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Abstract: Lane keeping systems for a keeping a vehicle in the desired lane is key to advanced driving
assistance system in autonomous vehicles. This paper presents a cost-effective image sensor with
efficient processing algorithm for lane detection and lane control applications to autonomous delivery
systems. The algorithm includes (1) lane detection by inverse perspective mapping and random
sample consensus parabola fitting and (2) lane control by pure pursuit steering controller and classical
proportional integral speed controller based on a nonholonomic kinematic model. The image sensor
experiments conducted on a 1/10 scale model car maneuvering in a straight–curve–straight lane
validate the better processing performance before, during, and after the turning section over previous
work. The image sensor with the processing algorithm achieves the average lane detection error
within 5% and maximum cross-track error within 9% in real-time. The development shall pave the
way to cost-effective autonomous delivery systems.
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1. Introduction

It is known that the vast majority of all reported road accidents are due to human faults [1].
Advanced Driving Assistance System (ADAS) has recently been proposed to predict driver’s intent,
warn the driver about possible lane departure, and assist lane keeping [2], and it has been implemented
on several vehicles in automobile industry. The reference path and the vehicle position can be
determined from the maps created by geographic information system (GIS); however, the path and
position accuracy often suffers from map resolution, data availability, and real-time update limitations.
An on-board vision-based lane keeping system is therefore necessary to generate a reference path,
obtain accurate vehicle position relative to the lane, and control the vehicle safely in a desired path.

A recent review summarized most vision-based lane detection methods that share three common
steps [3]: (1) bird’s eye view transformation by inverse perspective mapping [4,5], (2) lane feature
detection by edge-based [6–8] or color-based methods [9], and (3) lane fitting by random sample
consensus (RANSAC) combined with least-square line [10], B-spline [11], or hyperbola pair fitting [12]
methods. Edge-based methods only rely on intensity information, thus require less computation
for real-time applications, which proved to be key to cost-effective, autonomous vehicles in goods
delivery. Lane fitting by the random sample consensus combined with parabola pair is considered
the most applicable. Lane controllers can be designed based on nonholonomic kinematic or dynamic
models. A proportional–integral–derivative (PID) steering controller [13] and a pure pursuit steering
controller [14,15] have been proposed to determine vehicle steering angle to maintain safe driving
in a lane. The above studies require on-board LIDAR (Light Detection and Ranging) with heavy
computation load for lane keeping and radar for adaptive lane control.
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In addition to chauffeuring people, another major function for autonomous vehicles is the delivery
of goods. It is expected that 80% of all packages will be delivered autonomously in the next decade [16].

The world’s e-commerce, in particular in USA and China, has doubled in the past 10 years and is
expected to double again in the next five [17]. A cost-effective lane keeping system is therefore key
to the development of autonomous delivery systems. This work proposes a lane keeping system for
both lane detection and lane control by using only a low-cost image sensor (dashcam) with an efficient
processing algorithm for real-time applications. In lane detection, inverse perspective mapping (IPM)
followed by edge-based detection and RANSAC parabola fitting are applied to obtain accurate vehicle
position relative to the lane center. In lane control, both pure pursuit steering controller based on a
nonholonomic kinematic model and proportional-integral speed controller are adopted to maintain
the vehicle safely in a desired lane. The image sensor with the processing algorithm is shown to be
effective for both lane detection and lane control. The on-board processing time of the algorithm is
more efficient than that of the previous work. With the advent of unmanned autonomous vehicles in
the delivery market, this work may be one of the latest steps for applications to lower delivery costs of
everyday items.

2. Lane Detection by Image Sensor

The vision-based lane detection is in three common steps: (1) image transformation from the
sensor’s frontal view to bird’s eye view, (2) edge-based lane feature detection, and (3) lane markers
regeneration or reconstruction in the processing image. In lane detection, the sensor image from a
dashcam first has to be transformed from frontal view into bird’s eye view so that the lane markings
on become parallel (assuming constant lane width) for accurate vehicle positioning. Consider the
image sensor with camera frame (Xc, Yc, Zc) mounted with pitch angle α, yaw angle θ, offset

(
Rx, Ry

)
on a vehicle in the world frame (Xw, Yw, Zw) at height h above the ground, as shown in Figure 1a. The
transformation from an arbitrary point Pw(xw, yw,−h) in the world frame to the corresponding point
Pi(ui, vi) in the image plane as shown in Figure 1b can be determined by coordinate transformation:

ui = cu + fu (xwcosθ − ywsinθ)/d (1)

vi = cv + fv (−xw sinα sinθ − yw sinα cosθ + h cosα)/d (2)

where ( fu, fv) and (cu, cv) are the focal length and the image sensor’s optical center, respectively, and
d = xw cosα sinθ + yw cosα cosθ + h sinα. The inverse perspective mapping from the image plane to
the ground plane can be obtained by

xw = −h(−((ui − cu)/ fu)cosθ + sinθ(((vi − cv)/ fv)sinα − cosα))/e (3)

yw = −h(((ui − cu)/ fu)sinθ + cosθ(((vi − cv)/ fv)sinα − cosα))/e (4)

where e = ((vi − cv)/ fv )cosα + sinα.
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Figure 1. (a) An image sensor (dashcam) with the camera frame (Xc, Yc, Zc) mounted on a vehicle at
height h above ground with pitch angle α, yaw angle θ, and offset

(
Rx, Ry

)
from the vehicle center

in the world frame (Xw, Yw, Zw), and (b) illustration of the image sensor plane, where point Pi is the
projection on the image plane of a point Pw on the ground.
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Figure 2a illustrates the inverse perspective mapping where the sensor image is transformed by
inverse perspective mapping (IPM) into a bird’s eye view image. After IPM, the lane features such
as intensity and geometry of the lane markings are preserved as shown in Figure 2b, and they can
be applied to locate the lane position by edge-based lane feature detection. The intensity difference
between the lane markings and the ground pavement is often so strong that the IPM image can be
converted to binary grayscale image and then filtered by an intensity threshold q:

q = kM(I) (5)

where k is a constant to preserve lane markings, M(I) is the peak with the highest intensity value in
the histogram of the grayscale image, and I is the grayscale image. Figure 3a illustrates the histogram
of the gray scale IPM image. The column intensity sum of the binary image can then be applied to
locate the horizontal position xL and xR of the left and right lane marking and the lane width w, as
shown in Figure 3b,c.
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Note that the lane markings close to the vehicle are approximately vertical after the transformation,
thus the horizontal position of the left and right lane marking can be determined by the column
intensity sum of the threshold image, and two lines LL and LR passing through xL and xR, respectively,
are the initial guess of the position of the left and right lane marking. Their slope can be determined
by the two windows of width w/2 and height b at horizontal position as shown in Figure 4a. By the
intensity center of each of the two windows, the slope of LL and LR can be determined as indicated in
Figure 4b.
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LL and the dotted lines for LR (d) by using the RANSAC parabola fitting.

One of the major challenges in autonomous delivery vehicle is lane detection when making sharp
turn. In order to obtain a better position estimate in curve lane markings, random sample consensus
(RANSAC) parabola fitting is applied around LL and LR for lane feature detection. The parabola
fitting is to divide each window into sections equally spaced in the y-direction, as shown in Figure 4c,
select randomly one point from each section to define parabola geometry by the least square method,
and calculate the accumulated intensity value of the parabola. By use of the central limit theorem, a
parabola can be estimated accurately as shown in Figure 4d. The highest accumulated intensity value
in each window can be used to locate the position of each lane markings. Accurate vehicle position
with respect to the lane center is necessary for lane control to minimize the cross-track error and keep
the vehicle driving safely in the desired lane. The model assumes the lane markings to be parallel is
applied to obtain the lane center position. The accurate vehicle position relative to the lane center can
then be easily obtained by considering the offset

(
Rx, Ry

)
of the image sensor from the vehicle center.
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3. Lane Control by Image Sensor

A pure pursuit steering controller and a PI speed controller were applied to keep the vehicle
driving safely along the detected lane center at a desired velocity. The former controller calculates a
kinematically feasible path for vehicle to maneuver from its current position to goal position. This
is used for most vehicles with no universal wheels installed. The latter controller allows the vehicle
to follow the calculated curve path, and classical PI control was adopted for acceptable control
performance with low or no computation loading. The graphical description of a pure pursuit
controller based on a nonholonomic kinematic model [18] is shown in Figure 5, where L is the vehicle
wheelbase, l is the distance from the rear axle to the forward anchor point defined as the center of
the vehicle, L f is the forward drive look-ahead distance, and η is the heading of the look-ahead point
(constrained to the reference path) from the forward anchor point with respect to the vehicle heading.
In steering control, the steering angle δ can be determined by δ = tan−1(L/R), where R is the distance
from the instantaneous rotation center O to the rear axle, R =

(
L f /2 + lcos(η

)
)/sin(η). The forward

drive look-ahead distance L f is dependent on the command velocity for stability. Under high velocity
conditions, larger L f is required in order to maintain the system stability and determine a more feasible
δ for the nonholonomic kinematic model. In speed control, a classical PI controller was adopted
without the derivative (D) term for closed loop system stability:

u = Kp(r − s) + Ki

∫ t

0
(r − s)dτ (6)

where u is the nondimensional speed control signal, Kp and Ki are the proportional and integral gains,
respectively, r is the command velocity, and s is the vehicle velocity. The time step dτ ∼= ∆t is identified
according to the update rate of the state of the vehicle and the computational speed. The proportional
and integral gains Kp and Ki can be determined by extensive testing guided by the parameter space
approach of robust control. By applying the parameter space approach, an area in the Kp − Ki plane
can be determined for which the desired design specifications such as stability, phase margin limitation,
and robustness are satisfied. Through actual experiment, the PI controller parameters best fit all the
design specifications are then determined.
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4. Experimental Verification

The performance of the image sensor processing algorithm in lane keeping system is verified by a
1/10 scale model car of length 40 cm and width 18 cm maneuvering in straight–curve–straight lane as
shown in Figure 6. The car is equipped with an image sensor (fisheye dashcam), inertial measurement
unit, and on-board computer (ARM, 2 GHz). The trajectory of the car during experiment is captured
by an overhead camera with 90

◦
field of view (FOV), 24 frames per second (fps), and 800 × 600 pixel

resolution to observe the cross-track error.
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verification of the image sensor in lane detection and control.

In the experiment, an image sensor with 140
◦

field of view (FOV), 30 frames per second (fps), and
320 × 240 pixel resolution is mounted on the car at height h = 21.3 cm above the ground plane; yaw
angle θ = 0

◦
, pitch angle α = 20

◦
, and offset

(
Rx, Ry

)
= (0, 13.5) cm from the vehicle center. After

camera calibration, the focal length ( fu, fv) is (189.926, 256.917) pixels, while the camera optical center
(cu, cv) is (160.717, 120.688) pixels. Most lane markings belong to a region of interest (ROI) of 260 pixel
width and 85 pixel height with the position of the top left corner (30, 90) in the image sensor, as shown
in Figure 2a. The image in ROI is then transformed to the bird’s eye view image (300 × 400 pixel) and
converted to grayscale as shown in Figure 2b. The intensity histogram of the grayscale IPM image
is calculated with the peak marking the highest intensity M(I) as shown in Figure 3a. According to
the testing results, k = 0.9 is adopted to obtain the best filtering performance by Equation (5). The
column intensity sum of the binary image can then be applied to locate the horizontal position xL
and xR of the left and right lane marking and the lane width w as shown in Figure 3b,c. With the two
windows of width w/2 and height 60 pixels at the bottom of each of the two lane markings as shown
in Figure 4a, the slope of each lane marking can be determined as shown in Figure 4b. These slopes are
applied to obtain two windows of equal width for spline fitting as shown in Figure 4c. Each window
is divided into 10 sections and the number of iterations of the spline fitting is set of 30 to obtain the
best performance on the on-board computer, as shown in Figure 4d. Based on the parallel lane model,
the lane center can therefore be obtained.

The efficiency of the lane detection algorithm is shown in Figure 7a. In a series of 300 captured
images of a typical maneuver in a straight lane, the computation time in lane detection by the on-board
CPU (2 GHz) is in the range of 10.4 to 11.2 ms. By comparison, the computation time by using the
method in [6] is 11.5 to 12.2 ms. The algorithm in this work is shown more efficient in all of the
300 images in lane detection. In addition, the algorithm remains applicable to curve lane, while the
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method in [6] is otherwise for its limitation when using Hough transform. Figure 7b illustrates the
accumulated time of processing the 300 images during vehicle motion of ~10 s. The algorithm is shown
to shave 0.5 s of computation time in lane detection, and such saving is critical to the development of
autonomous delivery systems.
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Figure 7. (a) Comparison of the processing time in lane detection for a series of 300 images and (b) the
accumulated computation time validates that the algorithm in this work is more efficient.

The lane control experiment is also performed on the 1/10 scale model car. For the pure pursuit
controller, the vehicle wheel base is L = 26 cm and the distance from the rear axle to the forward anchor
point is l = 6 cm. The forward drive look-ahead distance L f is dependent upon the command velocity
r to overcome the stability issue. According to the characteristics of the nonholonomic kinematic
model, the relationship between L f and r in the experiment is

L f (r) =


55 cm
43 cm
65 cm

if r < 1.35 (m/s)
if 1.35 (m/s) < r < 1.5 (m/s)
otherwise.

For speed control, the PI controller parameters Kp and Ki are determined through the parameter
space by experiment: Kp = 0.3 and Ki = 0.04. For the integration, the time step is set at 5 ms to achieve
the best performance.

The experiments were conducted with the model car maneuvering at a speed of 1 m/s in a
straight–curve–straight lane (radius 99 cm) and lane width 37 cm. The vehicle speed is set at high
enough to generate ~1G centrifugal acceleration during the turning section to simulate real-world
vehicle operation. The experiment results for lane detection and lane control are shown in Figure 8,
where the solid line represents the real lane center, the dotted line the lane control results, and the dash
line the lane detection result. The error percentage is defined by the ratio of deviation over the lane
width. Since the width of the lane markings in the experiment is 35 cm, the lane detection error is
expected to be within ±1.75 cm (±5%). As for cross-track error, the maximum tolerable cross-track
error is ±9.5 cm (±25%), which is the maximum offset of the vehicle from the lane center without
crossing the lane markings. The average lane detection error and maximum cross-track error in these
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three sections are 2.54%, 3.37%, 4.41%, and −4.44%, −8.89%, −4.08%, respectively. Due to the small
steering angle (3

◦ − 5
◦
) adjustment is not possible, and there is a slight increase during the turning

section. Even if the lane keeping system is capable of detecting the small offset from the lane center
and sending a corresponding command to the steering angle during the turning section, the car is still
not capable of adjusting its steering angle due to backlash in hardware constraint. However, even
under this limitation, the performance of the vision-based lane keeping system can still be clearly
indicated by the maximum cross-track error in the experiment within 9%.
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Figure 8. Error percentage in the experimental results of the image sensor in lane keeping system (a)
before, (b) during, and (c) after the turning section, where the error percentage is defined as the ratio of
the offset from the lane center to the lane width.

5. Conclusions

(1) A cost-effective lane keeping system is key to the development of autonomous delivery systems.
This work proposes a lane keeping system for both lane detection and lane control by using only a
low-cost image sensor (dashcam) with an efficient processing algorithm for real-time applications.
A vehicle with only an image sensor, without LIDAR or radar, is shown to be capable of lane
detection and lane control with good accuracy in real-time. The image processing algorithm in
lane detection includes (a) inverse perspective mapping to transform the dashcam image to bird’s
eye view image, (b) binary and histogram filter to detect the lane slope feature, and (c) random
sample consensus parabola fitting to reconstruct the lane markings.

(2) The performance of the image sensor processing algorithm in lane keeping system is verified by
a 1/10 scale model car of length 40 cm and width 18 with an image sensor (fisheye dashcam),
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inertial measurement unit, and on-board computer (ARM, 2GHz). The efficiency of the lane
detection algorithm is ~11 ms for lane detection of a typical image, which is ~5–10% lower than
that in comparable study [6]. The algorithm in this work is shown more efficient in all of the
300 images in lane detection. In addition, the algorithm remains applicable to curve lane. In lane
control, the trajectory of the car during experiment is captured by an overhead camera to observe
the cross-track error. Experiments conducted on the model car maneuvering at speed 1 m/s in a
curve lane of radius 99 cm for ~G acceleration further show that that the average lane detection
error before, during, and after curve lane are all within 5%. The image sensor with the processing
algorithm is effective in advanced driving assistance of autonomous delivery systems. In lane
control, a pure pursuit steering controller and a proportional integral speed controller based on
a nonholonomic kinematic model are applied to show that the maximum cross-track error is
within 9% in lane control. Both the lane detection and lane control performance are critical to the
development of autonomous delivery systems.

(3) The proposed lane keeping system is considered effective and efficient. Future development will
simulate more complicated road conditions such as rugged ground and light conditions, such as
glare when facing the sun and dim light when driving in a tunnel. Rugged ground may cause the
vehicle to tilt, thus changing the yaw and pitch angle of the vehicle, and affecting the accuracy of
inverse perspective mapping. Glare and dim light conditions may reduce the intensity difference
between the lane markings and the road pavement, so that detecting lane features using the
edge-based method may therefore be challenging.
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