
sensors

Article

eHAPAC: A Privacy-Supported Access Control Model
for IP-Enabled Wireless Sensor Networks

Fagui Liu 1, Yangyu Tang 1,* and Liangming Wang 2,*
1 School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006,

China; fgliu@scut.edu.cn
2 School of Software Engineering, South China University of Technology, Guangzhou 510006, China
* Correspondence: cstyy@mail.scut.edu.cn (Y.T.); lmwang@scut.edu.cn (L.W.); Tel.: +86-159-1442-5589 (Y.T.)

Received: 27 February 2019; Accepted: 21 March 2019; Published: 28 March 2019
����������
�������

Abstract: The implementation of IP technology in wireless sensor networks has promoted the
development of many smart scenarios. To enhance secure access in IP-enabled wireless sensor
networks, access control to sensor nodes is a necessary process. However, access control currently
faces two challenges, feasibility and preservation of user access privacy. In this paper, we propose
eHAPAC, a novel privacy-preserving access control model for IP-enabled wireless sensor networks.
The contributions of our paper include three parts. First, this paper integrates the Hidra access control
protocol and APAC privacy-preserving model, addressing the issue of privacy-preserving access
control in resource-constrained devices. Second, this paper proposes an enhanced Hidra protocol
to implement the unlinkability of protocol message exchanges. Third, to solve the problem of third
party credibility, this paper improves the group signature-based APAC model and utilizes blockchain
technology to manage the storage and publication of public group signature keys. Security analysis
and performance evaluation prove that our protocol is secure and effective.

Keywords: access control; resource-constrained device; privacy-preserving; blockchain; wireless
sensor network

1. Introduction

Wireless sensor networks (WSNs), as an important part of the Internet of Things (IoT), enable
us to create smart environments. They are typically composed of thousands of tiny, low-cost,
low-power, resourced-constrained sensors that detect environment conditions such as temperature,
noise, light, or the movement of objects. With their low cost, WSNs have been widely used in military
reconnaissance, industrial monitoring, medical health care and other fields [1,2].

However, there are still many problems in traditional WSNs, such as poor scalability and single
point of failure issues [3,4]. Recently, in virtue of the development of solutions like the 6LoWPAN
standard, the problems which block the native integration of sensors and the Internet (e.g., IPv6
header overhead, packet transmission, etc. on the IEEE 802.15.4 network) have been solved [5–7].
The end-to-end (E2E) communication between Internet users and sensor nodes can really be realized,
which promotes the application of WSNs. However a new security crisis has been introduced for
IP-enabled WSNs whereby adversaries can more easily access data on sensor nodes by using global
addressing [8–10]. Moreover, the high frangibility of the WSN itself (e.g., its resource constrained
nature) makes it a easy target for many security attacks [3,11] (e.g., hacking, data theft, remote hijacking)
or a tool for hackers to launch security attacks [12] (e.g., Mira, composed of IoT devices that constituted
a million-level botnets, launched a crazy DDoS attack on Krebson Security). Therefore, the access to
sensor nodes must be strictly controlled in IP-enabled WSNs. A basic access control model includes
three components: authentication, authorization and auditing [13]. Generally, authentication and

Sensors 2019, 19, 1513; doi:10.3390/s19071513 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/7/1513?type=check_update&version=1
http://dx.doi.org/10.3390/s19071513
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 1513 2 of 23

authorization imply transmitting user identity-related information to the targeted service, which will
cause another problem, namely privacy security of data access. Currently, user access behavior is a
target for data collection [13], from which users’ behavior patterns and preferences can be summarized,
posing a threat to users’ privacy and even property and lives [14–18]. Therefore, it is necessarily to
implement access control in IP-enabled WSNs without revealing users’ private information.

Although there are many mature traditional access control models, the particular properties of
WSNs make the implementation of those models face two main challenges: (1) Sensors are resource
constrained. Sensors are subject to strict resource constraints, whether in terms of computing power,
storage capacity, or transportable overhead so that many mature traditional access control models are
unfeasible. (2) Privacy disclosure. User access pattern may be closely related to users’ social work,
preferences and other private information. Most traditional access control methods do not consider
user privacy preservation. It is possible that potential eavesdroppers can analyze the user data access
records to further obtain users’ private information.

Recently, various mechanisms have been proposed to address user privacy-preserving access
control in WSNs. Those mechanisms are of two main types: one aims to hide the user identity by
introducing cryptographic mechanisms, such as the group signature-based APAC privacy-preserving
model [19]. In these schemes, privacy preservation relies on the difficulty of resolving some problems,
so such schemes have strong privacy security, but most of them lack any consideration of feasibility in a
resource-constrained scenario. The other type implements access control by introducing an absolutely
trusted third party, which stores the mapping table of the user real identities and a pseudonym set,
such as the enhanced Ladon protocol [20]. This way users can be authenticated and authorized by
sending a pseudonym to the third party. However, this type of model fully entrusts the user privacy to
third parties. Once the third party is attacked or the data is leaked, all users’ data access privacy will
be threatened. Additionally, the users may come from different organizations, have different identities
and exist in different forms. Because of the interest in the data provided by sensor nodes, they register
against the administrator of sensor networks to make themselves the legal acquirer of sensor node
data. Generally, in the aspect of privacy protection, users and the administrator of sensor networks
may have conflicting interests, so there is no trust relationship among them. Blindly trusting a third
party may have serious consequences, such as a third party privately selling the data access records,
or handing them over to a government agency, resulting in user access trends being monitored [21,22].

According to the above problems and challenges, a privacy-preserving access control model in
the IP-enabled WSN should meet the following requirements: (1) Basic access control mechanism.
Authentication and authorization: ensure that only legitimate user with permissions can access the
nodes. Auditing and accountability: identify misbehaviors and misbehaving users. (2) Feasibility.
IETF [23] classifies constrained devices in three levels (C0~C2). The C0 class devices are the most
constrained devices. Making such devices able to communicate directly with the Internet in a secure
manner is the target of feasibility. (3) User data access privacy preserving. Any entity cannot associate
the identity of a user with a data access record, nor can it determine whether two data access records
are from the same user. 4) Resist basic network attacks. The model should be able to resist common
network attacks, such as replay attacks and resource consumption attacks.

In this paper, we propose a novel user privacy supported access control model in the IP-enabled
WSN, namely eHAPAC. The main contributions are listed as follows:

• We propose a privacy-enhanced Hidra protocol by integrating the original protocol with the
privacy enhancement mechanisms of the enhanced Ladon protocol. The enhanced Hidra protocol
supports unlinkability of protocol message exchanges and the feasibility of access control in
severely resource-constrained environments.

• We propose a privacy-preserving model to implement anonymous authentication that exploits the
group signature technique. Our privacy-preserving model improves the APAC privacy-enhanced
access control model by designing a new key generation scheme, so as to protect the key generator
from linking user authentication request messages.

Sensors 2019, 19, 1513 3 of 23

• We propose a series of mechanisms to enhance security of our eHAPAC model. Blockchain is
introduced into the accountability mechanism to disclose the accountability calculation procedure
in order to solve disputes in our privacy-preserving model. A novel blockchain-based key publish
mechanism and a novel blockchain-based message exchange mechanism are proposed to increase
the flexibility of public key management and resist resource consumption attacks respectively.

• We analyze the security and efficiency of the proposed eHAPAC model, and implement the
privacy-preserving model of eHAPAC. The time consumption of the proposed privacy-preserving
mode is compared with the original APAC model.

The rest of this paper is organized as follows: Section 2 discusses the relevant related work.
Section 3 describes the problem formulation. Section 4 provides the detail of our model. Sections 5
and 6 conduct security and performance analysis respectively. Finally, Section 7 shows our conclusion.

2. Related Work

In recent years, the security in WSNs has received great attention. Access control technology
is seen as a significant security mechanism development in WSNs. Uriarte et al. [24] analyzed
some traditional access control models and some current new access control models designed for
resource-constrained devices (RCDs), finding that the former are not feasible in all RCDs, and the latter
can only be implemented for class C2 RCDs. The authors then proposed a new access control protocol
called Hidra. This protocol is based on the Ladon access control protocol, the enhanced version of the
Kerberos authentication protocol. A comparison of Hidra, Ladon and Kerberos is given in Table 1.
The Hidra and the Ladon protocols improve Kerberos by integrating an authorization mechanism,
and Hidra protocol implements dynamic policy configuration and accurate audits based on Ladon.
The authors evaluated Hidra on three indicators of power consumption, memory and response time,
providing results demonstrating the availability of the protocol on class C0 RCDs. However, Hidra
does not pay any attention to user privacy security.

Table 1. Comparison among Hidra, Ladon and Kerberos.

Kerberos Ladon Hidra

Targeted protected devices Powerful
workstations

Severely resource
deprived devices

Severely resource
deprived devices

Authentication and key establishment
√ √ √

Authorization
√ √

Independence of clock synchronization
√ √

Dynamic fine-grained policy enforcement
√

Accurate accounting
√

The schemes discussed in [20,25] are two privacy-preserving access control schemes that enhance
the Kerberos and the Ladon methods mentioned above by adding privacy support. The PrivaKERB [25]
user privacy framework for Kerberos provides user privacy protection by integrating the original
Kerberos protocol with a dynamic pseudonym mechanism and regenerating a Ticket Granting Ticket
(TGT) mechanism. Reference [20] upgrades the PrivaKERB framework based on the Ladon protocol.
However, the main weakness of the two schemes is the fact the user privacy security relies on a third
party key distribution center (KDC). The mapping of the user real identity and pseudonym set is stored
on the KDC, so the KDC can fully grasp the user access traces. Once the KDC is attacked and the data
is leaked, the privacy of all users will be exposed. In addition to this, neither of the two frameworks
considers resisting resource consumption attacks.

Digital signature techniques in cryptography are progressively being applied to privacy-preserving
access control. Zhang et al. [26] payed attention to this research area previously. They proposed a DP2AC
protocol that uses blind signatures in token generation to ensure tokens can be publicly validated
yet unlinkable to user identities. However, it is not fine-grained in that any anonymous user has

Sensors 2019, 19, 1513 4 of 23

exactly the same privilege to access the nodes. Subsequently, He et al. [27] and Han et al. [28] designed
access control schemes based on ring signatures to achieve privacy-preservation. In a ring signature
scheme, nobody can revoke the anonymity of the actual signer in any case [29]. Failure to track down
misbehaving users is the fatal defect in these ring signature schemes. The CLSC-based anonymous
access control scheme proposed by Li et al. [30] aims to protect other third parties except for the
user himself and controller from knowing the user identities. This scheme uses an identity-based
signature mechanism, which can easily expose the user’s identity. He et al. [19] proposed a group
signature-based privacy-enhanced access control scheme. The scheme divides the user identity and
private open-key (which is used to open a group signature to reveal a signer’s certificate) into two
parts, which are saved by some legal authority and the WSN owners, respectively. This scheme may
cause two problems: on the one hand, although the legal authority can’t know the user real identity
corresponding to the signer’s certificate, it can easily link the request messages of the same user. On the
other hand, in order to avoid key leakage, the accountability process can’t be above board, which is
easily causes disputes. The schemes previously mentioned in [19,26,27] suffer from a serious limitation
in that they fail to consider feasibility in strictly constrained devices. For example, schemes [19,27]
store access control lists on sensor nodes and perform signature verification and authorization locally
on sensor nodes, which is almost impossible for C0 devices with severe resource constraints.

After summarizing the related works, we can see that none of the current research work meets
the requirements mentioned in Section 1. Some of these schemes ignore the feasibility of using them in
resource-constrained environments, lack privacy support or have flaws in their privacy-preserving
mechanism (e.g., blind trust in third parties). Therefore, our work mainly aims to solve the feasibility
issue and support user privacy-preservation without blindly trusting third parties. For the other
security issues mentioned above, such as resource consumption attacks, accountability disputes and
so on, we propose novel mechanisms based on blockchain technology. Blockchain technology has
emerged as the promising solution for creating a more secure IoT in the future [31]. Blockchain
properties like transparency, irreversible, distribution and auditability can help the IoT resist many
network attacks such as resource consumption and liability disputes [32–35].

3. Problem Formulation

In this section, we first describe the access control system architecture. Then, we provide the trust
model, threat model considered and security goals we want to achieve.

3.1. Access Control System Architecture

As shown in Figure 1, there are four entities in the access control system architecture: users, a WSN
based on the standard of IEEE 802.15.4, a third-party access control server (ACS) and a third-party law
authority (LA):

Users: Users include a number of registered users who participate in the security protocol and
revoked users. If a registered user violates the access control policy, he is called misbehaving user.

ACS: The ACS is an important control entity responsible for deploying the network, enforcing
access control policies and tracking the specific misbehaving user.

LA: The LA, as an independent third party, can be a local police department. It together with the
ACS to constitute a third part arbitration agency responsible for identifying the misbehaving user and
resolving disputes, in an extreme case such as the server attack. Meanwhile, it also involved in the
deployment of the WSN to generate parameters for accountability.

WSN: The WSN consists of a group of resource-constrained sensor nodes. These sensor nodes act
as the tiny information providers that are directly addressable by any Internet-connected party.

Blockchain network: The blockchain network is an independent network that can be one of the
current public blockchains. Users, the ACS and the LA are nodes in the blockchain. For the model
we designed, the blockchain is used to manage some shared parameters, resist resource consumption
attacks and improve accountability mechanisms.

Sensors 2019, 19, 1513 5 of 23

Sensors 2019, 19, x FOR PEER REVIEW 5 of 24

Blockchain network: The blockchain network is an independent network that can be one of the
current public blockchains. Users, the ACS and the LA are nodes in the blockchain. For the model we
designed, the blockchain is used to manage some shared parameters, resist resource consumption
attacks and improve accountability mechanisms.

Law authority

Access control server
Revoked

 users

Misbehave
users

System users

Third party arbitration
institution

Register

Authorize

IPv6
network

802.15.4

Blockchain
netowrk

Figure 1. Access control system architecture.

3.2. Trust and Threat Model

It is assumed that the ACS is semi-trusted, that is, it can honestly perform access control, but it
is curious about user data access privacy. Moreover, the ACS is in an insecure network environment,
facing the risk of data leakage caused by network attacks. It is considered that the LA is also semi-trusted,
which is curious about the user privacy and may track user access trends. In addition, in the
accountability process, it may collude with misbehaving users to frame others.

Our threat model considers four types of attack:

1. Attacks against user privacy: Both external adversaries and internal entities including users, the
ACS, and the LA, are curious about user data access privacy. The user identities may be obtained
by the way of network sniffing.

2. Replay attack: External adversaries may expect to access data without privilege by intercepting
the transmitted messages and replaying them.

3. Resource consumption attack: external adversaries or internal users (registered user and
misbehaving user) may generate a large number of invalid or valid request messages to consume
the computing resources of the ACS.

4. Collusion between the arbitration organization and internal users: When illegal actions occur
among internal users, once the arbitration organization colludes with misbehaving users, they
may frame other users to prevent the identities of misbehaving users from being revealed.

3.3. Security Goals

In order to solve the above problems, the model in this paper aims to achieve the following
security goals:

1. Anonymity and messages unlinkability: In the case of normal access to services by internal user,
no one can know the real identities of requesters, including the ACS and the LA. External
adversaries, internal users and the LA cannot determine whether any two data access requests
originate from the same user. The ACS cannot establish a relationship between data access
requests for different protocol cycle.

2. Resist replay attack: Verify the freshness of the messages.

Figure 1. Access control system architecture.

3.2. Trust and Threat Model

It is assumed that the ACS is semi-trusted, that is, it can honestly perform access control, but it is
curious about user data access privacy. Moreover, the ACS is in an insecure network environment,
facing the risk of data leakage caused by network attacks. It is considered that the LA is also
semi-trusted, which is curious about the user privacy and may track user access trends. In addition, in
the accountability process, it may collude with misbehaving users to frame others.

Our threat model considers four types of attack:

1. Attacks against user privacy: Both external adversaries and internal entities including users,
the ACS, and the LA, are curious about user data access privacy. The user identities may be
obtained by the way of network sniffing.

2. Replay attack: External adversaries may expect to access data without privilege by intercepting
the transmitted messages and replaying them.

3. Resource consumption attack: external adversaries or internal users (registered user and
misbehaving user) may generate a large number of invalid or valid request messages to consume
the computing resources of the ACS.

4. Collusion between the arbitration organization and internal users: When illegal actions occur
among internal users, once the arbitration organization colludes with misbehaving users, they
may frame other users to prevent the identities of misbehaving users from being revealed.

3.3. Security Goals

In order to solve the above problems, the model in this paper aims to achieve the following
security goals:

1. Anonymity and messages unlinkability: In the case of normal access to services by internal
user, no one can know the real identities of requesters, including the ACS and the LA. External
adversaries, internal users and the LA cannot determine whether any two data access requests
originate from the same user. The ACS cannot establish a relationship between data access
requests for different protocol cycle.

2. Resist replay attack: Verify the freshness of the messages.
3. Resist resource consumption attack: Guarantee that the ACS is not attacked by resource

consumption to ensure availability of services.
4. Accountability: When resolving a dispute, the arbitration agency must give the identity of the

real misbehaving user and provide publicly verifiable evidence.

Sensors 2019, 19, 1513 6 of 23

4. eHAPAC Construction

In this section, we present details of the proposed eHAPAC privacy supported access control
model. We first present an overview of it.

4.1. General Overview

The proposed eHAPAC model is shown in Figure 2. The privacy-preserving model of eHAPAC is
based on a group signature technique. To structure the privacy-preserving model, registered users are
divided into separate groups according to their different access privileges, and group users generate
group signatures for authentication. The privacy-preserving model consists of six phases: system
setup, new user joining, signing, verifying, user revocation and accountability. When group users
access sensor nodes, the access control protocol of eHAPAC is executed, including: authentication
phase, authorization phase, service access phase and the auditing phase.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 24

3. Resist resource consumption attack: Guarantee that the ACS is not attacked by resource
consumption to ensure availability of services.

4. Accountability: When resolving a dispute, the arbitration agency must give the identity of the
real misbehaving user and provide publicly verifiable evidence.

4. eHAPAC Construction

In this section, we present details of the proposed eHAPAC privacy supported access control
model. We first present an overview of it.

4.1. General Overview

The proposed eHAPAC model is shown in Figure 2. The privacy-preserving model of eHAPAC
is based on a group signature technique. To structure the privacy-preserving model, registered users
are divided into separate groups according to their different access privileges, and group users
generate group signatures for authentication. The privacy-preserving model consists of six phases:
system setup, new user joining, signing, verifying, user revocation and accountability. When group
users access sensor nodes, the access control protocol of eHAPAC is executed, including:
authentication phase, authorization phase, service access phase and the auditing phase.

Figure 2. The proposed eHAPAC model.

The ACS is a pivotal control entity in eHAPAC. In the ACS, the group management related
operations, including group key generation, user joining and user revocation, are performed by the
group manager server (GMS). Authentication and issuing long-term tickets are implemented by the
authentication server (AS). In the authentication phase, the AS extracts the group signatures from the
request messages and submits them to group signature verifier (GSV) for verification. The ticket
granting server (TGS) is responsible for authorization and issuing the service tickets. The accounting
manager (ACM) performs auditing and accountability operations.

The system setup phase is to initialize eHAPAC. In this phase, the ACS and the LA cooperate to
generate group keys, in which group public keys are published to the blockchain by the ACS.GMS
through invoking smart contract as shown in Figure 2 (1) (1'). New users acquire the corresponding

Figure 2. The proposed eHAPAC model.

The ACS is a pivotal control entity in eHAPAC. In the ACS, the group management related
operations, including group key generation, user joining and user revocation, are performed by the
group manager server (GMS). Authentication and issuing long-term tickets are implemented by the
authentication server (AS). In the authentication phase, the AS extracts the group signatures from
the request messages and submits them to group signature verifier (GSV) for verification. The ticket
granting server (TGS) is responsible for authorization and issuing the service tickets. The accounting
manager (ACM) performs auditing and accountability operations.

The system setup phase is to initialize eHAPAC. In this phase, the ACS and the LA cooperate to
generate group keys, in which group public keys are published to the blockchain by the ACS.GMS
through invoking smart contract as shown in Figure 2(1),(1′). New users acquire the corresponding
group public key on the blockchain and perform user joining operations to join the network. User
access to the sensor nodes is constrained by access control policies. A complete access control cycle
is depicted in Figure 2. Authentication (2) (2′): The user as requester invokes the signing phase to

Sensors 2019, 19, 1513 7 of 23

generate a group signature for authentication to get the long-term ticket known as ticket granting
ticket (TGT) from the ACS.AS. The blockchain serves as the intermediate platform for the requester
and the ACS.AS to exchange messages in this phase. Authorization (3) (3′): The requester uses the
TGT to apply for a service ticket. The ACS.TGS queries the policy database to determine whether the
group to which the user belongs has the corresponding privileges. Then the TGS issues the service
ticket and a new TGT to the legitimate user. Service access (4): The requester invokes the target service
provider with the service ticket through E2E communication. The target node verifies the service ticket
and establishes a secure connection with the requester if the ticket is valid. Audit (5): For each secure
connection, the sensor node sends log to the ACS.ACM for audit. When subscriptions to services expire
or users violate access control policy, the user vocation phase is initiated: the ACS invokes the smart
contract to issue revocation transaction. In an extreme case such as network attacks, the accountability
phase is to be carried out: the ACS.ACM invoke the smart contract, and cooperate with the LA to open
the signature. The privacy-preserving model, access protocol and smart contract design of eHAPAC
are described in detail below.

4.2. The Privacy-Preserving Model of EHAPAC

In this part, we present in detail the privacy-preserving scheme of our model. We choose the group
signature scheme proposed by Cecile et al. [36] as an example. The eXtremely Short Group Signature
Scheme (XSGS) [36] can be proved in the strong security model of Bellare.al [37]. It allows users to join
and revoke dynamic and generate group signatures with shorter length than other signature schemes,
thus saving storage capacity on blockchain. Table 2 presents the terms used as abbreviations and the
notation in the description of the privacy-preserving model.

Table 2. Terminology and notation agreement of the privacy-preserving model of eHAPAC.

Expression Description

Ui a registered user who requests the sensor services
IK issue-key, used to issue group member certificates
OK open-key, consisting of two parts which generated by ACS and LA respectively
eX ECDH private key of entity X
EX ECDH public key of entity X
gsk group private key
gpk group private key
UKi user-key, used to generate group signature
UCerti group member certificate
Certi personal certificate
upki public key of Certi
uski private key of Certi

4.2.1. System Setup

At this phase, the ACS generates partial group key and Elliptic Curve Diffie-Hellman (ECDH)
public/private key pairs for each group. The ECDH public key is issued as part of the group public
key, which is stored on blockchain by the ACS invoking the smart contract. Because the ACS is not
able to know the real identity of the requester, so it is unable to preset the session key between each
requester. The key establishment algorithm based on ECDH is used to establish the temporary session
key ESKU,ACS between the ACS and the anonymous requester. Likewise, the LA generates the other
part group key for each group.

ACS generates the partial group key:

1. Let G1,G2 and Gt be three bilinear groups of prime order p with independent generators G1,
K ∈ G1, an isomorphism from G2 to G1 with ψ(G2) = G1 and e : G1 ×G2 → Gt is an efficient
bilinear map.

2. Choose an RSA modulus n, and an element g of maximal order in Z∗n2 , keeping the factorization.

Sensors 2019, 19, 1513 8 of 23

3. Generate an issue-key IK ∈ ZP which is used to issue group member certificates and user-keys.
Compute W = GIK

2 as the corresponding public key of IK.
4. Generate partial open-key ξ1 ∈R Zp, and compute its corresponding public key H1 = Kξ1 .
5. Choose a random number eACS ∈ Z∗p as ECDH private key, and compute the ECDH public key

EACS = eACS × K.

LA generates the partial group key:

1. Generate partial open-key ξ2, compute the corresponding public key H2 = Kξ2 .
2. Send H2 to the ACS through open channel.

After this phase, the group public key gpk and group private key gsk (include issue-key IK,
open-key OK and ECHD private key eACS) have been generated. Details are as follows:

—gpk = {G1,G2,Gt, e, ψ; G1, K, H1, H2; G2, W; g, n; EACS}
—gsk = {IK, OK, eACS}
—OK = {ξ1, ξ2}

4.2.2. New User Join

Before joining a group, new users need to register with their real identity, assuming that each user
has obtained a personal certificate and the associated public/private key pair [upki,uski] (in the PKI).
When applying for joining a group, he has to prove to the ACS that he is a registered legitimate user in
order to obtain his group member certificate and user-key. New users get the corresponding group
public key from the blockchian according to the group they want to join, and perform the joining
procedure as shown in Figure 3, where:

—The NIZKPEqDL is a zero-knowledge proof together with the extractable commitment becomes a
proof of knowledge: the user Ui know the user-key UKi.
—The NIZKPoKDL(Bi,Di) is a zero-knowledge proof of the discrete logarithm of Bi in basis Di. When
receive the message, the user Ui will check the NIZKPoKDL(Bi,Di) to confirm that the sender can issue
the certificate.Sensors 2019, 19, x FOR PEER REVIEW 9 of 24

𝓤𝒊 ACS
Phase1: generate user-key
①Select 𝑈𝐾 ∈ ℤ, 𝐶 = 𝐻ଵ
②Compute extractable commitment: 𝑐 = 𝑔𝑚𝑜𝑑 𝑛ଶ
③Generate NIZKPEqDL :
select 𝑟 ∈ோ (𝑍\𝑛𝑍) , 𝑅ଵ, = 𝑔mod 𝑛ଶ , 𝑅ଶ, = 𝐻ଵ , ℎ = 𝐻𝑎𝑠ℎ(𝑔, 𝑛ଶ, 𝑐, 𝐶, 𝐻ଵ, 𝑅ଵ,, 𝑅ଶ,) , 𝑠 = 𝑟 − ℎ ⋅ 𝑈𝐾.

Phase3: sign group member certificate
① Check NIZKPoKDL 𝐵 = 𝑒(𝐺ଵ ⋅ 𝐶, 𝐺ଶ)/𝑒(𝐴, 𝑊), 𝐷 = 𝑒(𝐴, 𝐺ଶ),
Check T ?← 𝐷௦ ⋅ 𝐵,
② Sign 𝐴 : 𝑆 = Sign௨௦(𝐴)

Phase5: save group member certificate
① Check certificate: check 𝑒(𝐺ଵ, 𝐺ଶ) ?← 𝑒(𝐴, 𝑊) ⋅ 𝑒൫𝐴௫ ⋅ 𝐻ଵି , 𝐺ଶ൯.
② Save {𝑈𝐶𝑒𝑟𝑡(𝐴, 𝑥), 𝑈𝐾}

 {𝐶, 𝑐, ℎ, 𝑠}

{𝐴, 𝑇, 𝑠}

{𝐶𝑒𝑟𝑡, 𝑆}

 𝑥

Phase2: generate group member certificate
①Check NIZKPEqDL: 𝑅ଵ, = 𝑔௦ ⋅ 𝑐mod 𝑛ଶ, 𝑅ଶ, = 𝐻ଵ௦ ⋅ 𝐶
check the challenge ℎ: ℎ ?← 𝐻𝑎𝑠ℎ(𝑔, 𝑛ଶ, 𝑐, 𝐶, 𝐻ଵ, 𝑅ଵ,, 𝑅ଶ,)
②Select 𝑥 ∈ோ ℤ, 𝐴 = (𝐺ଵ ⋅ 𝐶)ଵ/(ூା௫), 𝑈𝐶𝑒𝑟𝑡 = (𝐴, 𝑥)
③Compute: 𝐵 = 𝑒(𝐺ଵ ⋅ 𝐶, 𝐺ଶ)/𝑒(𝐴, 𝑊), 𝐷 = 𝑒(𝐴, 𝐺ଶ),
Generate NIZKPoKDL(𝐵,𝐷): select 𝑟 ∈ோ ℤ, T = 𝐷, 𝑠 = 𝑟 − 𝑐 ⋅ 𝑥

Phase4: register 𝓤𝒊
① Checks the validity of the 𝐶𝑒𝑟𝑡
② Extract 𝐴ᇱ from signature 𝑆. check 𝐴ᇱ ?← 𝐴
③Registers 𝒰 to the group information database.

Figure 3. New user joining procedure.

4.2.3. Sign and Verify

After the user 𝒰 joins a group, he obtains the group member certificate and the user-key, and
can generate group signatures to prove his group membership without revealing his personal
identity. The procedure of generating and verifying the group signature is as follows: 𝒰୧ generates the group signature：

1. Randomly chooses 𝛼, 𝛽 ∈ ℤ, then computes:
(a) 𝑇ଵ, = 𝐾ఈ, 𝑇ଶ, = 𝐾ఉ, 𝑇ଷ, = 𝐴 ⋅ 𝐻ଵఈ ⋅ 𝐻ଶఉ.

2. Prove the knowledge of {𝛼, 𝛽, 𝑈𝐶𝑒𝑟𝑡} : randomly chooses 𝑟ఈ,, 𝑟ఉ,, 𝑟௫,, 𝑟௬,, 𝑟௭, ∈ோ ℤ ;
computes:
(a) 𝑅ଵ, = 𝐾ഀ , , 𝑅ଶ, = 𝐾ഁ, , 𝑅ଷ, = 𝑒൫𝑇ଷ,ೣ , ⋅ 𝐻ଵି , ⋅ 𝐻ଶି ,, 𝐺ଶ൯ ⋅ 𝑒൫𝐻ଵି ഀ ,, 𝑊൯ ⋅ 𝑒(𝐻ଶି ഁ,, 𝑊),
(b) 𝑐 = 𝐻𝑎𝑠ℎ(𝑀, 𝑇ଵ,, 𝑇ଶ,, 𝑇ଷ,, 𝑅ଵ,, 𝑅ଶ,, 𝑅ଷ,).

3. Set:
(a) 𝑠ఈ, = 𝑟ఈ, + 𝑐 ⋅ 𝛼mod 𝑝, 𝑠ఉ, = 𝑟ఉ, + 𝑐 ⋅ 𝛽mod 𝑝,
(b) 𝑠௫, = 𝑟௫, + 𝑐 ⋅ 𝑥mod 𝑝, 𝑠௬, = 𝑟௬, + 𝑐 ⋅ 𝑦mod 𝑝,
(c) 𝑠௭, = 𝑟௭, + 𝑐 ⋅ 𝑧mod 𝑝 where 𝑦 = 𝑥 ⋅ 𝛽mod 𝑝, 𝑧 = 𝑥 ⋅ 𝛼 + 𝑈𝐾mod 𝑝.

4. Obtain the group signature σ as (𝑇ଵ,, 𝑇ଶ,, 𝑇ଷ,, 𝑐, 𝑠ఈ,, 𝑠ఉ,, 𝑠௫,, 𝑠௬,, 𝑠௭,).

ACS verifies the group signature：

1. Compute 𝑅ଵ, = 𝐾௦ೌ, ⋅ 𝑇ଵ,ି,𝑅ଶ, = 𝐾௦ഁ, ⋅ 𝑇ଶ,ି,
(a) 𝑅ଷ, = 𝑒(𝑇ଷ, ⋅ 𝐻ଵି ௦ഀ, ⋅ 𝐻ଶି ௦ഁ,, 𝑊) ⋅ 𝑒(𝑇ଷ,௦ೣ, ⋅ 𝐻ଵି ௦, ⋅ 𝐻ଶି ௦, ⋅ 𝐺ଵି , 𝐺ଶ).

2. Check 𝑐 ?← 𝐻𝑎𝑠ℎ(𝑀, 𝑇ଵ,, 𝑇ଶ,, 𝑇ଷ,, 𝑅ଵ,, 𝑅ଶ,, 𝑅ଷ,)

Figure 3. New user joining procedure.

Sensors 2019, 19, 1513 9 of 23

The user Ui generates the user-key UKi, sending the knowledge proof NIZKPEqDL to the ACS.
The ACS generates group member certificate UCerti = (Ai, xi) for Ui, and sends the knowledge proof
NIZKPoKDL and the left half of UCerti namely Ai to Ui. After Ui verifies that the knowledge proof
is valid, he signs Ai with his private key uski as Si = Signuski

(Ai), then sends that and the personal
certificate Certi to the ACS. The ACS judge the validity of Certi, on success, it verifies the signature Si
with the public key upki of Certi. If the signature is valid, the ACS registers Ui in the group information
database, stores the signature, and sends the right half of the certificate xi to Ui. After verification,
the user saves his group member certificate.

4.2.3. Sign and Verify

After the user Ui joins a group, he obtains the group member certificate and the user-key, and can
generate group signatures to prove his group membership without revealing his personal identity.
The procedure of generating and verifying the group signature is as follows:

Ui generates the group signature:

1. Randomly chooses αn, βn ∈ Zp, then computes:

(a) T1,n = Kαn , T2,n = Kβn , T3,n = Ai · Hαn
1 · H

βn
2 .

2. Prove the knowledge of {αn, βn, UCerti}: randomly chooses rα,n, rβ,n, rx,n, ry,n, rz,n ∈R Zp; computes:

(a) R1,n = Krα,n , R2,n = Krβ,n , R3,n = e(Trx,n
3,n · H

−rz,n
1 · H−ry,n

2 , G2) · e(H−rα,n
1 , W) · e(H

−rβ,n
2 , W),

(b) cn = Hash(Mn, T1,n, T2,n, T3,n, R1,n, R2,n, R3,n).

3. Set:

(a) sα,n = rα,n + cn · αnmod p, sβ,n = rβ,n + cn · βnmod p,

(b) sx,n = rx,n + cn · ximod p, sy,n = ry,n + cn · ynmod p,
(c) sz,n = rz,n + cn · znmod p where yn = xi · βnmod p, zn = xi · αn + UKimod p.

4. Obtain the group signature σ as
(
T1,n, T2,n, T3,n, cn, sα,n, sβ,n, sx,n, sy,n, sz,n

)
.

ACS verifies the group signature:

1. Compute R1,n = Ksa,n · T−cn
1,n , R2,n = Ksβ,n · T−cn

2,n ,

(a) R3,n = e(Tcn
3,n · H

−sα,n
1 · H−sβ,n

2 , W) · e(Tsx,n
3,n · H

−sz,n
1 · H−sy,n

2 · G−cn
1 , G2).

2. Check cn
?← Hash(Mn, T1,n, T2,n, T3,n, R1,n, R2,n, R3,n)

4.2.4. User Revokation

User revocations occur when a user’s service subscriptions expire or behaviors violate network
access policies. Instead of broadcasting revocation message to all unregistered users, the ACS invokes
the smart contract to publish revocation transactions, which not only prevents the revocation message
from being replayed or hijacked by the adversaries, but also reduces the revocation cost. Assume that
a user with UCerr = (Ar, xr) is to be revoked. The revocation process is shown in Figure 4. The ACS
updates the group public key and invokes the smart contract to publish the revocation transaction.
After the unrevoked user Ui listens to the revocation transaction, he updates the local group public
key. Based on the updated group public key and revocation parameter xr in revocation transaction, Ui
calculates the new group member certificate Ãi and signs it with private key uski.Then Ui sends the
signature of Ãi to the ACS. After verifying that the signature is valid, the ACS updates the signature of
Ui in the group information database.

Sensors 2019, 19, 1513 10 of 23

Sensors 2019, 19, x FOR PEER REVIEW 10 of 24

4.2.4. User Revokation

User revocations occur when a user’s service subscriptions expire or behaviors violate network
access policies. Instead of broadcasting revocation message to all unregistered users, the ACS invokes
the smart contract to publish revocation transactions, which not only prevents the revocation message
from being replayed or hijacked by the adversaries, but also reduces the revocation cost. Assume that
a user with 𝑈𝐶𝑒𝑟 = (𝐴, 𝑥) is to be revoked. The revocation process is shown in Figure 4. The ACS
updates the group public key and invokes the smart contract to publish the revocation transaction.
After the unrevoked user 𝒰 listens to the revocation transaction, he updates the local group public
key. Based on the updated group public key and revocation parameter 𝑥 in revocation transaction, 𝒰 calculates the new group member certificate 𝐴ሚ and signs it with private key 𝑢𝑠𝑘.Then 𝒰 sends
the signature of 𝐴ሚ to the ACS. After verifying that the signature is valid, the ACS updates the
signature of 𝒰 in the group information database.

𝓤𝒊
ACS

Phase2: update the signature
①Update local group public key
②Update the group member certificate: 𝐴ሚ = (𝐺෨ଵ ⋅ 𝐻෩ଵ ⋅ 𝐴ି ଵ)ଵ/(௫ି௫ೝ)
③Check 𝑒(𝐺෨ଵ, 𝐺෨ଶ) ?← 𝑒(𝐴ሚ, 𝑊෩) ⋅ 𝑒(𝐴ሚ௫ ⋅ 𝐻෩ଵି , 𝐺෨ଶ)
④Sign 𝐴ሚ: 𝑆ప෩ = Sign௨௦(𝐴ప෩)

trans(𝑔𝑝𝑘෪ , 𝑈𝐶𝑒𝑟)

 𝑆ప෩

Phase1: update the group public key
①Compute: 𝐺ଵ∗ = 𝐺ଵଵ/(ା௫ೝ), 𝐾∗ = 𝐾ଵ/(ା௫ೝ) 𝐻ଵ∗ = 𝐻ଵଵ/(ା௫ೝ), 𝐻ଶ∗ = 𝐻ଶଵ/(ା௫ೝ) 𝐺ଶ∗ = 𝐺ଶଵ/(ା௫ೝ), 𝑊∗ = 𝐺ଶ ⋅ (𝐺ଶ∗)ି௫ೝ 𝑔𝑝𝑘෪ = {𝔾ଵ, 𝔾ଶ, 𝔾௧, 𝑒, 𝜓; 𝐺ଵ∗, 𝐾∗, 𝐻ଵ∗, 𝐻ଶ∗; 𝐺ଶ∗, 𝑊∗; 𝑔, 𝑛; 𝐸ௌ}

Phase3: update user signature
①Computes 𝐶ሚ = 𝐶ଵ/(ା௫ೝ) 𝐴ሚ = (𝐺෨ଵ ⋅ 𝐶ሚ ⋅ 𝐴ି ଵ)ଵ/(௫ି௫ೝ)
②𝐶 = 𝐶ሚ, 𝐴 = 𝐴ሚ

Figure 4. User revocation procedure.

4.2.5. Accountability and Disputes Resolution

If the user behavior violates the network access policy, the accountability phase is to be carried
out. Different from the traditional accountability mechanism, this paper proposes a novel
accountability mechanism based on blockchain as shown in Figure 5.

Figure 5. Accountability procedure in the proposed model.

Figure 4. User revocation procedure.

4.2.5. Accountability and Disputes Resolution

If the user behavior violates the network access policy, the accountability phase is to be carried out.
Different from the traditional accountability mechanism, this paper proposes a novel accountability
mechanism based on blockchain as shown in Figure 5.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 24

4.2.4. User Revokation

User revocations occur when a user’s service subscriptions expire or behaviors violate network
access policies. Instead of broadcasting revocation message to all unregistered users, the ACS invokes
the smart contract to publish revocation transactions, which not only prevents the revocation message
from being replayed or hijacked by the adversaries, but also reduces the revocation cost. Assume that
a user with 𝑈𝐶𝑒𝑟 = (𝐴, 𝑥) is to be revoked. The revocation process is shown in Figure 4. The ACS
updates the group public key and invokes the smart contract to publish the revocation transaction.
After the unrevoked user 𝒰 listens to the revocation transaction, he updates the local group public
key. Based on the updated group public key and revocation parameter 𝑥 in revocation transaction, 𝒰 calculates the new group member certificate 𝐴ሚ and signs it with private key 𝑢𝑠𝑘.Then 𝒰 sends
the signature of 𝐴ሚ to the ACS. After verifying that the signature is valid, the ACS updates the
signature of 𝒰 in the group information database.

𝓤𝒊
ACS

Phase2: update the signature
①Update local group public key
②Update the group member certificate: 𝐴ሚ = (𝐺෨ଵ ⋅ 𝐻෩ଵ ⋅ 𝐴ି ଵ)ଵ/(௫ି௫ೝ)
③Check 𝑒(𝐺෨ଵ, 𝐺෨ଶ) ?← 𝑒(𝐴ሚ, 𝑊෩) ⋅ 𝑒(𝐴ሚ௫ ⋅ 𝐻෩ଵି , 𝐺෨ଶ)
④Sign 𝐴ሚ: 𝑆ప෩ = Sign௨௦(𝐴ప෩)

trans(𝑔𝑝𝑘෪ , 𝑈𝐶𝑒𝑟)

 𝑆ప෩

Phase1: update the group public key
①Compute: 𝐺ଵ∗ = 𝐺ଵଵ/(ା௫ೝ), 𝐾∗ = 𝐾ଵ/(ା௫ೝ) 𝐻ଵ∗ = 𝐻ଵଵ/(ା௫ೝ), 𝐻ଶ∗ = 𝐻ଶଵ/(ା௫ೝ) 𝐺ଶ∗ = 𝐺ଶଵ/(ା௫ೝ), 𝑊∗ = 𝐺ଶ ⋅ (𝐺ଶ∗)ି௫ೝ 𝑔𝑝𝑘෪ = {𝔾ଵ, 𝔾ଶ, 𝔾௧, 𝑒, 𝜓; 𝐺ଵ∗, 𝐾∗, 𝐻ଵ∗, 𝐻ଶ∗; 𝐺ଶ∗, 𝑊∗; 𝑔, 𝑛; 𝐸ௌ}

Phase3: update user signature
①Computes 𝐶ሚ = 𝐶ଵ/(ା௫ೝ) 𝐴ሚ = (𝐺෨ଵ ⋅ 𝐶ሚ ⋅ 𝐴ି ଵ)ଵ/(௫ି௫ೝ)
②𝐶 = 𝐶ሚ, 𝐴 = 𝐴ሚ

Figure 4. User revocation procedure.

4.2.5. Accountability and Disputes Resolution

If the user behavior violates the network access policy, the accountability phase is to be carried
out. Different from the traditional accountability mechanism, this paper proposes a novel
accountability mechanism based on blockchain as shown in Figure 5.

Figure 5. Accountability procedure in the proposed model. Figure 5. Accountability procedure in the proposed model.

The scheme in this paper divides open-key into two parts, which are generated and saved by two
different entities. To reveal the identity of the signer, two parts of the open-key are needed to participate
in the calculation separately, and two intermediate results are used to calculate in the next step to
get the group member certificate of the signer. To avoid cheating, the two arbitration entities need to
submit a commitment to the blockchain first. By taking advantage of the transparent and irreversible
properties of the blockchain, the two entities can’t modify their commitments after submitting them.
After the both parties submit their commitments, they can disclose their respective calculation results.
Then, the ACS calculates the group member certificate of the signer with the two results and announce
it by the blockchain. Anyone can verify the correctness of the accountability result.

Specifically, the accountability procedure is as follows:

1. The ACS calculates V1 = T−ξ1
1,n = H−αn

1 with the partial open-key ξ1, and calculates the hash

value h(V1) of V1. Similarly, the LA calculates V2 = T−ξ2
2,n = H−βn

2 with the partial open-key ξ2,

Sensors 2019, 19, 1513 11 of 23

and calculates the hash value h(V2) of V2. Then they invoke the smart contract to publish the
h(V1), h(V2) as commitments to the blockchain respectively.

2. When the ACS and the LA detect that both sides have submitted their commitments, they then
invoke smart contract to submit respective calculation value V1, V2. After that, the ACS computes
group member certificates of signer As = T3,n ×V1 ×V2, and publishes it to the blockchain.

3. ACS finds the real identity and the corresponding signature Signusk(As) of As in the group
information database to punish the misbehaving user.

4.3. Access Control Protocol

In this part, we introduce the access control protocol of our model. We enhance the Hidra protocol
with unlinkability and anonymity of protocol messages. The enhanced Hidra protocol is shown in
Figure 6 and Table 3 presents the terms used as abbreviations and the notation, while Table 4 records
the specific content of each message. Each phase in the protocol is described in detail below.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 24

𝐸 = 𝑒 × 𝐾. 𝒰 generates request message 𝑀 including group identity 𝐺𝐼𝐷 , TGS identity 𝐼𝐷்ீௌ, TGT validity term 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒ଵ, the OTBA 𝐵𝐶𝐴𝑑𝑑𝑟 and the ECDH public key 𝐸 used to
establish a session key with the ACS.

2. Sign 𝑀 as group signature 𝜎. Pack 𝜎 and 𝑀 as a BC_AS_REQ transaction, destined for the
ACS through the blockchain.

User

Blockchain Network

ACS Sensor node

(1) BC_AS_REQ

(2) BC_AS_REP

(3) HID_TGS_REQ

(4) HID_TGS_IND

(4.1) HID_S_IND_REQ

(4.2) HID_S_IND_REP

(5) HID_TGS_REP

(6) HID_U_S_REQ

(7) HID_U_S_REP

(8) HID_S_IND

(9) HID_S_ACK

IEEE 802.15.4 network

The authentication phase

The authorisation phase

The service access phase

The auditing phase

Figure 6. The enhanced Hidra architecture and message exchanges.

Table 4. Details of the content of enhanced Hidra messages.

Message Direction Content

BC_AS_REQ 𝑈 → 𝐵𝐶 𝑀||𝜎
M={𝐺𝐼𝐷||𝐼𝐷்ீௌ||𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒ଵ||𝐵𝐶𝐴𝑑𝑑𝑟||𝐸}

BC_AS_REP 𝐴𝑆 → 𝐵𝐶
𝐺𝐼𝐷||{𝑇𝑖𝑐𝑘𝑒𝑡்ீௌ||𝐾,்ீௌ||𝑁𝑜𝑛𝑐𝑒,்ீௌ||𝐼𝐷்ீௌ||𝐼𝐷}𝐸𝑆𝐾,ௌ 𝑇𝑖𝑐𝑘𝑒𝑡்ீௌ = {𝐾,்ீௌ||𝐼𝐷||𝑁𝑜𝑛𝑐𝑒,்ீௌ}𝐾்ீௌ

HID_TGS_REQ 𝑈 → 𝑇𝐺𝑆
𝐼𝐷ௌ||𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒ଶ||𝑁𝑜𝑛𝑐𝑒ଵ||𝑇𝑖𝑐𝑘𝑒𝑡்ீௌ||𝐴𝑢𝑡ℎ𝑁்ீௌ 𝑇𝑖𝑐𝑘𝑒𝑡்ீௌ = {𝐾,்ீௌ||𝐼𝐷||𝑁𝑜𝑛𝑐𝑒,்ீௌ}𝐾்ீௌ 𝐴𝑢𝑡ℎ𝑁்ீௌ = {𝐼𝐷||𝑁𝑜𝑛𝑐𝑒,்ீௌ + 𝑖}𝐾,்ீௌ

HID_TGS_IND 𝑇𝐺𝑆 → 𝑆

𝐼𝐷ௌ||𝑎𝑛𝑜𝑛@𝑎𝑛𝑜𝑛||𝑁𝑜𝑛𝑐𝑒,ௌ||𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒ଶ||𝐾ௌ,்ீௌ ||𝐴𝑢𝑡ℎ𝑍||𝑃𝐴 − 𝑃𝑅𝐼𝑉||𝑀𝐴𝐶 AuthZ = {𝑃𝑜𝑙𝑖𝑐𝑦ோ}𝐾ோ 𝑃𝐴 − 𝑃𝑅𝐼𝑉 = {𝑁𝑜𝑛𝑐𝑒,ௌ||𝐼𝐷}𝐾ௌ 𝑀𝐴𝐶 = {𝐾ௌ, 𝐼𝐷||𝑁𝑜𝑛𝑐𝑒,ௌ||𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒ଶ||𝐾ௌ,்ீௌ ||𝐴𝑢𝑡ℎ𝑍}
HID_S_IND_REQ 𝑆 → 𝑇𝐺𝑆 𝐼𝐷ௌ||𝑁𝑜𝑛𝑐𝑒ଶ||𝑀𝐴𝐶(𝐾ௌ, 𝐼𝐷ௌ||𝑁𝑜𝑛𝑐𝑒ଶ)
HID_S_IND_REP 𝑇𝐺𝑆 → 𝑆 𝐼𝐷ௌ||𝐾ௌ,்ீௌାଵ ||𝑀𝐴𝐶(𝐾ௌ, 𝐼𝐷ௌ||𝑁𝑜𝑛𝑐𝑒ଶ||𝐾ௌ,்ீௌାଵ)

HID_TGS_REP 𝑇𝐺𝑆 → 𝑈

𝑎𝑛𝑜𝑛@𝑎𝑛𝑜𝑛||𝐹𝑎𝑘𝑒 − 𝑇𝑖𝑐𝑘𝑒𝑡𝑠ௌ ||{𝐾,ௌ||𝑁𝑜𝑛𝑐𝑒,ௌ||𝑁𝑜𝑛𝑐𝑒ଵ||𝐼𝐷ௌ}𝐾,்ீௌ|| 𝑃𝐴 − 𝑃𝑅𝐼𝑉 𝐹𝑎𝑘𝑒 − 𝑇𝑖𝑐𝑘𝑒𝑡ௌ = {𝐹𝑙𝑎𝑔ி ||𝑖𝑛𝑣𝑎𝑙𝑖𝑑 − 𝑑𝑎𝑡𝑎} 𝑃𝐴 − 𝑃𝑅𝐼𝑉 = {𝑁𝑜𝑛𝑐𝑒ଵ||𝑃𝐴 − 𝑆𝑅 − 𝑇𝐺𝑇 ||𝑃𝐴 − 𝑇𝐼𝐶𝐾𝐸𝑇}𝐾,்ீௌ 𝑃𝐴 − 𝑆𝑅 − 𝑇𝐺𝑇 = {𝐾,்ீௌ||𝐼𝐷||𝑁𝑜𝑛𝑐𝑒,்ீௌ}𝐾்ீௌ 𝑃𝐴 − 𝑇𝐼𝐶𝐾𝐸𝑇={𝐾,ௌ||𝐼𝐷||𝑁𝑜𝑛𝑐𝑒,ௌ||𝐴𝑡𝑡𝑟 ||𝐴𝑡𝑡𝑟}𝐾ௌ

HID_U_S_REQ 𝑈 → 𝑆
𝑇𝑖𝑐𝑘𝑒𝑡ௌ||𝐴𝑢𝑡ℎ𝑁ௌ||𝑁𝑜𝑛𝑐𝑒ଷ 𝑇𝑖𝑐𝑘𝑒𝑡ௌ = {𝐾,ௌ||𝐼𝐷||𝑁𝑜𝑛𝑐𝑒,ௌ||𝐴𝑡𝑡𝑟 ||𝐴𝑡𝑡𝑟}𝐾ௌ 𝐴𝑢𝑡ℎ𝑁ௌ = {𝐼𝐷||𝑁𝑜𝑛𝑐𝑒,ௌ||𝑆𝑢𝑏𝑘𝑒𝑦}𝐾,ௌ

HID_U_S_REP 𝑆 → 𝑈 {𝑁𝑜𝑛𝑐𝑒,ௌ||𝑆𝑢𝑏𝑘𝑒𝑦||𝑁𝑜𝑛𝑐𝑒ଷ}𝐾,ௌ

HID_S_IND 𝑆 → 𝐴𝐶𝑀
𝐼𝐷ௌ||{𝑁𝑜𝑛𝑐𝑒ସ||𝐼𝐷||𝐿𝑜𝑔,ௌ}𝐾ௌ 𝐿𝑜𝑔,ௌ = {𝐼𝐷||𝐼𝐷ோ||𝐼𝐷||𝑇𝐼𝑀𝐸||𝑁𝑜𝑛𝑐𝑒ହ + 𝑖}

HID_S_ACK 𝐴𝐶𝑀 → 𝑆 𝐼𝐷ௌ||𝑁𝑜𝑛𝑐𝑒ସ||𝑀𝐴𝐶(𝐾ௌ, 𝐼𝐷ௌ||𝑁𝑜𝑛𝑐𝑒ସ)

The ACS.AS keeps listening for any transactions destined to it. Once the AS finds a target
transaction 𝑇𝑎𝑛𝑠, it extracts the group signature 𝜎 and transfer it to the GSV for verification. On
success, the AS generates a temporary identity 𝐼𝐷 for the requester which is only valid within the
TGT lifetime 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒ଵ, and store it in the active connections information database. The AS provides
the requester with TGT, 𝐼𝐷 and the instance of the key 𝐾,்ீௌ to communicate with the ACS.TGS
by means of the BC_AS_REP message. One is encrypted with the 𝐸𝑆𝐾,ௌ = 𝐸 × 𝑒ௌ.

Figure 6. The enhanced Hidra architecture and message exchanges.

Table 3. Terminology and Notation agreement.

Expression Description

U Registered user
BC Blockchain
AS Authentication server
TGS Ticket granting server
S Sensor node
σ Group signature
GIDj Group identity
BCAddrX Blockchain address of entity X
EX ECDH public key of entity X, used to establish session key with the communication partner
ESKX,Y Temporary session key based on ECDH between X and Y
KX,Y Secret key shared between entities X and Y
KX Secret key of entity X shared with the ACS

Ki
X,Y

i-th value of a one-way key chain used to provide freshness in the communication between
entities X and Y

Subkey Session key shared between the user and the target sensor node

Sensors 2019, 19, 1513 12 of 23

Table 4. Details of the content of enhanced Hidra messages.

Message Direction Content

BC_AS_REQ U → BC
M||σ
M={GIDj||IDTGS||Li f etime1||BCAddrU ||EU}

BC_AS_REP AS→ BC GIDj

∣∣∣∣∣∣{TicketTGS||KU,TGS||NonceU,TGS||IDTGS||IDU}ESKU,ACS

TicketTGS = {KU,TGS||IDU ||NonceU,TGS}KTGS

HID_TGS_REQ U → TGS
IDS||li f etime2||Nonce1||TicketTGS||AuthNTGS
TicketTGS = {KU,TGS||IDU ||NonceU,TGS}KTGS
AuthNTGS = {IDU ||NonceU,TGS + i}KU,TGS

HID_TGS_IND TGS→ S

IDS||anon@anon||NonceU,S||Li f etime2||Ki
S,TGS||AuthZ||PA− PRIV

∣∣∣∣∣∣MAC
AuthZ = {PolicyR}KR
PA− PRIV = {NonceU,S||IDU}KS

MAC = {KS, IDU ||NonceU,S||Li f etime2

∣∣∣∣∣∣Ki
S,TGS

∣∣∣∣∣∣AuthZ}
HID_S_IND_REQ S→ TGS IDS||Nonce2||MAC(KS, IDS||Nonce2)

HID_S_IND_REP TGS→ S IDS

∣∣∣∣∣∣Ki+1
S,TGS

∣∣∣∣∣∣MAC(KS, IDS||Nonce2||Ki+1
S,TGS)

HID_TGS_REP TGS→ U

anon@anon||Fake− TicketsS ||{KU,S||NonceU,S||Nonce1||IDS}KU,TGS||
PA− PRIV
Fake− TicketS = {FlagF ||invalid− data}
PA− PRIV = {Nonce1||PA− SR− TGT ||PA− TICKET}KU,TGS
PA− SR− TGT = {KU,TGS||IDU ||NonceU,TGS}KTGS
PA− TICKET={KU,S||IDU ||NonceU,S||AttrG||AttrC}KS

HID_U_S_REQ U → S
TicketS||AuthNS||Nonce3
TicketS = {KU,S||IDU ||NonceU,S||AttrG||AttrC}KS
AuthNS = {IDU ||NonceU,S||Subkey}KU,S

HID_U_S_REP S→ U {NonceU,S||Subkey||Nonce3}KU,S

HID_S_IND S→ ACM IDS||{Nonce4||IDPol ||LogU,S}KS
LogU,S = {IDU ||IDR||IDA||TIME||Nonce5 + i}

HID_S_ACK ACM→ S IDS||Nonce4||MAC(KS, IDS||Nonce4)

4.3.1. The Authentication Phase

In the authentication phase, the user Ui generates group signature to authenticate himself against
the ACS.AS. The AS can only check whether the requester is a member of the corresponding group,
but not specialize which user in the group. If the above check succeeds, the AS issues the TGT to the
requester through the blockchain. The operations at this phase are as following:

1. The user Ui generates the one-time blockchain address (OTBA) BCAddrU , chooses a radom
eU ∈ Z∗p as the ECDH private key, and calculates the corresponding ECDH public key
EU = eU × K. Ui generates request message Mn including group identity GIDj, TGS identity
IDTGS, TGT validity term Li f etime1, the OTBA BCAddrU and the ECDH public key EU used to
establish a session key with the ACS.

2. Sign Mn as group signature σn. Pack σn and Mn as a BC_AS_REQ transaction, destined for the
ACS through the blockchain.

The ACS.AS keeps listening for any transactions destined to it. Once the AS finds a target
transaction Tansn, it extracts the group signature σn and transfer it to the GSV for verification.
On success, the AS generates a temporary identity IDU for the requester which is only valid within the
TGT lifetime Li f etime1, and store it in the active connections information database. The AS provides
the requester with TGT, IDU and the instance of the key KU,TGS to communicate with the ACS.TGS by
means of the BC_AS_REP message. One is encrypted with the ESKU,ACS = EU × eACS.

4.3.2. The Authorization Phase

After the previous phase, the user Ui acquired TGT and his temporary identity IDU , while no
one can know his real identity, including the ACS. At this phase, users apply for service tickets by
sending HID_TGS_REQ messages to ACS.TGS. In order to support the unlinkability of service access,
two mechanisms are used to modify the HID_TGS_REP message which TGS responds to the requester,
self-renewal TGT mechanism and fake ticket mechanism. Regarding the former, the TGS generates

Sensors 2019, 19, 1513 13 of 23

a new TGT for the requester. The updated TGT ticket is encrypted with the TGT Self-Renewal Key
(TSRK), which is preset or randomly generated by the ACS. The new TGT ticket is embedded in a new
type of padata field called PA-SR-TGT and carried in the PA-PRIV padata field of the HID_TGS_REP
message. To implement the fake ticket mechanism, the original service ticket field is filled with invalid
numbers, and the real service ticket is embedded in a new padata field called PA-TICKET, which is
included in PA-PRIV padata. PA-PRIV provides integrity, confidentiality and anti-replay attacks, so
the adversaries cannot establish any relationship with the subsequent message exchanges.

4.3.3. The Service Access Phase and The Auditing Phase

After the user Ui acquires the service ticket, he can initiate a service request to the RCD and send
the service ticket to the target device through the message HID_U_R_REQ. After the device verifies
that the service ticket is valid, it can be determined that the requester has been authenticated and
authorized, and the message HID_U_S_REP is sent to respond to the requester to establish a security
association. For further service requests, and local conditions specified in the related policy instance
to make a local decision to grant access. In the subsequent service providing process, the device and
the requester use session key Subkey in message HID_U_R_REQ to protect E2E data communication.
In addition, each service access request will trigger the message HID_S_IND to send the access log
(under which policies IDPol , who IDU , at what time TIME, which services IDR and what actions
IDA have been performed) to the ACS.ACM. After receive the message, the ACM associates the log
with the requester’s group signature according to the requester’s temporary identity in the message,
and stores the entry for recording, tracking, bookkeeping and further auditing purposes. After
receiving the message HID_S_ACK returned by the ACM, the device deletes the log cache to prevent
storage overflow.

4.4. Smart Contract Design

This section mainly introduces the relevant interface and algorithm logic in the smart contract
used in the paper. Blockchain plays three main roles in the model: as a group public key management
and publishing platform, as an intermediate platform for message exchanges between the ACS and
users in the authentication phase, and opening accountability process to resolve potential disputes.
Among them, the message exchanges does not require the smart contract, therefore the smart contract
in our model implements two functions: group public key management and accountability process
publicity. We design an smart contract GroupManager and three function interfaces in the contract:

IssueGroupPublicKey (groupID, groupPublicKey): This function can only be executed by the
contract deployer, that is, the ACS. The ACS publishes the group public key to the blockchain as shown
in Algorithm 1.

Algorithm 1 IssueGroupPublicKey

Input: groupID, groupPublicKey
Output: bool
1: if msg.sender is not AccessControlServer
2: return false;
3: end if
4: add groupID to Groups collection
5: mapping groupPublicKey to groupID
6: return true;

userRevoke(groupID, uCert, newGroupPublicKey): This function can only be executed by the
ACS. When a user is revoked, the ACS publishes the group member certificate of the revoked user and
the updated group public key to the blockchain as shown in Algorithm 2.

Sensors 2019, 19, 1513 14 of 23

Algorithm 2 UserRevoke

Input: groupID, uCert, newGroupPublicKey
Output: bool
1: if msg.sender is not AccessControlServer then
2: return false;
3: end if
4: RevokedCert← uCert
5: mapping newGroupPublicKey to groupID
6: return true;

Accountability (txid, signature, result/commitment, operating): This function can only be
called by the ACS and the LA. As described in Algorithm 3, the corresponding operations
include: createAccInst, submitCommitment, submitResult and submitSignerCert. To open a group
signature, the ACS calls contract and perform the createAccInst operation to create an accountability
instance and adds it to the accountability list AccList. The AccList is the mapping of blockchain
transaction ID txid to the accountability instance. The parameter txid corresponds to the ID of the
requesting transaction BC_AS_REQ where the group signature embedded needs to be accountable.
The submitCommitment and the submitResult are performed to submit the commitment and median
result respectively. The submitSignerCert can only be executed by the ACS to announce the signer’s
group member certificate.

Algorithm 3 Accountability

Input: txid, signature, result/commitment, operating
Output: null
1: if operating is creatAccInst and msg.sender is ACS then
2: create and initialization newAccInst and
3: mapping newAccInst to txid: AccList[txid]← signature, ACS_Commitment
4: else if operating is submitCommitment and msg.sender is LA then
5: AccList[txid]← LA_commitment
6: else if operating is submitResult and msg.sender is ACS and HASH(ACS_result) equal to ACS_commitment
then
7: AccList[txid]← ACS_result
8: else if operating is submitResult and msg.sender is LawAuthorith and HASH(LA_result) equal to
LA_commitment then
9: AccList[txid]← LA_result
10: else if operating is submitSignerCert and msg.sender is ACS and LA_result, ACS_result have been
assigned then
11: AccList[txid]← signerCert
12: end if

5. Security Analysis

5.1. Resisting Privacy Attacks

In order to prevent the user privacy information from being analyzed and refined, it is necessary
to ensure user anonymity and service access untraceability.

User anonymity is implemented by the group signature mechanism. The eavesdropper can
only capture which group the authentication information is coming from, but not which member
of the group. After authentication, the user obtains the temporary identity issued by the ACS and
executes the subsequent protocol process with it. Temporary identity is encrypted in the whole
process of the protocol so that it cannot be acquired by the adversaries. Therefore, in the later
phase, the adversaries can neither know the identity of the requester nor which group the requester

Sensors 2019, 19, 1513 15 of 23

comes from. The temporary identity is valid only for the lifetime of the TGT ticket, and after that,
the temporary identity entry will be deleted from the database.

To ensure the service access untraceability, it is necessary to achieve: (1) a user’s multiple requests
at the same phase are unlinkable. (2) A user’s requests at different phase are unlinkable. For the
first requirement, because the group signature scheme introduced in this model has the property of
unlinkable, so that the two signatures generated by the same user cannot be linked. In the authorization
phase, the self-renewed TGTs prevent the authorization request messages from being linked. For the
second requirement, the ACS encrypts the requester’s temporary identity and the TGT ticket using
the temporary session key based on ECDH in the authentication phase. Therefore, adversaries can’t
get those information to associate the authentication request message with the authorization request
message. In order to ensure the unlinkability between authorization request process and service access
process, fake ticket mechanism is introduced in the authorization response message, real ticket is
transported by PA-PRIV field which guarantees the freshness, confidentiality and integrity of the
message. Therefore, the second goal can be implemented.

For the particularity of the role of the ACS (generates and issues the temporary identity for
requesters), within a TGT lifetime, it can know which service requests come from the same user, but
not the user’s identity.

5.2. Resisting to Replay Attacks

Users use the OTBA to send authentication request transactions, and the OTBA are embeded
in messages that need to be signed. If an adversaries wants to replay the transaction, he must use
the same blockchain address. According to the commonly used address generation algorithm of
blockchain platform [38,39], it is computationally infeasible to replay messages by collision addresses.
Every time users generate the authorization request, they increase NonceC,TGS by i. If the value
received by the ACS is lower than the expected value, the request message is considered invalid. If
the value is valid, the ACS uses the {NonceC,TGS + i} update database to resist the replay attack of
HID_TGS_REQ message.

A one-way key mechanism is used to prevent message HID_TGS_IND from being replayed.
One-way key function has the properties that forward computing (that is, to obtain KL−1 given KL)
is easy and backward computing(that is, to obtain KL+1 given KL) is unfeasible. Before sending a
message HID_TGS_IND to the node for the first time, ACS will preset a key chain with a length of N
[K1

s,cm . . . KN
S,CM]. Each subsequent message HID_TGS_IND is embedded in the next value of the key

chain in sequence. According to the properties of one-way function, if a node calculates the function
value F

(
Ki

S,TGS

)
corresponding to the embedded Ki

S,TGS in the message equal to the last value Ki−1
S,TGS

of the key chain stored locally, it can confirm that the message is fresh. The first time a node receives a
message HID_TGS_IND, it needs to exchange a pair of messages HID_S_IND_REQ/REP with ACS to
get the value Ki−1

S,TGS for validation. In HID_U_S_REQ message, the service ticket itself is disposable,
so it can resist replay attack.

5.3. Resisting to Resource Consumption Attacks

The ACS is a centralized device, so it is vulnerable to resource attacks. An adversary can send a
large number of messages or requests to it in order to consume its resources [40]. In the authentication
phase, if adversaries access the ACS on a large scale simultaneously by generating valid or invalid
signatures, resource consumption attacks will occur. Blockchains are used as an intermediate platform
for message exchanges between users and the ACS. Due to the fully distributed property of blockchain,
attacks on individual nodes will not affect the whole blockchain network, which can effectively resist
resource consumption attacks.

In the authorization phase of the protocol, a legitimate user can use one or more valid IDs to
initiate a large number of request messages, consuming ACS resources. In this phase, the server can

Sensors 2019, 19, 1513 16 of 23

limit the maximum number of requests per user by setting a threshold of NonceC,TGS to prevent users
from launching resource consumption attacks.

5.4. Guarantee the Openness and Transparency of the Accountability Process

In the accountability phase, the traditional method is that the entity holding full open-key gives
the identity of the signer after calculation, as shown in Figure 7. In the APAC model, open-key and
user real identity are stored separately on two different entities: LA and group administrator. After the
group member certificate of the signer is calculated by the LA, the group administrator queries the
real user identity corresponding to the group member certificate in the database, as shown in Figure 8.
In these two accountability mechanisms, only the calculation results given by the entities holding
open-key can be seen from outside, but the accountability process can’t be witnessed. AS publishing
the accountability process is equivalent to publish the open-key, the privacy security of the access
control system will collapse. In the case that entity holding open-key is semi-trusted, the result is
not convincing. There is the possibility that the entity holding open-key colludes with the signer
(or it is the signer itself) to blame other users. The accountability mechanism in this paper divides
open-key into two parts generated and saved by two entities. The two arbitration entities are mutually
reinforcing and cannot unilaterally influence the accountability result. In the process of opening group
signature, both arbitration entities need to submit a commitment to the blockchain before submitting
their own median value, so that the latter submitter cannot designing its own calculation value to
influent the accountability result based on the value of other entity. By taking advantage of transparent
and irreversible properties of the blockchain, the two entities can’t modify their commitments after
submitting them. Assuming that the hash function used in our model is secure enough, the both
entities can’t extract each other’s calculation results from the commitment, so that they can’t design
the results to frame others. What’s more, anyone can witness the accountability process and verify its
correctness. Additionally, because the signer uses the private key representing his true identity to sign
the group member certificate, it can also guarantee the non-repudiation of the signature.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 24

5.4. Guarantee the Openness and Transparency of the Accountability Process

In the accountability phase, the traditional method is that the entity holding full open-key gives
the identity of the signer after calculation, as shown in Figure 7. In the APAC model, open-key and
user real identity are stored separately on two different entities: LA and group administrator. After
the group member certificate of the signer is calculated by the LA, the group administrator queries
the real user identity corresponding to the group member certificate in the database, as shown in
Figure 8. In these two accountability mechanisms, only the calculation results given by the entities holding
open-key can be seen from outside, but the accountability process can’t be witnessed. AS publishing
the accountability process is equivalent to publish the open-key, the privacy security of the access
control system will collapse. In the case that entity holding open-key is semi-trusted, the result is not
convincing. There is the possibility that the entity holding open-key colludes with the signer (or it is
the signer itself) to blame other users. The accountability mechanism in this paper divides open-key
into two parts generated and saved by two entities. The two arbitration entities are mutually
reinforcing and cannot unilaterally influence the accountability result. In the process of opening
group signature, both arbitration entities need to submit a commitment to the blockchain before
submitting their own median value, so that the latter submitter cannot designing its own calculation
value to influent the accountability result based on the value of other entity. By taking advantage of
transparent and irreversible properties of the blockchain, the two entities can’t modify their
commitments after submitting them. Assuming that the hash function used in our model is secure
enough, the both entities can’t extract each other’s calculation results from the commitment, so that
they can’t design the results to frame others. What’s more, anyone can witness the accountability
process and verify its correctness. Additionally, because the signer uses the private key representing
his true identity to sign the group member certificate, it can also guarantee the non-repudiation of
the signature.

Group manager

open-key

Signature ① ②
Signer´s
userID

Figure 7. Traditional accountability procedure.

Law authority

open-key

Signature ① ②
Signer´s

group cert

Database
(Group cert-->userID)

③
Group manager

④
Signer´s
userID

Figure 8. Accountability procedure in APAC model.

6. Performance Evaluation

Extensions proposed in the model inevitably incur additional costs. In this section, we analyze
the performance of the privacy-preserving model and the feasibility of the enhanced Hidra protocol
of eHAPAC.

Figure 7. Traditional accountability procedure.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 24

5.4. Guarantee the Openness and Transparency of the Accountability Process

In the accountability phase, the traditional method is that the entity holding full open-key gives
the identity of the signer after calculation, as shown in Figure 7. In the APAC model, open-key and
user real identity are stored separately on two different entities: LA and group administrator. After
the group member certificate of the signer is calculated by the LA, the group administrator queries
the real user identity corresponding to the group member certificate in the database, as shown in
Figure 8. In these two accountability mechanisms, only the calculation results given by the entities holding
open-key can be seen from outside, but the accountability process can’t be witnessed. AS publishing
the accountability process is equivalent to publish the open-key, the privacy security of the access
control system will collapse. In the case that entity holding open-key is semi-trusted, the result is not
convincing. There is the possibility that the entity holding open-key colludes with the signer (or it is
the signer itself) to blame other users. The accountability mechanism in this paper divides open-key
into two parts generated and saved by two entities. The two arbitration entities are mutually
reinforcing and cannot unilaterally influence the accountability result. In the process of opening
group signature, both arbitration entities need to submit a commitment to the blockchain before
submitting their own median value, so that the latter submitter cannot designing its own calculation
value to influent the accountability result based on the value of other entity. By taking advantage of
transparent and irreversible properties of the blockchain, the two entities can’t modify their
commitments after submitting them. Assuming that the hash function used in our model is secure
enough, the both entities can’t extract each other’s calculation results from the commitment, so that
they can’t design the results to frame others. What’s more, anyone can witness the accountability
process and verify its correctness. Additionally, because the signer uses the private key representing
his true identity to sign the group member certificate, it can also guarantee the non-repudiation of
the signature.

Group manager

open-key

Signature ① ②
Signer´s
userID

Figure 7. Traditional accountability procedure.

Law authority

open-key

Signature ① ②
Signer´s

group cert

Database
(Group cert-->userID)

③
Group manager

④
Signer´s
userID

Figure 8. Accountability procedure in APAC model.

6. Performance Evaluation

Extensions proposed in the model inevitably incur additional costs. In this section, we analyze
the performance of the privacy-preserving model and the feasibility of the enhanced Hidra protocol
of eHAPAC.

Figure 8. Accountability procedure in APAC model.

6. Performance Evaluation

Extensions proposed in the model inevitably incur additional costs. In this section, we analyze
the performance of the privacy-preserving model and the feasibility of the enhanced Hidra protocol
of eHAPAC.

Sensors 2019, 19, 1513 17 of 23

6.1. Performance Evaluation of the Enhanced Hidra Protocol

The enhanced Hidra protocol extends the original Hidra protocol with a self-renewal TGT
mechanism and fake ticket mechanism referring to paper [20]. From the perspective of protocol
performance evaluation, it only increases the length of messages received, sent and the number of
bytes to perform cryptographic operations. In Table 5, we collect the lengths of messages defined in the
enhanced Hidra protocol and the number of bytes that each entity needs to encrypt/decrypted in each
phase. The authentication request message involves the calculation of group signatures, the cost of
this part will be analyzed later. Figure 9 shows the comparison among the enhanced PrivaKERB [20],
the Hidra protocol [24] and the enhanced Hidra protocol in the number of bytes over which each entity
must perform cryptographic operations (including symmetric encryption operations and generating
message authentication code(MAC)) and the total length of messages in each message exchange phase.
Among them, the enhanced PrivaKERB [20] takes the value in Level 3, because the privacy-preserving
requirements of the Level 3 are similar to those of this paper. Additionally, the Hidra and enhanced
PrivaKERB have been validated in C0 RDCs. As can be seen from the Figure 9, for message 3), 5), 6), 9),
10), 11), the number of bytes to perform cryptographic operations on each entity in our enhanced Hidra
protocol is less than or equal to the Hidra and the enhanced PrivaKERB. For message 7), the number
of bytes to perform cryptographic operations on each entity in our protocol is longer than that in
the Hidra, but less than that in the enhanced PrivaKERB. For message 4) and 8), the number of
bytes needed to be encrypted in our protocol is slightly longer than that of the other two protocols.
In Message 4), our protocol only has two bytes more symmetric encryption and two bytes more MAC
operations than the Hidra. For Message 8), our protocol has two bytes more symmetrical encryption
operations in the ACS side and the sensors side than that in the enhanced PrivaKERB. The above
analysis indicates that the increase in protocol message length and cryptographic operations by our
extension of the original Hidra protocol is very small.

Table 5. Lengths of THE enhanced Hidra protocol messages and number of bytes over which each
entity must perform cryptographic operations.

Message Type Length
(Bytes)

Bytes Subject to Cryptographic Operations
User (Bytes) AS (Bytes) TGS (Bytes) ACM (Bytea) Sensor (Bytes)

1)BC_AS_REQ 308 71 71 - - -
2)BC_AS_REP 56 54 82 - - -

3)HID_TGS_REQ 47 10 - 36 - -
4)HID_TGS_IND 45 - - 41 - 41

5)HID_TGS_IND_REQ 14 - - 10 - 10
6)HID_S_IND_REP 22 - - 26 - 26

7)HID_TGS_REP 133 96 - 156 - -
8)HID_U_S_REQ 68 26 - - - 60
9)HID_U_S_REP 32 32 - - - 32
10)HID_S_IND 25 - - - 23 23
11)HID_S_ACK 14 - - - 10 10

Similar to [19,41,42] we estimated the computational energy consumption (E) in the sensor node
by the formula E = U ∗ I∗ t, where U is the voltage in volts (V), I is the current of the circuit in
milliamps (mA), and t is execution time (s). For measuring purposes, the values of U and I are derived
from the Crossbow data sheet of TelosB. The TelosB is a common sensor platform that has an 8 MHz
CPU, 10 KB RAM and 48KB ROM. In active mode of TelosB, U = 3 V and I = 1.8 mA. The execution
time t is calculated by the formula:

t =
LCRYP
RCRYP

where LCRYP is the length of encrypted field, and the RCRYP is the cryptographic operations rate.
The cryptographic operations rate can vary significantly hinging on specific cryptographic algorithm
used, the optimization method used and specific hardware platform [43]. Like [20], We have evaluated
the performance for a broad range of cryptographic operations execution rates, from pessimistic values

Sensors 2019, 19, 1513 18 of 23

to optimistic values. On the other hand, regarding the communication energy consumption, we have
evaluated based on the energy model from Meulenaer et al. [44]. Receiving and transmitting a single
bit of data on TelosB costs 0.81 µJ and 0.72 µJ respectively. Figure 10a,b shows the energy consumption
assessment results on the sensor nodes for establishing a secure session. The impact of encryption rate
and MAC computing rate on energy consumption in our protocol is depicted in Figure 10a. As can be
seen from the figure, the energy computation of sensors even in the worst case, with the lowest MAC
and encryption computation rate, is below 1.2 mJ. In the sensor node powered by AA alkaline batteries,
it can establish a secure connection of about ten million times. The figure also shows that improving the
encryption rate has a greater impact on the reduction of the energy computation than does improving
the MAC computation rate. Figure 10b shows the energy consumption comparison of sensor nodes
among the enhanced Hidra protocol, the enhanced PrivaKERB protocol, the original Hidra protocol
and the APAC protocol in the worst case. Compared with the basic Hidra protocol and the enhanced
PrivaKERB protocol, our protocol enhances security but only adds minimal energy consumption.
Additionally, the energy consumption of our protocol much less than the APAC protocol because the
APAC performs group signature verification on sensors, but our protocol transfers computing burden
to servers and clients. It’s easy to say that our approach is a good choice to implement access control
privacy-preserving in resource-constrained environments.Sensors 2019, 19, x FOR PEER REVIEW 18 of 24

Figure 9. Comparison among enhanced PrivaKERB protocol, Hidra protocol, and enhanced Hidra
protocol in the total length of messages and the number of bytes over which each entity must perform
cryptographic operations.

Similar to [19,41,42] we estimated the computational energy consumption (E) in the sensor node
by the formula 𝐸 = 𝑈 ∗ 𝐼 ∗ t, where U is the voltage in volts (V), I is the current of the circuit in
milliamps (mA), and t is execution time (s). For measuring purposes, the values of U and I are derived
from the Crossbow data sheet of TelosB. The TelosB is a common sensor platform that has an 8 MHz
CPU, 10 KB RAM and 48KB ROM. In active mode of TelosB, U = 3 V and I = 1.8 mA. The execution
time t is calculated by the formula: 𝑡 = 𝐿ோ𝑅ோ

where 𝐿ோ is the length of encrypted field, and the 𝑅ோ is the cryptographic operations rate. The
cryptographic operations rate can vary significantly hinging on specific cryptographic algorithm
used, the optimization method used and specific hardware platform [43]. Like [20], We have
evaluated the performance for a broad range of cryptographic operations execution rates, from
pessimistic values to optimistic values. On the other hand, regarding the communication energy
consumption, we have evaluated based on the energy model from Meulenaer et al. [44]. Receiving
and transmitting a single bit of data on TelosB costs 0.81 μJ and 0.72 μJ respectively. Figure 10a,b
shows the energy consumption assessment results on the sensor nodes for establishing a secure
session. The impact of encryption rate and MAC computing rate on energy consumption in our
protocol is depicted in Figure 10a. As can be seen from the figure, the energy computation of sensors
even in the worst case, with the lowest MAC and encryption computation rate, is below 1.2 mJ. In
the sensor node powered by AA alkaline batteries, it can establish a secure connection of about ten
million times. The figure also shows that improving the encryption rate has a greater impact on the
reduction of the energy computation than does improving the MAC computation rate. Figure 10b
shows the energy consumption comparison of sensor nodes among the enhanced Hidra protocol, the
enhanced PrivaKERB protocol, the original Hidra protocol and the APAC protocol in the worst case.
Compared with the basic Hidra protocol and the enhanced PrivaKERB protocol, our protocol
enhances security but only adds minimal energy consumption. Additionally, the energy

0 20 40 60 80 100 120 140 160 180 200

user
ACS

total length
sensor

ACS
total length

sensor
ACS

total length
sensor

ACS
total length

user
ACS

total length
user

sensor
total length

user
sensor

total length
user

sensor
total length

user
sensor

total length

3)
4)

5)
6)

7)
8)

9)
10

)
11

)

Number of bytes

To
ta

l l
en

gt
h

of
 m

es
sa

ge
s i

n
ea

ch
 m

es
sa

ge
 e

xc
ha

ng
e

ph
as

e
an

d
en

tit
ie

s
in

vo
lv

ed
 in

 e
nc

ry
pt

io
n

op
er

at
io

ns

Figure 9. Comparison among enhanced PrivaKERB protocol, Hidra protocol, and enhanced Hidra
protocol in the total length of messages and the number of bytes over which each entity must perform
cryptographic operations.

Sensors 2019, 19, 1513 19 of 23

Sensors 2019, 19, x FOR PEER REVIEW 19 of 24

consumption of our protocol much less than the APAC protocol because the APAC performs group
signature verification on sensors, but our protocol transfers computing burden to servers and clients.
It's easy to say that our approach is a good choice to implement access control privacy-preserving in
resource-constrained environments.

(a)

(b)

Figure 10. Energy consumption results: (a) impact of the MAC computation rate and the
encryption rate on the energy consumption of sensor nodes; (b) energy consumption
comparison of sensor nodes among enhanced Hidra, enhanced PrivaKERB and Hidra.

In terms of storage, our model does not request implementing complex security mechanisms on
sensor nodes, only involves symmetric encryption and message authentication code (MAC)
calculation. The symmetric-key algorithm widely used in WSNs such as AES, require no more than
2KB RAM, 9KB ROM in TelosB. The widely used MAC algorithms such SHA-1 require no more than
1KB RAM, 6.6KB ROM in TelosB referring to [45]. Additionally, the permanent storage required by
the protocol to store the key, protocol code and temporary log is much smaller than the storage
capacity that the RCD can provide. Assuming that a sensor platform uses the Contiki operating
system (typical configuration requires 2 KB RAM, 40 KB ROM) [46], the storage requirements of the
enhanced Hidra can still be met and therefore the enhanced Hidra can satisfies the feasibility of most
severely C0 RCDs (less than 10KB of data and less than 100 KB of code).

We tested the performance of symmetric encryption and MAC algorithms on Raspberry Pi, the
common hardware platform of the IoT. We choose the Raspberry Pi 3 Model B as the test platform to
run the 128-bit AES and SHA-1 MAC algorithms. As can be seen from Table 6, the time consumed by
encryption is extremely small. Even if the length of encryption is 130 bytes, the time consumed on
encryption is no more than 1 millisecond, while in our protocol the number of bytes needed to be
encrypted on sensor nodes is within 60 at a time.

Table 6. Execution time of AES and SHA-1 on Raspberry Pi 3B.

Item Value
Length of the plaintext (byte) 10 50 90 130

AES encryption Time (ms) 0.5213 0.5220 0.5249 0.5261
AES decryption Time (ms) 0.5471 0.5492 0.5508 0.5529

SHA-1 encryption Time (ms) 0.1360 0.1452 0.1611 0.1713

6.2. Performance Evaluation of the Privacy-Preserving Model

Introducing group signatures increases computational cost on the three entities of the model:
the LA, the ACS and the users, but does not increase any overhead on the RCDs. We use C language
(OpenSSL, PBC, GMP) to implement the calculation process of the privacy-preserving model, in
which the pairing type uses the D type pairing defined by the PBC library. RSA key length is set to
1024 bits, which is considered secure enough for now and immediate future. The SHA-3 hash
algorithm (Keccak 256) is chosen to use in the group signature scheme implementation, which has

Figure 10. Energy consumption results: (a) impact of the MAC computation rate and the encryption
rate on the energy consumption of sensor nodes; (b) energy consumption comparison of sensor nodes
among enhanced Hidra, enhanced PrivaKERB and Hidra.

In terms of storage, our model does not request implementing complex security mechanisms on
sensor nodes, only involves symmetric encryption and message authentication code (MAC) calculation.
The symmetric-key algorithm widely used in WSNs such as AES, require no more than 2KB RAM,
9KB ROM in TelosB. The widely used MAC algorithms such SHA-1 require no more than 1KB RAM,
6.6KB ROM in TelosB referring to [45]. Additionally, the permanent storage required by the protocol to
store the key, protocol code and temporary log is much smaller than the storage capacity that the RCD
can provide. Assuming that a sensor platform uses the Contiki operating system (typical configuration
requires 2 KB RAM, 40 KB ROM) [46], the storage requirements of the enhanced Hidra can still be met
and therefore the enhanced Hidra can satisfies the feasibility of most severely C0 RCDs (less than 10KB
of data and less than 100 KB of code).

We tested the performance of symmetric encryption and MAC algorithms on Raspberry Pi,
the common hardware platform of the IoT. We choose the Raspberry Pi 3 Model B as the test platform
to run the 128-bit AES and SHA-1 MAC algorithms. As can be seen from Table 6, the time consumed
by encryption is extremely small. Even if the length of encryption is 130 bytes, the time consumed
on encryption is no more than 1 millisecond, while in our protocol the number of bytes needed to be
encrypted on sensor nodes is within 60 at a time.

Table 6. Execution time of AES and SHA-1 on Raspberry Pi 3B.

Item Value

Length of the plaintext (byte) 10 50 90 130
AES encryption Time (ms) 0.5213 0.5220 0.5249 0.5261
AES decryption Time (ms) 0.5471 0.5492 0.5508 0.5529

SHA-1 encryption Time (ms) 0.1360 0.1452 0.1611 0.1713

6.2. Performance Evaluation of the Privacy-Preserving Model

Introducing group signatures increases computational cost on the three entities of the model:
the LA, the ACS and the users, but does not increase any overhead on the RCDs. We use C language
(OpenSSL, PBC, GMP) to implement the calculation process of the privacy-preserving model, in which
the pairing type uses the D type pairing defined by the PBC library. RSA key length is set to 1024 bits,
which is considered secure enough for now and immediate future. The SHA-3 hash algorithm
(Keccak 256) is chosen to use in the group signature scheme implementation, which has 256 hash bit
length. The testing process is executed on personal PC (with 2-GB RAM) in Ubuntu 11.04 environment.
We test the time consumption of each phase of our privacy-preserving model at different CPU
frequencies, and show the results in Tables 7 and 8. Some phases have several sub-processes, and the

Sensors 2019, 19, 1513 20 of 23

time consumption of each sub-process is also given in the table, separated by “/”. We compare the
results measured at CPU frequency of 2.0 GHz with the reference model APAC, as shown in Figure 11.

Table 7. Running time for some phases of our privacy-preserving framework.

System Setup
(ACS)

System Setup
(LA)

New User Joining
(ACS: Two Phases)

New User Joining
(User: Three Phases)

Time (CPU = 1.6 GHz) (ms) 74.536 1.325 33.525/0.258 7.192/27.375/21.022
Time (CPU = 1.8 GHz) (ms) 73.456 1.105 29.693/0.231 6.372/24.579/18.694
Time (CPU = 2.0 GHz) (ms) 66.214 1.000 27.358/0.206 5.798/22.028/16.921
Time (CPU = 2.2 GHz) (ms) 63.311 0.939 24.988/0.195 5.516/20.853/15.989
Time (CPU = 2.4 GHz) (ms) 50.464 0.808 23.983/0.189 5.062/19.397/14.688
Time (CPU = 2.6 GHz) (ms) 44.418 0.756 21.654/0.170 4.650/17.818/13.696
Time (CPU = 2.8 GHz) (ms) 43.204 0.728 20.300/0.166 3.978/15.272/11.773
Time (CPU = 3.1 GHz) (ms) 41.501 0.616 18.390/0.147 3.804/14.496/11.111

Table 8. Running time for the remaining phases of our privacy-preserving framework.

Sign
(User)

Signature
Verify (ACS)

User Revocation
(User)

User Revocation
(ACS: Two Phase)

Open (ACS:
Two Phase)

Open
(LA)

Time (CPU = 1.6 GHz) (ms) 4.516 18.321 27.538 22.876/2.854 1.246/0.010 1.207
Time (CPU = 1.8 GHz) (ms) 4.015 15.819 23.852 19.397/2.657 1.097/0.010 1.116
Time (CPU = 2.0 GHz) (ms) 3.694 14.421 19.568 18.001/2.312 1.033/0.008 0.990
Time (CPU = 2.2 GHz) (ms) 3.230 13.148 17.512 15.939/2.078 0.930/0.010 0.875
Time (CPU = 2.4 GHz) (ms) 3.052 12.120 16.248 14.502/1.883 0.768/0.007 0.766
Time (CPU = 2.6 GHz) (ms) 2.949 11.978 14.994 13.523/1.777 0.701/0.006 0.689
Time (CPU = 2.8 GHz) (ms) 2.652 10.711 13.879 12.376/1.637 0.653/0.005 0.647
Time (CPU = 3.1 GHz) (ms) 2.435 9.503 13.404 11.413/1.492 0.598/0.005 0.604

Sensors 2019, 19, x FOR PEER REVIEW 21 of 24

Figure 11. Comparison between the APAC model and our privacy-preserving framework in the time cost.

7. Conclusions

The key challenges for secure remote access to IP-enabled RCDs are the availability of
feasible access control solutions and preserving user data access privacy. This paper establishes a
privacy-preserving access control model eHAPAC for IP-enabled WSNs, a severely resourced-
constrained environment. This paper enhances the formally validated Hidra access protocol with
unlinkability of message exchanges. In the authorization phase, the self-renewed TGTs is used to
prevent the authorization request messages from being linked. A fake ticket mechanism is introduced
in the authorization response message to ensure the unlinkability between authorization request
process and service access process. This paper improves the group signature-based APAC
privacy-preserving access control model by setting up two mutually restrictive third parties to avoid
third-party monitoring and cheating. The proposed model ensures user data access privacy without
disclosure to any entity including the third parties participating in the security protocol, which makes
it more practical. This paper modifies the XSGS group signature scheme and chooses it as an example
to describe the implementation process of the enhanced privacy-preserving model. However, there
are still some problems: it is unable to resist resource attacks, the accountability process of group
signatures cannot be above board, which easily causes disputes, and the management and publishing
methods of group public keys are not flexible enough. To this end, this paper introduces blockchain
technology and designs a smart contract to solve these problems taking advantage of the distributed,
transparent and irreversible attributes of the blockchain. In the system setup phase, blockchain acts
as a platform for group public key management and publishing to increase the flexibility of public
key management. In the authentication phase, blockchain serves as an intermediate platform for
message exchange between ACS and users to resist resource consumption attacks on ACS. In the
accountability phase, this paper proposes a new accountability mechanism based on blockchain,
which makes the accountability process to prevent arbitration organizations from cheating, and
makes the results more convincing. The security analysis shows that the proposed model can meet
our expected security goals. Through experimental simulations and analyzing the performance of the
proposed model, it is demonstrates that the proposed model is feasible and rationality.

Author Contributions: F.L. and Y.T. defined problem and developed the idea. Y.T. carried out the experiments
and data analysis, and wrote the relevant sections. L.W. reviewed and edited the article.

Funding: This work was supported by the Engineering and Technology Research Center of Guangdong
Province for Logistics Supply Chain and Internet of Things (Project No. GDDST[2016]176); the Provincial Science
and Technology Project in Guangdong Province (Project No. 2013B090200055); the Key Laboratory of Cloud
Computing for Super—integration Cloud Computing in Guangdong Province (Project No. 610245048129).

0

50

100

150

200

250

300

Ti
m

e
co

st(
m

s)

APAC model Our model

Figure 11. Comparison between the APAC model and our privacy-preserving framework in the
time cost.

As can be seen from the graph, in the system setup phase, the time cost in the LA side of the
APAC model is much more than that in our privacy-preserving model. When the number of user
groups in the system is large, our model can greatly improve the efficiency of the system setup phase.
However, the time cost of our model is higher than that of the APAC model at user side in the new user
joining phase, and at both ACS side and user side in the user revocation phase. This increase in time
cost is due to the fact that the ACS needs to store the user’s signature of group member certificate so
that the user can possess certificate in an undeniable way to ensure non-repudiation of accountability
results. The user revocation phase is also the same. Unrevoked users need to re-sign group member

Sensors 2019, 19, 1513 21 of 23

certificates, and the ACS need to verify and replace the certificate signatures of unrevoked users, so
the computational overhead is slightly increased in these two phases. However, in order to ensure
the non-repudiation of the accountability result, we believe that the introduction of computational
overhead is worthwhile.

7. Conclusions

The key challenges for secure remote access to IP-enabled RCDs are the availability of feasible access
control solutions and preserving user data access privacy. This paper establishes a privacy-preserving
access control model eHAPAC for IP-enabled WSNs, a severely resourced-constrained environment.
This paper enhances the formally validated Hidra access protocol with unlinkability of message
exchanges. In the authorization phase, the self-renewed TGTs is used to prevent the authorization
request messages from being linked. A fake ticket mechanism is introduced in the authorization
response message to ensure the unlinkability between authorization request process and service access
process. This paper improves the group signature-based APAC privacy-preserving access control
model by setting up two mutually restrictive third parties to avoid third-party monitoring and cheating.
The proposed model ensures user data access privacy without disclosure to any entity including the
third parties participating in the security protocol, which makes it more practical. This paper modifies
the XSGS group signature scheme and chooses it as an example to describe the implementation process
of the enhanced privacy-preserving model. However, there are still some problems: it is unable to
resist resource attacks, the accountability process of group signatures cannot be above board, which
easily causes disputes, and the management and publishing methods of group public keys are not
flexible enough. To this end, this paper introduces blockchain technology and designs a smart contract
to solve these problems taking advantage of the distributed, transparent and irreversible attributes
of the blockchain. In the system setup phase, blockchain acts as a platform for group public key
management and publishing to increase the flexibility of public key management. In the authentication
phase, blockchain serves as an intermediate platform for message exchange between ACS and users
to resist resource consumption attacks on ACS. In the accountability phase, this paper proposes
a new accountability mechanism based on blockchain, which makes the accountability process to
prevent arbitration organizations from cheating, and makes the results more convincing. The security
analysis shows that the proposed model can meet our expected security goals. Through experimental
simulations and analyzing the performance of the proposed model, it is demonstrates that the proposed
model is feasible and rationality.

Author Contributions: F.L. and Y.T. defined problem and developed the idea. Y.T. carried out the experiments
and data analysis, and wrote the relevant sections. L.W. reviewed and edited the article.

Funding: This work was supported by the Engineering and Technology Research Center of Guangdong Province
for Logistics Supply Chain and Internet of Things (Project No. GDDST[2016]176); the Provincial Science and
Technology Project in Guangdong Province (Project No. 2013B090200055); the Key Laboratory of Cloud Computing
for Super—integration Cloud Computing in Guangdong Province (Project No. 610245048129).

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Queiroz, D.V.; Alencar, M.S.; Gomes, R.D.; Fonseca, I.E.; Benavente-Peces, C. Survey and systematic mapping
of industrial Wireless Sensor Networks. J. Network Comput. Appl. 2017, 97, 96–125. [CrossRef]

2. Boubrima, A.; Bechkit, W.; Rivano, H. Optimal WSN Deployment Models for Air Pollution Monitoring.
IEEE Trans. Wireless Commun. 2017, 16, 2723–2735. [CrossRef]

3. Kshetri, N. Can Blockchain Strengthen the Internet of Things? IT Prof. 2017, 19, 68–72. [CrossRef]
4. Pacheco, L.A.B.; Alchieri, E.A.P. Device-Based Security to Improve User Privacy in the Internet of Things.

Sensors 2018, 18, 27.

http://dx.doi.org/10.1016/j.jnca.2017.08.019
http://dx.doi.org/10.1109/TWC.2017.2658601
http://dx.doi.org/10.1109/MITP.2017.3051335

Sensors 2019, 19, 1513 22 of 23

5. Qiu, Y.; Ma, M. Secure Group Mobility Support for 6LoWPAN Networks. IEEE Internet Things J. 2018, 5,
1131–1141. [CrossRef]

6. Zhu, Y.-H.; Qiu, S.-W.; Chi, K.-K.; Fang, Y.M. Latency Aware IPv6 Packet Delivery Scheme over IEEE 802.15.4
Based Battery-Free Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2017, 16, 1691–1704. [CrossRef]

7. Rachedi, A.; Bouaziz, M. A survey on mobility management protocols in Wireless Sensor Networks based
on 6LoWPAN technology. Comput. Commun. 2016, 74, 3–15.

8. Mavani, M.; Asawa, K. Privacy enabled disjoint and dynamic address auto-configuration protocol for
6Lowpan. Ad Hoc Networks 2018, 79, 72–86. [CrossRef]

9. Palma, D. Enabling the Maritime Internet of Things: CoAP and 6LoWPAN Performance Over VHF Links.
IEEE Internet Things J. 2018, 5, 5205–5212. [CrossRef]

10. Wang, X.; Mu, Y. Communication security and privacy support in 6LoWPAN. J. Inf. Secur. Appl. 2017, 34,
108–119. [CrossRef]

11. Liu, Y.; Dong, M.; Ota, K.; Liu, A. ActiveTrust: Secure and Trustable Routing in Wireless Sensor Networks.
IEEE Trans. Inf. Forensics Secur. 2016, 11, 2013–2027. [CrossRef]

12. Bertino, E.; Islam, N. Botnets and Internet of Things Security. Computer 2017, 50, 76–79. [CrossRef]
13. Das, A.K.; Zeadally, S.; He, D. Taxonomy and analysis of security protocols for Internet of Things.

Future Gener. Comput. Syst. 2018, 89, 110–125. [CrossRef]
14. Toch, E.; Bettini, C.; Shmueli, E.; Radaelli, L.; Lanzi, A.; Riboni, D.; Lepri, B. The Privacy Implications of

Cyber Security Systems: A Technological Survey. ACM Comput. Surv. 2018, 51, 1–27. [CrossRef]
15. Meng, Y.; Huang, Z.; Zhou, Y.; Ke, C. Privacy-aware cloud service selection approach based on P-Spec policy

models and privacy sensitivities. Future Gener. Comput. Syst. 2018, 86, 1–11. [CrossRef]
16. Lopez, J.; Rios, R.; Bao, F.; Wang, G. Evolving privacy: From sensors to the Internet of Things. Future Gener.

Comput. Syst. 2018, 75, 46–57. [CrossRef]
17. Zhang, Y.; Deng, R.H.; Han, G.; Zheng, D. Secure smart health with privacy-aware aggregate authentication

and access control in Internet of Things. J. Network Comp. Appl. 2018, 123, 89–100. [CrossRef]
18. Yang, Y.; Wu, L.; Yin, G.; Li, L.; Zhao, H. A Survey on Security and Privacy Issues in Internet-of-Things.

IEEE Internet Things J. 2017, 5, 1250–1258. [CrossRef]
19. He, D.; Chan, S.; Guizani, M. Accountable and Privacy-Enhanced Access Control in Wireless Sensor

Networks. IEEE Trans. Wireless Commun. 2018, 14, 389–398. [CrossRef]
20. Astorga, J.; Jacob, E.; Toledo, N.; Unzilla, J. Enhancing secure access to sensor data with user privacy support.

Comput. Netw. 2014, 64, 159–179. [CrossRef]
21. Papadopoulos, P.; Chariton, A.A.; Athanasopoulos, E.; Markatos, E.P. Where’s Wally?: How to Privately

Discover your Friends on the Internet. In Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, Incheon, Korea, 4 June 2018; pp. 425–430.

22. Papadopoulos, P.; Kourtellis, N.; Rodriguez, P.R.; Laoutaris, N. If you are not paying for it, you are the
product: how much do advertisers pay to reach you? In Proceedings of the 2017 Internet Measurement
Conference, London, UK, 1–3 November 2017; pp. 142–156.

23. Keranen, A.; Ersue, M.; Bormann, C. Terminology for Constrained-Node Networks. Available online:
https://tools.ietf.org/html/rfc7228 (accessed on 10 September 2018).

24. Uriarte, M.; Astorga, J.; Jacob, E.; Huarte, M.; Carnerero, M. Expressive Policy-Based Access Control for
Resource-Constrained Devices. IEEE Access 2018, 6, 15–46. [CrossRef]

25. Pereniguez, F.; Marin-Lopez, R.; Kambourakis, G.; Gritzalis, S.; Gomez, A.F. PrivaKERB: A user privacy
framework for Kerberos. Comput. Secur. 2011, 30, 446–463. [CrossRef]

26. Zhang, R.; Zhang, Y.; Ren, K. DP2AC: Distributed Privacy-Preserving Access Control in Sensor Networks.
In Proceedings of the IEEE INFOCOM 2009—The 28th Conference on Computer Communications,
Rio De Janeiro, Brazil, 19–25 April 2009; pp. 1251–1259.

27. He, D.; Bu, J.; Zhu, S.; Chan, S.; Chen, C. Distributed Access Control with Privacy Support in Wireless Sensor
Networks. IEEE Trans. Wireless Commun. 2011, 10, 3472–3481. [CrossRef]

28. Han, Y.; Xue, N.N.; Wang, B.Y.; Zhang, Q.; Liu, C.L.; Zhang, W.S. Improved Dual-Protected Ring Signature
for Security and Privacy of Vehicular Communications in Vehicular Ad-Hoc Networks. IEEE Access 2018, 6,
20209–20220. [CrossRef]

29. Rivest, R.L.; Shamir, A.; Tauman, Y. How to Leak a Secret. In Advances in Cryptology—ASIACRYPT 2001;
Boyd, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2248, pp. 552–565.

http://dx.doi.org/10.1109/JIOT.2018.2805696
http://dx.doi.org/10.1109/TMC.2016.2601906
http://dx.doi.org/10.1016/j.adhoc.2018.06.010
http://dx.doi.org/10.1109/JIOT.2018.2868439
http://dx.doi.org/10.1016/j.jisa.2017.02.003
http://dx.doi.org/10.1109/TIFS.2016.2570740
http://dx.doi.org/10.1109/MC.2017.62
http://dx.doi.org/10.1016/j.future.2018.06.027
http://dx.doi.org/10.1145/3172869
http://dx.doi.org/10.1016/j.future.2018.03.013
http://dx.doi.org/10.1016/j.future.2017.04.045
http://dx.doi.org/10.1016/j.jnca.2018.09.005
http://dx.doi.org/10.1109/JIOT.2017.2694844
http://dx.doi.org/10.1109/TWC.2014.2347311
http://dx.doi.org/10.1016/j.comnet.2014.02.002
https://tools.ietf.org/html/rfc7228
http://dx.doi.org/10.1109/ACCESS.2017.2730958
http://dx.doi.org/10.1016/j.cose.2011.04.001
http://dx.doi.org/10.1109/TWC.2011.072511.102283
http://dx.doi.org/10.1109/ACCESS.2018.2822806

Sensors 2019, 19, 1513 23 of 23

30. Li, F.; Han, Y.; Jin, C. Cost-Effective and Anonymous Access Control for Wireless Body Area Networks.
IEEE Syst. J. 2018, 12, 747–758. [CrossRef]

31. Dorri, A.; Steger, M.; Kanhere, S.S.; Jurdak, R. BlockChain: A Distributed Solution to Automotive Security
and Privacy. IEEE Commun. Mag. 2017, 55, 119–125. [CrossRef]

32. Conti, M.; Kumar, E.S.; Lal, C.; Ruj, S. A Survey on Security and Privacy Issues of Bitcoin. IEEE Commun.
Surv. Tutor. 2018, 20, 3416–3452. [CrossRef]

33. Ferdous, M.S.; Margheri, A.; Paci, F.; Yang, M.; Sassone, V. Decentralised Runtime Monitoring for Access
Control Systems in Cloud Federations. In Proceedings of the 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 2632–2633.

34. Saia, R.; Carta, S.; Recupero, D.R.; Fenu, G. Internet of Entities (IoE): A Blockchain-based Distributed
Paradigm for Data Exchange between Wireless-based Devices. In Proceedings of the 8th International
Conference on Sensor Networks, SENSORNETS 2019. SciTePress, Prague, Czech Republic, 26–27 January
2019; pp. 77–84.

35. Saia, R. Internet of Entities (IoE): A Blockchain-based Distributed Paradigm to Security. arXiv, 2018;
arXiv:1808.08809.

36. Delerablée, C.; Pointcheval, D. Dynamic Fully Anonymous Short Group Signatures. In Progress in
Cryptology—VIETCRYPT 2006; Nguyen, P.Q., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4341,
pp. 193–210.

37. Bellare, M.; Shi, H.; Zhang, C. Foundations of Group Signatures: The Case of Dynamic Groups. In Topics
in Cryptology–CT-RSA 2005; Menezes, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3376,
pp. 136–153.

38. Dikshit, P.; Singh, K. Efficient weighted threshold ECDSA for securing bitcoin wallet. In Proceedings of the
2017 ISEA Asia Security and Privacy (ISEASP), Surat, India, 29 January–1 February 2017; pp. 1–9.

39. Wang, L.; Shen, X.; Li, J.; Shao, J.; Yang, Y.L. Cryptographic primitives in blockchains. J. Network Comput.
Appl. 2019, 127, 43–58. [CrossRef]

40. Mahalle, P.N.; Anggorojati, B.; Prasad, N.R.; Prasad, R. Identity Authentication and Capability Based Access
Control (IACAC) for the Internet of Things. J. Cyber Secur. Mobility 2013, 1, 309–348.

41. Kumar, P.; Gurtov, A.; Iinatti, J.; Ylianttila, M.; Sain, M. Lightweight and Secure Session-Key Establishment
Scheme in Smart Home Environments. IEEE Sensors J. 2016, 16, 254–264. [CrossRef]

42. He, D.; Chan, S.; Tang, S.; Guizani, M. Secure Data Discovery and Dissemination based on Hash Tree for
Wireless Sensor Networks. IEEE Trans. Wireless Commun. 2013, 12, 4638–4646. [CrossRef]

43. Didla, S.; Ault, A.; Bagchi, S. Optimizing AES for Embedded Devices and Wireless Sensor Networks.
In Proceedings of the 4th International ICST Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities, Innsbruck, Austria, 18–20 March 2008.

44. De Meulenaer, G.; Gosset, F.; Standaert, F.X.; Pereira, O. On the Energy Cost of Communication and
Cryptography in Wireless Sensor Networks. In Proceedings of the 2008 IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications, Avignon, France, 12–14 October 2008;
pp. 580–585.

45. Lee, J.; Kapitanova, K.; Son, S.H. The price of security in wireless sensor networks. Comput. Networks 2010,
54, 2967–2978. [CrossRef]

46. Contiki. The Open Source OS for the Internet of Things. Available online: http://www.contiki-os.org/
(accessed on 17 March 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSYST.2016.2557850
http://dx.doi.org/10.1109/MCOM.2017.1700879
http://dx.doi.org/10.1109/COMST.2018.2842460
http://dx.doi.org/10.1016/j.jnca.2018.11.003
http://dx.doi.org/10.1109/JSEN.2015.2475298
http://dx.doi.org/10.1109/TWC.2013.090413.130072
http://dx.doi.org/10.1016/j.comnet.2010.05.011
http://www.contiki-os.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Problem Formulation
	Access Control System Architecture
	Trust and Threat Model
	Security Goals

	eHAPAC Construction
	General Overview
	The Privacy-Preserving Model of EHAPAC
	System Setup
	New User Join
	Sign and Verify
	User Revokation
	Accountability and Disputes Resolution

	Access Control Protocol
	The Authentication Phase
	The Authorization Phase
	The Service Access Phase and The Auditing Phase

	Smart Contract Design

	Security Analysis
	Resisting Privacy Attacks
	Resisting to Replay Attacks
	Resisting to Resource Consumption Attacks
	Guarantee the Openness and Transparency of the Accountability Process

	Performance Evaluation
	Performance Evaluation of the Enhanced Hidra Protocol
	Performance Evaluation of the Privacy-Preserving Model

	Conclusions
	References

