios is proposed that can model
both motion trajectory and human interaction with relative motion.

• To the best of our knowledge, it is the first time to consider interaction by modeling relative
motion among pedestrians trajectory for trajectory prediction.

• Attention-weighted pooling is used to model human interaction dynamically.

The remainder of this paper is organized as follows: in Section 2, an overview of related works is
presented. In Section 3, the data source is introduced. In Section 4, the approach based on the LSTM
model is described. In Section 5, the experimental results are presented. Then, the paper is concluded
with contributions and suggestions for future research.

2. Related Works

Our main task of interest is in pedestrian trajectory prediction using recurrent neural networks
(RNNs), in particular, LSTM based architectures. For long trajectory sequence prediction, RNN based
methods have achieved the exceptional accuracy [6,23,24,32,33]. Thus, in this part, we will briefly
review these deep learning methods.

2.1. Trajectory Prediction Based on RNNs

Recently, RNNs have attracted considerable attention owing to their ability to model long data
sequences, and RNN based methods have achieved exceptional performance in trajectory prediction.
Prior to RNNs, there were also certain methods for trajectory prediction based on hand-crafted features,
such as Particle filter, Kalman filter and Gaussian process. However, it is not efficient to predict long
trajectory sequences using traditional methods only. They cannot model the past sequence either. They
usually calculate a transition matrix based on the current position and predict the next position. In
theory, they can predict a long sequence by a loop, which implies that the prediction result is viewed as
true and is then used for the next time step. However, the prediction results of those methods usually
become irregular when the length of predictions becomes longer.

LSTM is the main part of RNNs. LSTM based encoder and decoder models have been used to
process natural language (e.g., translation) and have been successful in modeling latent features of
sequence data [22,34]. Those networks have been modified to add an attention mechanism, which is
also in accordance with human cognition [21,35,36]. Humans pay different attention to different parts
regardless of the activity they are involved in. The attention mechanism has improved prediction,
translation, or image description models [37].

When an LSTM based encoder and decoder model is used for trajectory sequence prediction,
similar with encoder and decoder Natural Language Processing models, a sequence of past trajectories
is fed into the encoder and the hidden states of the last step LSTM cell in the encoder are then inputted
to the decoder. The prediction result for each time instance is fed into the next LSTM cell in the
decoder to realize sequence prediction. In [38], Sun et al. proposed an LSTM based encoder and
decoder prediction method for laser data acquired in a care home. This method can model time-specific
trajectory patterns by encoding trajectories described using absolute position and sensor rotation.
In [39,40], an LSTM based trajectory predictor is developed and used for visual tracking. In these
approaches, the motion model is regarded as a sequence prediction problem. The predictor provides
a positive indicator for the next immediate position based on tracked sequence positions. In [41],
Hug et al. evaluated the performance of an LSTM-MDL model, which contains an LSTM network
and a mixture density layer (MDL), on the trajectory prediction task. Hug et al. demonstrated that
the model can capture motion under complex scenarios, such as turning right or left. However, there
are also some poor prediction results, particularly end-point prediction errors, which require further
consideration.
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2.2. Trajectory Prediction with Human Interaction

Trajectory prediction methods that consider human interaction will now be briefly reviewed.
As mentioned earlier, human interaction is the key for prediction under crowded scenarios.

One of the earliest and most widely known methods for pedestrian trajectory prediction
considering human interaction in crowded scenarios dates back to the classic SFM [12]. SFM
represents a pedestrian (called agent hereafter) as a particle reacting to the energy described by
the interactions with other dynamic targets and static objects such as obstacles. Based on the basic SFM,
Yamaguchi et al. [42] improved the model by adding more crucial motion features, such as damping
and interaction. Another widely used model is the Interacting Gaussian Process (IGP) [16] model,
which represents the trajectory of an agent as a Gaussian Process. Each step of the agent is a set of
Gaussian variables. IGP can represent multi-modal distributions and has relatively few parameters.
The major drawback of those methods is their limited capability to model complex dynamic interaction
under crowded scenarios because their performance largely depends on a set of predefined parameters,
such as preferred walking speed and destinations.

The recent success of LSTM networks, which can learn long sequence cues, has led to a human
trajectory prediction model called Social LSTM, which was proposed by Alahi et al. in 2016 [24]. It is
the first major application of neural networks to model human interaction for pedestrian trajectory
prediction under crowded scenarios, and has been the baseline for trajectory prediction problems.
The main contribution of Social LSTM is that it introduces a novel pooling layer that is called “social
pooling” and allows the LSTM of spatially proximal sequences to share their hidden states so that
it can automatically learn typical interactions that take place among trajectories that coincide in
time. Subsequently, a large number of models that can model human interaction to predict trajectory
sequences were proposed. They can be classified into two groups: the first group is context–Social
LSTM, which can model both human–human interaction and human–space interaction. In [8], Xue et al.
proposed a hierarchical LSTM based prediction model that is called SS-LSTM and includes three
different LSTMs to model individual trajectories, human interaction, and scenario layout. The model
for capturing scenario layout is a convolutional neural network (CNN) stacking with LSTM that is
fed with features from the CNN. In [43], Bartoli et al. modeled both human–human interaction and
human–space interaction through social pooling for trajectory prediction in a museum. The second
group is attention–Social LSTM, where the social pooling layer is modified as an attention-weighted
pooling layer that learns different weights of neighbors to the agent. In [6], an attention mechanism
was introduced into an encoder and decoder model. Fernando et al. applied soft attention to learn
different weights of past sequence positions in the next position, and hard attention to capture different
effects of neighbors to the agent. In [32], Vemula et al. introduced an attention–Social LSTM for
social robot navigation in crowded scenarios. All the people in the scenario at any time instance are
considered for calculating the influence on an agent robot. So far, the attention mechanism used in
prediction has originated from natural language processing [21]. In addition to pedestrian trajectory
prediction, LSTMs are also widely used for vehicle motion prediction [44,45].

Among the existing deep learning methods, only a few have modeled “relativity” of motion
trajectories [23,41,46]. They use offset not position (where will the person be next) to model trajectory
and achieved exceptional performance which can also demonstrate that the process of pedestrian
moving can be better described by modeling “relativity” of motion trajectory. However, none of
these methods take human interaction into account since it is not easy to model interaction on the
premise motion trajectory is modeled with relative motion. Inspired by these methods, in this study,
the “relativity” of human interaction is modeled with motion trajectory to capture more trajectory cues,
thus achieving fairly high performance in extremely crowded circumstances.

3. Data Source

In most existing studies, pedestrian trajectory prediction is performed using image data rather
than laser data [38]. In this study, we use trajectory data collected by 2D laser sensors which measure
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the distance of nearby objects by performing single-row scans with given height and controlled
directions. With the development of multi-object tracking and social robot navigation, 2D laser sensors
attract increasing attention because they are not affected by light change and can obtain the accurate
location of pedestrians with less occlusion even under crowded scenarios [47,48], where occlusion is
often the most serious problem for video camera based surveillance systems.

2D laser data utilized in this study was acquired at 8:00 a.m. in the lobby (approximately 60× 35 m)
of Osaki station in Tokyo, Japan. Eight single-row 2D laser sensors (LMS291) with a height of 20 cm
were used. The original data from the sensors were fused and tracked using Particle filter. For more
details on this, the reader is referred to the publication [49]. For more details about the tracked data,
the reader is referred to the website [50].

The frequency of the tracked data was 20 fps. In the prediction experiment, the tracked data was
sampled and the sampling rate was 2.5 fps, that is, one frame every 0.4 s. Table 1 shows the properties
of data used for trajectory prediction. The train station is in the rush hour at 8:00 a.m. It is occupied
with walking pedestrians. The global scenario, which is randomly selected from the data used, is
shown in Figure 1 (left). In each time frame, there are on average 100 people under this scenario and
99.75% of them will stay more than 8 s. Figure 1 (right) shows the heatmap of all trajectories. Warmer
color implies higher pedestrian occupancy frequency.

Figure 1. Global scenarios for the data used: (left) the green part is the background, each black dot is a
pedestrian, the blue part is the pedestrians’ current walking phase, and red points are sensor locations;
(right) heatmap of the scenarios. Warmer color implies higher pedestrian occupancy frequency.

There were totally 2422 trajectories under world coordinates. The entire data set was split into
training data (4/5) and test data (1/5). There were 1000 frames and 1976 trajectories in the training
data, and 250 frames and 446 trajectories in the testing data. The tracklets of the training and testing
data are shown in Figure 2, where it can be seen that the traveling modes are complicated because
there are 11 origin and exit in total at this station.

Figure 2. Visualization of tracklets of training and testing data: (left) all tracklets of training data;
(right) all tracklets of testing data. Numbers shown in magenta are indexes of origin/destination.
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Table 1. Properties of data used for trajectory prediction.

Tracks Coordinate Avg. Path Length(s) Framerate Origin/Destination Sensor View

2422 World 19 2.5 11 2D laser Global

4. Methodology

The various motion trajectory patterns (several origins and destinations) and the dynamic human
interaction are the key for a trajectory prediction model under complex circumstances. Most existing
deep learning based methods heavily depend on specific scenarios because they perform trajectory
prediction using absolute coordinates. In fact, the motion trajectory is relative motion coinciding with
time and human interaction is relative motion among pedestrians.

This motivates the construction of a trajectory prediction model for the relative motion of both
motion trajectory and human interaction. In the proposed method, the trajectory is represented with
offset with respect to the last time step, and the relative motion among pedestrians is represented via
a coordinate transformation. These representations are then fed into the model, which is designed
with an encoder–decoder architecture. In the encoder and the decoder, a subnetwork is constructed to
account for the human interaction inside an anisotropic neighborhood, and truncated back propagation
through time is applied for training.

4.1. Brief Review on LSTM

LSTM is introduced by Hochreiter and Schmidhuber in 1997 [20] and capable of learning long-term
dependencies. LSTM contains cell states to remember the information of input sequence and gates to
optionally let information through input, cell sate and output. As a special kind of RNNs, LSTM also
has the form of a chain of repeating modules of neural networks. Each module of LSTM, depicted as
Figure 3, works through the following equations:

ut = σ(Wu[ht−1, xt] + bu),

ft = σ(W f [ht−1, xt] + b f ),

ot = σ(Wo[ht−1, xt] + bo),

c̃t = tanh(Wc[ht−1, xt] + bc),

ct = ut � c̃t + ft � ct−1,

ht = ot � tanh(ct),

(1)

where xt is the input vector at time instance t; ht−1 and ht denote the hidden states at time instance
t− 1 and t; ct−1 and ct are the cell states at time instance t− 1 and t, while c̃t is a candidate cell state;
� is the element-wise multiplication; Wu, W f , Wo , Wc are the weight matrices to calculate update
gate vector ut, forget gate vector ft, output gate vector ot; bu, b f , bo, bc are the bias vectors; σ denotes
a sigmoid function.
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Figure 3. Illustration of each module of LSTM.

4.2. Problem Formulation

Trajectory prediction is viewed as a sequence generation problem, and the proposed model is
based on LSTM. It is assumed that the laser data has been preprocessed, and the position and velocity
of pedestrians can be obtained. At any time instance t, the person i has been described with offset~oi

t,
velocity ~vi

t, and position ~pi
t, which are expressed as follows:

~pi
t = (xi

t , yi
t),

~oi
t = (oxi

t , oyi
t),

~vi
t = (vxi

t , vyi
t),

(2)

where ~pi
t is the position under absolute coordinate, ~oi

t is the vector of position offset between the
positions at time instances t and t− 1, and ~vi

t is the velocity vector.
A trajectory sequence from time t0 to tobs for all persons is observed, and the future sequence

from tobs to tpred is predicted. An LSTM based encoder–decoder model is constructed whose input is
the sequence of observations and whose output is the sequence of predicted trajectories. Any person is
treated as an agent, and all agents share the same model in this method.

4.3. Network Architecture

The architecture of the proposed model is shown in Figure 4. It contains an encoder and a decoder.
In the encoder, both agent’s trajectory and agent–neighbor interaction are concatenated and then fed
into the LSTM. In the decoder, the output of each timestep is used to calculate the input of the next step.
In this network, not only individual trajectories but also human interaction is considered. The offset~oi

t
and the velocity ~vi

t are used to model the agent’s past trajectory sequence, whereas the velocity ~vi
t and

the position ~pi
t are used to model human interaction. The agent’s neighbors at time instance t will be

represented as a set
Ni

t =
{
(~oj

t , ~vj
t , ~pj

t) | j = (0, 1, 2, ..., k− 1)
}

, (3)

where j is the index of a neighbor and k is the number of the neighbors of agent i at time instance t. At
any time instance, every person can be treated as an agent. Each cell in the network at time instance t
will be an LSTM cell stacking with a fully connected layer:

h_st+1 , c_st+1 = LSTM ( ( φa (~oi
t , ~vi

t ) , φn (~vi
t , ~pi

t , Ni
t ) ), h_st , c_st ), (4)
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where h_st+1, c_st+1 and h_st, c_st are the LSTM’s hidden states and cell states at time instances t + 1
and t. φa is a layer for embedding the input of the motion trajectory of an agent, i.e., ~oi

t and ~vi
t. φn

is a subnetwork for modeling human interaction with relative motion, which will be explained in
Section 4.4. These two parts are concatenated and then fed into an LSTM cell. The prediction results
at time instance t are the sequence of x offsets and y offsets obtained by feeding h_st+1 into a fully
connected layer. The x offsets and y offsets are the distance along the x and y axes between the
positions at time instances t + 1 and t.

Figure 4. Network structure. It includes an encoder and a decoder, shown in orange and blue,
respectively. The encoder encodes the observed trajectory, and the decoder performs the prediction.
There is a subnetwork “interaction”, which encodes the agent–neighbor interaction.

4.4. Human Interaction Model with Relative Motion

Pedestrians are adept at perceiving interaction from moving objects, but the underlying
mechanism is still unknown. A large amount of research has been conducted on the type of visual
information that drives this interaction. It has been demonstrated that the interaction between two
moving persons is relative rather than absolute and relies on some critical low-level motion cues,
namely, walking speed, motion direction, and distance [9,28].

To capture the relative motion between persons, a coordinate transformation is performed to
re-describe all neighbors and re-define the neighborhood of an agent by setting the agent as the
reference, as shown in Figure 5. At any time instance, the agent’s position is transformed to be located
at the origin (0, 0). The velocity direction of the agent always points in the vertical direction (y-axis).
(~vi

t , ~pi
t , Ni

t), the input of the subnetwork, is represented as Ñi
t =

{
(ṽi,j

t , p̃i,j
t ) | j = (0, 1, ..., k− 1)

}
,

which refers to the relative motion between agent and agent’s neighbors. ṽi,j
t and p̃i,j

t are the relative
velocity and position, respectively, with respect to the agent, where ṽi,j

t = ~vj
t − ~vi

t and p̃i,j
t = ~pj

t − ~pi
t.
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Figure 5. Coordinate transformation and neighborhood definition: (left) absolute coordinates and
rectangular grid map in absolute coordinates; (right) relative coordinates and anisotropic neighborhood
map. After a coordinate transformation, the neighbors are re-described with relative motion: relative
velocity ṽi,j

t and relative position p̃i,j
t .

The occupancy grid map is always used for defining the neighborhood of an agent. Rectangular
grid map and circle grid map are commonly used occupancy grid maps that center at the agent’s
current position [8,24,43]. Both the rectangular grid map and the circle grid map in all existing studies
are designed to divide the neighborhood of an agent into grids of size m× n that are parallel to the
absolute coordinate axis regardless of the agent’s walking direction. A typical rectangular grid map is
shown in Figure 5 (left). Regardless of the agent’s walking direction, the grids are always parallel to
the x- and y-axis. In fact, in the agent’s walking direction, the agent will look farther and pay more
attention to the neighbors walking in front of him/her. Conversely, neighbors walking behind the agent
will catch less attentions of the agent, and the region of interest behind the agent is smaller than that
in front of him/her. To capture more neighbors who may have an influence on the agent’s trajectory
in the proposed model, an anisotropic neighborhood is defined after the coordinate transformation.
As shown in Figure 5 (right), the anisotropic neighborhood is the y-direction, is symmetrical, and is
divided into two parts: the region in front of and behind the agent. The anisotropic neighborhood is
defined in relative coordinates as

R(x, y) =


x2

a2 +
y2

b2
1
= 1 if y >= 0,

x2

a2 +
y2

b2
2
= 1 if y < 0,

(5)

where (x, y) is the point in relative coordinates. a, b1, b2 are the parameters defining the neighborhood
area. b1 is greater than a and b2 is equal to a, which reflects that the agent will look farther in the
walking direction and pay less attention to the region behind him/her. The neighbors are grouped
into two sets: in front of the agent and behind the agent. It is easy to determine which set a neighbor
belongs to by calculating the angle between~oi

t and p̃i,j
t .

To model interaction with relative motion, a subnetwork is constructed as shown in Figure 6.
First, an embedding layer with size 4× 128 is applied to embed ṽi,j

t and p̃i,j
t , and then the feature f i

t is
obtained. It is worth noting that, when Social LSTM models human interaction by a social pooling
layer, all neighbors are equally important to the agent, i.e., they have the same weight. However, this
is not sensible, as the agent will pay different attention to different neighbors. Thus, the proposed
method uses a fully connected layer to calculate the weights wi

t of the neighbors. The social tensor si
t is

computed as
si

t = FC ( FC ( f i
t ⊗ wi

t ⊕ f i
t )), (6)
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where ⊗ denotes tensor multiplication, and ⊕ tensor concatenation. FC denotes fully connected layers
with different weights and bias, and activation function ReLU. The relative motion of the trajectory
represented by offset~oi

t is embedded into a feature mi
t and then is fed into LSTM together with social

tensor. The recurrence at time instance t is as follows:

h_st+1 , c_st+1 = LSTM( (si
t ⊕mi

t) , h_st , c_st). (7)

Figure 6. Subnetwork modeling human interaction with relative motion. FC is a fully connected
layer with activation function ReLU. The first number inside the bracket is the input size of this layer
and the last number is the output size. Through this subnetwork, a social tensor representing the
agent–neighbor interaction can be obtained.

4.5. Life-Long Deployment

Given the prediction ôi
t+1 of agent i at time instance t, the speed v̂i

t+1 and position p̂i
t+1, which are

exactly the input of time instance t + 1, should be estimated. Given the frequency of the sampled laser
data Feq, the speed v̂i

t+1 and position p̂i
t+1 are

p̂i
t+1 = ôi

t+1 + ~pi
t,

v̂i
t+1 = ôi

t+1 ∗ Feq.
(8)

The input of each time step into the decoder and the occupancy matrix are re-calculated based on
the output of last time step. This process is continued until the model predicts the trajectory from tobs
to tobs+pred.

When the pedestrian walks in this scenario, once the observation length meets the length of the
trained model, a trajectory sequence can be predicted. As trajectory length increases, new observations
can be added to the model, and the eldest observation can be discarded until the pedestrian vanishes
from the scenario.

4.6. Truncated Back Propagation through Time

The loss function used for model training is the L2 loss between prediction positions and ground
truth, which is depicted as follows:

L2( p̂i
t, ~p

i
t) =

T2

∑
t=T1

∥∥∥( p̂i
t − ~pi

t)
∥∥∥

2
. (9)

Because a subnetwork is used along with the sequence prediction model, the model cannot be
sufficiently trained by back propagation through time until the start of the model. The parameters of
the last time step cannot be calculated correctly, which leads to zero output. Thus, the entire model is
trained using truncated back propagation. As shown in Figure 7, the encoder and decoder are trained
separately where T1 = 1, T2 = obs for encoder and T1 = obs + 1, T2 = obs + pred for decoder.
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Figure 7. Model training using truncated back propagation through time.

5. Experiments and Results

In this section, we demonstrate the effectiveness of the proposed algorithm on the extremely
crowded dataset. First of all, the properties of our dataset are analyzed. Then, we report the
implementation details of the experiments. Next, we compare the proposed method’s performance
against other two baselines while setting various length of prediction. Two different metrics are used
to measure the prediction errors. Finally, we finish the section by demonstrating some qualitative
results on how the proposed approach can provide good path forecasting results.

5.1. Data Analysis

The offset of the data, shown in Figure 8, was used to model motion trajectories. The x and y
offsets of pedestrians are in the range [−1, 1], which makes the model more stable.

Figure 8. Offset histograms of data used: (left) x offset of the entire data set; (right) y offset of the
entire data set.

The parameters of the neighborhood shown in Figure 5 (right) were set as a = 1, b1 = 2, and
b2 = 1. The statistics for the number of neighbors is shown in Figure 9. In the training data, 82.75% of
the pedestrians have one or more neighbors, and 44.09% have three or more. In the testing data, 83.15%
of the pedestrians have one or more neighbors, and 40.81% have three or more. The data represented a
highly crowded situation.

The length of data trajectories is also sufficient for the experiments. In the training data, trajectories
of over 8 s are approximately 99.5% of the entire data set. In the testing data, 98.2% of the trajectories
are longer than 8 s. For training, 3.2 s trajectories are observed and encoded, and then 4.8 s trajectories
are predicted by the decoder. Thus, almost all the data can be used for training and testing. In reality,
any trajectory length can be used for training, and trajectories with length more than the observation
length can be used for testing. The model can handle the number of pedestrians dynamically both for
training and testing. In training, each batch is set as a set of frames whose length is the observation
length plus the prediction length, and the total number of pedestrians for this batch is obtained in
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advance. Thereby, there is no problem with the “birth” of a person. Furthermore, because the training
loss is calculated at each time step, a person with trajectory length less than the observation and
prediction length may be taken into account until the “death” of this pedestrian. In the testing phase,
each person at a certain time step is set as an agent. Once the trajectory length of the agent meets the
observation length, his/her next trajectory sequence is predicted. When the real observation shows
that one agent disappears or appears, this person is removed or added, respectively.

Figure 9. Number of neighbors in the neighborhood of agent: (left) person density of training data;
(right) person density of testing data.

5.2. Implementation Details

The setting of Social LSTM, Naive LSTM, and the proposed method is as follows: the code was
implemented using Pytorch under Ubuntu 16.04 LTS with a GTX 1080 GPU. The truncated back
propagation shown in Figure 7 was used for both the proposed method and Social LSTM.

The Social LSTM architecture that was used is the original model proposed in [24]. However,
there are some differences. The input of the original Social LSTM is normalized trajectory data from
images and the neighborhood size is 32 pixels. To evaluate the performance of the proposed method,
Social LSTM, and Naive LSTM in real coordinates, the offset, velocity, and position of the data were
input into this Social LSTM model, and the neighborhood size for the Social LSTM was set to 4 m.
The parameter setting for the proposed method is a = 1, b1 = 2, and b2 = 1 .

In the implementation (including Social LSTM and Naive LSTM), only one LSTM layer was used.
The parameters are shown in Table 2.

Table 2. Implementation parameters (proposed model, Social LSTM, and Naive LSTM).

Parameters Optimization Learning Rate Dropout Gradclip Minibatch LSTM Size Embedding Size

value RMSprop 0.003 0.5 10 8 128 64

5.3. Evaluation Metrics

The prediction error metrics that were used are as follows:
1. Average displacement error (ADE): average L2 distance over all the prediction results and

ground truth. This was introduced in [51]. ADE measures the average error of the predicted trajectory
sequence.

2. Final displacement error (FDE): the distance between the prediction result and the ground truth
at the final time step. FDE measures the error “destination” of the prediction. It is worth noting that
both metrics were calculated in real coordinates, and thus the units of the metrics are meters.

As there are few previous studies on trajectory prediction under extremely crowded scenarios and
the pedestrians’ destinations of data used are unknown, the two other prediction models that achieved
state-of-the-art accuracy, namely Naive LSTM and Social LSTM, were used as the baselines for the
comparison. Naive LSTM refers to the basic LSTM proposed by Hochreiter and Schmidhuber [20].
The naive LSTM treats all the trajectories to be independent from each other.
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5.4. Experiments

We take 3.2 s trajectories as the observation (8 time steps ) and then to predict following 3.2 s
(8 time steps) to 10 s (25 time steps) trajectories, respectively. The results of the proposed method and
other two baselines, Naive LSTM and Social LSTM are shown in Table 3. The average computational
times for training (each epoch) and testing (each trajectory) are shown in Table 4. The results from
Table 3 reveal that our method can forecast path of pedestrians more accurate for any prediction
length and improve the accuracy with both evaluation metrics by 21.0% than the other two baselines.
However, in terms of computational cost, Naive LSTM has the best performance because it doesn’t
consider the interaction among pedestrians. The proposed method has a higher computational cost
than Naive LSTM and Social LSTM. It is worth noting that the proposed model is trained to predict
a 4.8 s trajectory by observing a 3.2 s trajectory. However, it can also be used to predict trajectories
of other lengths. From the evaluation shown in Table 3, it can be seen that Naive LSTM yields good
results, and the differences among the results of the three methods are slight when the prediction
length is short. As prediction length increases, the proposed method outperforms Naive LSTM and
Social LSTM. Naive LSTM is not as stable as the proposed method and Social LSTM in predictions
of longer length. This can be easily inferred from the final displacement error of Naive LSTM, which
becomes larger as prediction length increases. The proposed method can learn more trajectory cues
from short observations and can thus predict longer sequences.

Table 3. Evaluation of prediction results.

Methods Naive LSTM Social LSTM Our Method

Measurments ADE (m) FDE (m) ADE (m) FDE (m) ADE (m) FDE (m)

3.2 s’ obs to 3.2 s’ pred 0.39 ± 0.0054 0.88 ± 0.0121 0.48 ± 0.0057 0.96 ± 0.0114 0.26 ± 0.0045 0.76 ± 0.0098
3.2 s’ obs to 4.0 s’ pred 0.51 ± 0.0072 1.17 ± 0.0162 0.58 ± 0.0071 1.19 ± 0.0144 0.45 ± 0.0059 0.97 ± 0.0125
3.2 s’ obs to 5.2 s’ pred 0.70 ± 0.0095 1.66 ± 0.0227 0.74 ± 0.0089 1.52 ± 0.0183 0.59 ± 0.0077 1.28 ± 0.0167
3.2 s’ obs to 6.0 s’ pred 0.83 ± 0.0115 1.98 ± 0.0276 0.83 ± 0.0102 1.72 ± 0.0206 0.68 ± 0.0090 1.47 ± 0.0198
3.2 s’ obs to 7.2 s’ pred 1.04 ± 0.0140 2.49 ± 0.0338 0.97 ± 0.0118 2.00 ± 0.0249 0.81 ± 0.0107 1.78 ± 0.0243
3.2 s’ obs to 8.0 s’ pred 1.17 ± 0.0156 2.82 ± 0.0372 1.06 ± 0.0128 2.19 ± 0.0250 0.89 ± 0.0124 1.97 ± 0.0280
3.2 s’ obs to 9.2 s’ pred 1.37 ± 0.0188 3.31 ± 0.0452 1.18 ± 0.0153 2.48 ± 0.0303 1.01 ± 0.0152 2.24 ± 0.0342
3.2 s’ obs to 10.0 s’ pred 1.50 ± 0.0213 3.63 ± 0.0507 1.27 ± 0.0169 2.69 ± 0.0343 1.09 ± 0.0161 2.43 ± 0.0357

Table 4. Computational cost for training(each epoch) and testing(each traj.).

Methods Naive LSTM Social LSTM Our Method

Training (s) 43.18 113.75 159.81
Testing (s) 0.23 4.10 6.67

5.5. Analysis of Trajectory Prediction Results

Examples of scenarios around some agents are now presented. The first examples in Figure 10 are
from the results of a 6.0 s prediction based on a 3.2 s observation. The number of neighbors of each
agent is dynamic. Each row is an example. In the first example, the agent turns slightly left to avoid
the neighbor in front of him/her and then walks toward the upper-left corner. Social LSTM predicts
the agent’s direction correctly but wrongly estimates the walking speed. Naive LSTM incorrectly
forecasts a left walking direction. In the second example, there are several neighbors around the
agent and thus various types of interaction may occur. In this case, the proposed method achieves
the best performance, whereas Naive LSTM derives the wrong trajectory pattern based on the past
observation. In the third example, the agent walks together with a neighbor on his/her right. Naive
LSTM estimates the agent slightly off the ground truth, which is not rational because the agent adapts
his/her movement to avoid collision with the neighbor on the left. In the fourth example, the proposed
method and Naive LSTM yield better results than Social LSTM. This is possibly because Social LSTM
considers that interaction exists between the agent and the neighbor in front of him/her. Social LSTM
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predicts that the agent will slightly turn left to avoid collision, but the neighbor walks faster, and thus
no interaction in fact occurs in this case.

Naive LSTM Social LSTM Proposed

Figure 10. Four examples of trajectory prediction results from 3.2 s observation to 6.0 s prediction.
Each row is an example. In every figure, each dot (red: agent, black: neighbors) is a pedestrian. For
agent, green solid line: past trajectory, red dashed line: prediction, blue dashed line: ground truth. For
neighbors, gray solid line: past trajectory, gray dashed line: following real trajectory. Results of Naive
LSTM (left); results of Social LSTM (middle); results of proposed (right).

The second examples are in Figure 11. The prediction results are 10.0 s predictions from 3.2 s
observations. It is interesting that the proposed method can relatively better predict the pedestrian’s
trajectory for a long sequence based on a trained model on a short sequence. In the first example,
both the proposed method and the Social LSTM correctly forecast the future trajectory sequence.
However, the proposed method estimated the changing walking speed better than Social LSTM. In the
second and fourth examples, the agent may walk in any direction. Thus, there are several possible
trajectory patterns. For those cases, the proposed method can predict relatively correctly, which also
demonstrates that it can learn more cues of the trajectory pattern by encoding past motion trajectory
sequences and human interaction. In the third example, Social LSTM may wrongly estimate the agent’s
reaction as walking over the neighbor, whereas the proposed method estimated that the agent would
slightly adjust his/her movement toward the right side to avoid collision.
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Naive LSTM Social LSTM Proposed

Figure 11. Four examples of trajectory prediction results from a 3.2 s observation to a 10.0 s prediction.
Each row is an example. In every figure, each dot (red: agent, black: neighbors) is a pedestrian. For
agent, green solid line: past trajectory, red dashed line: prediction, blue dashed line: ground truth. For
neighbors, gray solid line: past trajectory, gray dashed line: following real trajectory. Results of Naive
LSTM (left); results of Social LSTM (middle); results of proposed (right).

6. Conclusions

A novel trajectory prediction method under extremely crowded scenarios was proposed.
The method is an encoder–decoder model based on LSTM. It can encode motion trajectory and
human interaction to predict long trajectory sequences. Instead of modeling motion trajectory and
human interaction in absolute coordinates, the method uses dynamic relative coordinates. Thus, more
trajectory cues can be learned, and therefore the model is stable for various prediction lengths even
when it is trained using short sequences. The experiments demonstrated that the proposed method
outperformed the other state-of-the-art models in every single sequence and achieved an average
21.0% with both evaluation metrics, though the computational cost of our method was higher than
other baselines.

Pedestrians also interact with static elements of the scenario (e.g., walls) and other moving
objects (e.g., trolley cars) when walking in the crowded circumstance, which is not considered in the
proposed method. In future work, we will focus on improving trajectory forecasting performance by
incorporating these interactions and finding balance between prediction accuracy and computational
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time. We believe the consideration of “relative motion” can also help model human–space interaction
and human–others interaction. In addition, we also intend to utilize more datasets (not only our 2D
laser datasets but also others) to train and test our model.
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