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Abstract: The global population is increasing rapidly, together with the demand for healthy fresh
food. The greenhouse industry can play an important role, but encounters difficulties finding skilled
staff to manage crop production. Artificial intelligence (AI) has reached breakthroughs in several
areas, however, not yet in horticulture. An international competition on “autonomous greenhouses”
aimed to combine horticultural expertise with AI to make breakthroughs in fresh food production
with fewer resources. Five international teams, consisting of scientists, professionals, and students
with different backgrounds in horticulture and AI, participated in a greenhouse growing experiment.
Each team had a 96 m2 modern greenhouse compartment to grow a cucumber crop remotely during
a 4-month-period. Each compartment was equipped with standard actuators (heating, ventilation,
screening, lighting, fogging, CO2 supply, water and nutrient supply). Control setpoints were remotely
determined by teams using their own AI algorithms. Actuators were operated by a process computer.
Different sensors continuously collected measurements. Setpoints and measurements were exchanged
via a digital interface. Achievements in AI-controlled compartments were compared with a manually
operated reference. Detailed results on cucumber yield, resource use, and net profit obtained by
teams are explained in this paper. We can conclude that in general AI performed well in controlling a
greenhouse. One team outperformed the manually-grown reference.
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1. Introduction

The global population is increasing rapidly together with the demand for healthy fresh food [1].
The greenhouse industry can play an important role providing fresh food, such as fruits and vegetables
being high in vitamins and minerals. Greenhouses allow a high crop production per area combined
with a high water use efficiency per unit of produce [2]. Worldwide, the area of greenhouse production
is increasing [3]. However, the greenhouse industry encounters difficulties finding enough skilled labor
to manage crop production [4]. A crop manager must have a high level of knowledge and experience in
order to control crop growth. As farms become larger, monitoring all details of the various greenhouse
compartments becomes more demanding. Moreover, resources (water, fossil energy) are becoming
scarcer, which causes an urgent need for maximum resource efficiency.

A greenhouse protects the crop from outside influences, such as rain, wind, low temperatures,
or pests. A modern high-tech greenhouse is equipped with active control of actuators (e.g., heating,
lighting, irrigation) in order to create a favorable growing climate. Of course, this comes at the
cost of resource consumption (e.g., fuel, electricity, water). A grower determines the climate and
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irrigation strategy and defines the setpoints for all climate and irrigation parameters. Actuators are
operated based on the setpoints, and sensors give feedback on measured data for the control loop.
Automated greenhouse climate control algorithms have already been developed decades ago [5–12].
Today, modern high-tech greenhouses are equipped with process computers, which are able to control
greenhouse actuators based on the setpoints manually set by the grower.

In order to add more automated control, various greenhouse climate and crop models have been
developed. An overview of today’s greenhouse climate models is given in a previous study [13].
An overview of greenhouse crop models and modelling approaches are given in other studies [14,15].
Dynamic greenhouse climate models and dynamic crop models have been used to determine setpoints
automatically and take over the decision of the grower. If climate and crop simulation models [15,16]
are combined and connected to the sensors and actuators of a greenhouse, greenhouse climate and
crop growth can be controlled by automated algorithms. Such experiments have been conducted
successfully with tomato [17] and sweet pepper in The Netherlands [18,19]. In this experiment, outside
weather conditions and weather forecasts were used for climate simulations. Crop growth simulations
were carried out along with the cropping cycle to predict further crop growth and development
for different sets of setpoints. The optimum set was then applied in the greenhouse automatically.
The computations were repeated every day, and in this way, crops were grown with an optimum
control strategy. Other experiments with tomato have previously been conducted [20].

Another way to take over parts of the decisions of a grower is to use machine learning
algorithms for greenhouse climate control [21]. Diverse methods have been applied in research,
such as K-algorithms [22], Bayesian networks [23], support vector machines regression [24–26],
neural networks [27–34], reinforcement learning [35], or genetic algorithms [36–38]. However, to our
knowledge machine learning has not been used yet to control climate and irrigation and make crop
management decisions for growing a greenhouse crop autonomously during a longer period with
yield levels comparable to commercial practice.

On the other hand, the use of artificial intelligence (AI) has reached major breakthroughs in several
areas of daily life and society, such as medical applications [39], autonomous cars [40], or robotics [41].
AI algorithms have been shown to outperform humans in complex decisions, e.g., checkers [42],
chess [43], and go [44]. It is obvious to use AI also for agricultural purposes [45].

In order to combine the use of modern AI algorithms and greenhouse climate, irrigation, and crop
growth control, in 2018 an international challenge on “autonomous greenhouses” was conducted at
the high-tech research greenhouses of Wageningen University and Research in cooperation with five
multi-disciplinary international teams. The challenge aimed at combining horticultural expertise with
AI to make breakthroughs in fresh food production with fewer resources. The experiment was set-up
with the goal of benchmarking the use of state-of-the-art AI algorithms for cucumber production. In the
experiment existing commercial greenhouse equipment (actuators), standard sensors for measurement
and control, and a standard commercial process computer were combined with the latest AI technology
in order to maximize net profit and minimize resource use, while controlling greenhouse crop growing
remotely. The goal of this paper is to describe the results obtained by teams concerning net profit and
resource use, to analyze differences in climate and crop growing strategies used, and to investigate
which lessons can be learned from the results for the future, in terms of optimizing crop yields and
net profit.

2. Materials and Methods

2.1. Greenhouse Compartments and Actuators

Six identical greenhouse compartments were available for the cucumber growing experiment.
Each compartment was equipped with standard actuators, also available in commercial high-tech
greenhouses (Figure 1). Two pipe heating systems, a rail pipe heating on the floor, and a pipe heating on
crop height (peak capacity 180 and 30 W/m2 respectively), were available, both controllable by different
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setpoints. Continuous roof ventilation (ventilation area of 0.3 m2 opening per m2 greenhouse, equipped
with anti-thrips netting), two types of inside moveable screens (LUXOUS 1547 D FR energy screen
and OBSCURA 9950 FR W light blocking screen, Ludvig Svenssion, Sweden), a high-pressure-sodium
artificial lighting system (capacity of 187 µmol/m2/s), a fogging system (maximum capacity of
330 g/m2/h), and CO2 supply (maximum capacity 15 g/m2/h) were available. Plants were grown in
rockwool substrate cubes and placed on rockwool substrate slabs; the plant-substrate system was then
located on hanging gutters. Irrigation water and nutrients were supplied with drippers operated by a
valve. The surplus of the nutrient solution (drain) was recollected in the hanging gutter in a closed
loop system.
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Figure 1. Greenhouse experimental compartments, 96 m2 ground floor (76.8 m2 crop-growing area)
equipped with different actuators. (a) Scheme of compartment with crop and actuators: roof ventilation,
two screens, artificial light, irrigation system, CO2 supply, two heating systems. (b) Picture of one
compartment with the young crop after the transplant.

2.2. Sensors and Remote Control

Five teams (Sonoma, iGrow, deep_greens, The Croperators, AiCU) were able to control the
operation of all actuators remotely based on their own AI algorithm. A sixth greenhouse compartment
was controlled by Dutch growers and served as a reference (growers = reference). Competing teams
used their own AI algorithms to determine the climate and irrigation control setpoints, such as
minimum rail pipe temperature (◦C), minimum crop pipe temperature (◦C), heating temperature
(◦C), ventilation temperature (◦C), minimum ventilation opening (%), humidity deficit setpoint (g/m3),
energy screen position (0–100%), blackout screen position (0–100%), artificial illumination (0% or
100%), CO2 concentration (ppm), and time between last and next irrigation turn (min). Setpoints were
sent via a digital interface (LetsGrow.com) to a central climate process computer (IISI, Hoogendoorn,
The Netherlands), which then operated the actuators accordingly (Figure 2). A nutrient solution
for fertigation was prepared by a central fertigation computer and then stored in a buffer tank per
compartment before being provided to the crop with drippers. The composition, concentration (EC),
and pH of the nutrient solution was determined by the teams. Based on detailed chemical analysis of
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the drain water, provided every fortnight, the teams could send requests to change the composition,
EC, and pH of the nutrient solution.
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Figure 2. Scheme of data exchange from the teams and their AI algorithm via a digital interface (REST
API) towards the process computer and the greenhouse actuators and data from sensors via the same
way back, data exchange between teams and workers on crop handling, and measured crop parameters.

Standard sensors continuously measured data, such as cumulative outside global radiation
(J/cm2/d), outside photosynthetically active radiation PAR (µmol/m2/s), air temperature outside (◦C),
outside relative humidity (%), wind speed (m/s), outside global radiation forecast (W/m2), outside
air temperature forecast (◦C), outside relative humidity forecast (%), wind speed forecast (m/s), air
temperature inside (◦C), air humidity deficit inside (g/m3), heating pipe temperature (◦C), heating
power used (W/m2) for both heating systems, lamp status (on/off), CO2 dosage (on/off), screen
position (%) of both screens, irrigation supply (l/m2), drain (l/m2), drain EC (dS/m), and drain pH (−).
The following data was calculated from the measured data: inside PAR sum (mol/m2), heating energy
used (kWh/m2), electricity used (kWh/m2), CO2 dosage (kg/m2), water consumption (l/m2), and was
provided to the teams as well. Measurements and calculations were sent back to the teams via a digital
interface (Figure 2). Both, setpoints for control of actuators and measurements were exchanged at
a 5-min-interval.

Teams were allowed to install additional sensors at the start of the experiment. They chose different
types of sensors, such as RGB cameras, thermal cameras, sensors for net radiation, root zone sensors, crop
and substrate weight, stem diameter, crop sap flow meters, and wireless temperature-humidity-light
sensor networks. One team chose to rely on the standard greenhouse sensors only (iGrow).

2.3. Crop and Crop Parameters

Cucumbers seedlings cv. “Hi-Power” were sown on 20 July 2018, in rockwool cubes and were
transplanted to the greenhouse compartments on 14 August 2018, at the start of the experiment.
The crop was grown in a high-wire growing system. Plant density and stem density had to be chosen
by the teams before the start, resulting in values between 2.6 and 3.6 stems/m2 (iGrow, 2.6 stems/m2;
deep_greens, 2.6 stems/m2; AiCU, 3.6 stems/m2; Sonoma, 3.3 stems/m2; The Croperators, 3.2 stems/m2).
The reference was 2.5 stems/m2. The first harvest was on 6 September 2018, and the last harvest was
scheduled for all teams on 7 December 2018. Based on this last harvest date, the date of topping (removal
of head of the crop) had to be chosen by the teams and differed from 19–28 November 2018. The
reference was topped on 9 November 2018. Crop development and harvest is shown in Figures A1–A4.

Teams sent weekly instruction for fruit and leaf pruning in the top of the canopy to the greenhouse
workers. Fruit pruning strategies ranged from a stable procedure of 50% fruit removal for the whole
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cropping period to a more variable strategy of removing alternately 50% and 67% of the fruits. With
respect to leaf pruning, the majority of the teams decided for on pruning (0%) or on pruning a small
fraction of leaves (33%). One team used a deviating strategy of removing 50% of the leaves throughout
the whole cropping. As a standard procedure applied to all crops, greenhouse workers removed leaves
below last harvested fruits. Three harvest quality categories were distinguished (A: >375 g and no
defects, B: 300–374 g or defects e.g., shape, color, others, C: <300 g per fruit). Harvest data such as
number and weight of fruits (#/m2 and kg/m2 per quality category A–C) were measured manually by
the workers. Crop related parameters such as stem elongation (cm per week), fruit growth period
(d per fruit), leaf formation rate (# per stem per week), and cumulative number of leaves (# per stem)
were also measured. Instructions by teams and data measured by workers were exchanged via the
digital interface (Figure 2).

2.4. AI Algorithms

Each competing team developed their own AI algorithms, which varied between supervised,
unsupervised, and reinforcement machine learning (Dynamic Regression, Deep Reinforcement
Learning DRL, Deep Deterministic Policy Gradient DDPG, Generative Adversarial Networks GAN,
Convolutional Neural Networks CNN, Recurrent Neural Networks RNN).

In order to use AI techniques, training data is essential. Since training data with a wide variation
for the described application are scarce, an artificial training data set was created. The use of artificial
training data sets has been shown to be very useful in other applications earlier [46]. In this experiment
artificial training data was created using the broadly validated dynamic greenhouse climate model
KASPRO [16] and the cucumber crop model INTKAM [15] that was modified for a high-wire cucumber
crop. The artificial dataset was provided to the teams before the start of the experiment.

2.5. Performance Criteria

Teams’ performance was evaluated based on three criteria.
Sustainability: 20% of the total score of a team was given for sustainability. The following

aspects were calculated based on measured data: Energy use efficiency (MJ/kg cucumber), CO2 dosage
(kg/kg cucumber), water use efficiency (m3/kg cucumber), pesticide usage as registered (mL/cucumber).

Net profit: 50% of the total score of a team was given for the net profit. Net profit was calculated
based on the following obtained data: number of fruits harvested x price per fruit and category.
The prices varied per week during the cultivation period and were determined by a jury at the start of
the experiment, and reflected an average seasonal trend. The prices varied between €0.30 and €0.40
per fruit (class A). B-class fruits had a 15% lower value, and C-class fruits had no value. The prices
were revealed on a weekly basis during the growing cycle in order to mimic price uncertainty, typical
for agricultural products in practice. Also, the initial costs for the young plants (costs of a young plant
x number of young plants placed in the compartment) and costs of the substrate were considered. This
way, the teams had to weigh the faster initial growth of a high stem density crop against the higher
initial costs. Other greenhouse equipment used was identical, and therefore not considered in the
calculation of the net profit. The fact that capital costs equal for all teams were left out of consideration
explains the high values of net profit shown in the results. Resource use of electricity, heating, CO2,
water, nutrients, chemical and biological pesticides, and labor were measured during the experiment
per greenhouse compartment, and assigned to the teams. Multiplied with the given price, costs were
calculated and communicated with teams weekly during the ongoing experiment.

AI algorithm: 30% of the total score of teams was given by a jury based on novelty of the AI
algorithm with respect to the overall scientific community, novelty with respect to application on
the horticultural domain (novelty), capacity to operate autonomously at a distance without manual
interventions (functionality), capacity to operate without too many additional sensors or information
(robustness), and easiness of implementation on a large scale (scalability).
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2.6. Analysis and Interpretation of Results

The AI-based operation of the different greenhouse compartments by different teams resulted in
different cropping, climate, and irrigation strategies, and different yields and resource use efficiencies.
In order to properly analyze and compare the different approaches, a combination of a dynamic
greenhouse climate model KASPRO [16] and a cucumber crop simulation model INTKAM [15], which
was modified for a high-wire cucumber crop, was used. The combined model assumes adequate
supply of water and nutrients and does not simulate the presence and effects of pests and diseases.

The KASPRO model computes the greenhouse climate as a function of outside weather conditions
and greenhouse climate control settings. The model processes these settings by a control algorithm
comparable to the ones used. The analysis was by commercial greenhouse climate computers.
The model takes full account of the limitations of real greenhouses, which means, for instance, that a
CO2 dosing setpoint of 800 ppm is simply not met in sunny periods when the vents are wide open
to carry off the heat excess. This is caused by the limitations in maximal supply rate, just like in
real greenhouses.

The greenhouse climate, as computed by KASPRO [16], is then fed to INTKAM [15], which
computes the daily gross photosynthesis from the sum of hourly photosynthesis-rates. The hourly
values are the result of light-intensity, temperature, CO2-concentration, and relative air humidity
in combination with the dynamically-simulated crop architecture (in particular leaf area index).
After subtracting maintenance costs, the daily amount of assimilates is partitioned over the growing
organs (roots, stem, leaves, and fruits) on the basis of their relative potential growth rates. Next, dry
matter fraction and fresh organ weights are computed, and finally the harvest moment of individual
fruits is determined on the basis of, amongst others, fruit weight [15].

With the availability of these models, the contribution of the variation seen in the control strategies
of the different teams in the final production could be determined. The variations applied referred
to both the observed cropping and climate strategies to interpret and understand the results of the
different AI-based operations and identify which additional improvements could have been made.

In a first step, the combined model was used to calculate the cucumber yield of each of the
compartments, while using the actually applied crop density, fruit and leaf pruning strategy, and the
realized lighting and climate (temperature and CO2) setpoints in that compartment as model inputs.
The calculated model output was the predicted fresh yield (kg/m2, #fruits/m2) per greenhouse
compartment, which could then be compared with the realized yield in the same greenhouse
compartment to validate the models.

In a next step, for each greenhouse compartment, model calculations were carried out applying the
cropping strategy of other teams or the reference in order to predict the changes in yield while maintaining
the original lighting and climate strategy. In another step, model calculations were carried out for
each greenhouse compartment, maintaining the original cropping and climate strategy but applying
the lighting strategy of the other teams. In another step, calculations were made for each greenhouse
compartment applying the climate strategy (CO2) of each of the other teams, while maintaining the
original cropping and lighting strategy. For joint comprehensibility, interactions of cropping, lighting,
and climate strategies were not calculated. The simulations of the swapping strategies represent the
yield retrieved prior to topping, to eliminate the effect of early topping dates selected by some of
the teams.

3. Results

In Figure 3, the cumulative cucumber production per team in the different greenhouse
compartments during the experimental period is given. From the beginning, one team (Sonoma)
had the highest production and was able to continue this, as is shown by the highest curve slope.
This team obtained this harvest with a high daily light integral (Figure 4), as they assumed that with a
higher daily light integral a greater harvest could be obtained. Therefore, team Sonoma focused its AI
algorithms on this particular aspect. The algorithm allowed them to obtain a high daily light integral
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by maximizing the amount of artificial light (Figure 5b), while optimizing other defining factors, such
as temperature and CO2. Hence, they realized the highest yield and they were also able to maintain
high light use efficiency of the crop for a long period (Figure 6).
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Another team (The Croperators) increased the daily light integral after a short period at the
beginning of October (Figures 4 and 5b), however, this did not lead to a higher light use efficiency
in October (Figure 6), since at the same time they maintained a low CO2 concentration. In addition,
they opted for a crop pruning strategy that resulted in insufficient assimilates to sustain the growth
of all fruits, and is probably the cause of approximately 30% aborted fruits (Figure 7). These results
show that a high daily light integral and a high CO2 concentration are important production factors,
which is related to their effect on the photosynthesis rate [47] for cucumber production, together with
balanced crop management (stem density and pruning strategy).

Growers (reference) started with a relatively low harvest. They allowed lower daily light integrals
at the beginning (Figure 4), and therefore only used low levels of artificial light (Figure 5b), with the
philosophy that this approach would prepare the crop better for the approaching autumn season.
They were able to balance supply of, and demand for, assimilates with their crop pruning strategy,
which resulted in the lowest amount of aborted fruits (Figure 7) and a high light use efficiency (Figure 6).
In fact, the manual growers were able to realize the highest light use efficiency during almost the whole
cropping cycle. Minimizing fruit abortion is an important objective for cucumber growers, and this
strategy was clearly and successfully applied by the manual growers.
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Figures 8 and 9 show the CO2 concentration and the CO2 dosage realized per team, respectively.
All teams started with relatively low CO2 concentration, due to loss of CO2 due to high ventilation
rates. Most teams increased CO2 concentration from mid-October onwards. From mid-November
towards the end of the experiment, most teams lowered the CO2 dosage. Team Sonoma increased the
CO2 concentration continuously during the total cropping period. The Croperators suddenly doubled
the dosage and concentration towards the end of the crop (Figure 9) and were able to catch up with
their harvest with that strategy (Figure 3). Team deep_greens had the highest total dosage, which did
not, however, lead to high concentrations, due to an unfavorable ventilation strategy (data not shown).
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Fruit growth duration is the time between flowering and harvest of a cucumber fruit, and varied
between as little as 11 days to as much as 24 days. The overall average fruit growth duration was
17.3 days, but varied notably between the different teams. Deep_greens had the shortest (13.4 days)
and AiCU the longest (21.6 days) average fruit growth duration. This correlates with the average
greenhouse temperature during the fruit growth period (Figure 10). Figure 10 shows the average
greenhouse temperature to which fruits were exposed during growth.

Figure 11 shows the amount of heating energy. Team deep_greens show a very different strategy
from the others because their algorithm decided to create a very warm air temperature, probably
to shorten the fruit development time. This resulted in a high resource use for heating (Table 1).
Together with high daily light sums, mainly from artificial light (Figure 5b), while blocking natural
light (Figure 5a), especially at the beginning, they were able to have a good harvest during the first
weeks, but at the cost of high resource use on electricity (Table 1). Unfortunately, in October, technical
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problems (connection of AI remote control) and extremely low irrigation during several days led to a
dip in harvest, from which they were not able to catch-up again.

Team AiCU applied relatively low temperatures (Figure 10) and a low daily light integral (Figure 4),
while maintaining the highest fruit density (number/m2), which together explain the extremely high
fruit abortion rate (Figure 7) and low light use efficiencies (Figure 6). The Croperators, due to the
detection of small fungal disease spots in their compartment in November, were advised to lower
the humidity levels. In order to reduce relative air humidity, they deactivated the misting system
(which was intensively used in the second-half of October; data not shown) and started ventilating by
opening both lee- and wind-side vents. Setting the minimum temperature of the pipe rail system to 40
◦C allowed for maintenance of the air greenhouse temperature (night = 19 ◦C and day = 25 ◦C) and
prevented it from falling, while ventilating. For this reason, the strategy led to a steep increase of the
heating energy demand (Figure 11) but not to such an evident increase in the air temperature in the
same timeframe.
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Figure 10. Course of average greenhouse air temperature during the fruit growth period in different
compartments during the cucumber experiment. The lines are, therefore, the moving average of
greenhouse air temperature in the fruit growth period preceding each harvest. The curve of AiCU, being
a moving average of the temperature in 22 days, is therefore smoother than the curve of deep_greens,
which is a result of a 13-day moving average.
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In Figure 12 the course of irrigation supply is given. Notable is the relatively high amount of
irrigation supply of team The Croperators, and also the relatively high supply of the reference growers.
In this experiment, high drain did not result in high water use because drain water was captured
and fed back to the irrigation water, while taking the nutrients from the drain water into account
when refilling the irrigation water buffer tank. High or low drain might affect the root quality, since it
influences the oxygen availability. However, in this experiment such effects were not analyzed in detail.
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Figure 12. Course of irrigation water supply (a) and drain percentage (b) in different compartments
during the cucumber experiment.

In Table 1 the sustainability factors obtained during the growing experiment are presented for
each team. In general, team Sonoma was able to realize the lowest resource use for CO2, heating, and
water per kg cucumbers produced (class A + class B). Only on electricity use for artificial light did
they realize average values. The reference team of growers obtained the lowest usage of electricity.
In total, deep_greens obtained the highest resource use for heating, electricity, and CO2 (Table 1), which
together with low production also led to a low net profit (Table 2). In Table 2, costs, income, and net
profit are shown for each team. Highest net profit was obtained by team Sonoma, whose AI strategy
resulted in a better performance than the manual growers. Sonoma won the challenge.

In order to analyze the different cropping, lighting, and climate control strategies, we used a
combination of a dynamic climate and crop model. The validation of model predicted yield per
greenhouse compartment and realized yield per team, and thus the greenhouse compartment is shown
in Figure A5. A good agreement was found for all teams and compartments, except for deep_greens.
The reasons for the poor agreement of predicted and realized yield for deep_greens were technical
problems (connection of AI remote control) and extremely low irrigation over several days, which was
not simulated by the combined model. The data of deep_greens is, therefore, not considered further in
the analysis.

In Figures 13 and 14, the results of the strategy analysis on cucumber yield and net profit are
shown, respectively. The winning team, Sonoma, could have improved their yield by applying the
cropping and climate (temperature and CO2) strategy of AiCU, whereas AiCU could have improved
their yield, and thus net profit, by applying the lighting strategy of Sonoma. From that we conclude
that a dense crop with a high number of fruits per m2 is only effective when combined with a high
light integral and high levels of temperature and CO2.

In summary, most teams were able to obtain a good production and low resource use and reach a net
profit close to the performance of manual growers, or even better. All data of the growing experiment is
published under doi 10.4121/uuid:e4987a7b-04dd-4c89-9b18-883aad30ba9a (Supplementary Materials).
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Table 1. Sustainability factors of different teams obtained per kg cucumber (fresh weight) during
the experiment.

kg kWh kWh L mL

CO2 Electricity Heat Water Pesticide

per kg Cucumber

Reference 0.20 3.02 3.20 5.52 0.34
Sonoma 0.20 3.59 2.49 4.91 0.35
iGrow 0.20 3.12 2.94 5.89 0.39

deep_greens 0.47 4.39 13.61 5.87 0.49
The Croperators 0.29 3.82 4.87 5.98 0.35

AiCU 0.26 3.17 3.13 7.62 0.48

Table 2. Costs and income of different teams per m2 greenhouse area.

Reference Sonoma iGrow Deep_Greens The Croperators AiCU

Young plants and
substrate slabs €3.74 €2.74 €3.74 €2.29 €2.74 €2.47

Electricity €8.89 €10.97 €8.68 €9.35 €10.91 €7.04
Heating €0.95 €0.77 €0.82 €2.92 €1.40 €0.70

CO2 €0.59 €0.62 €0.55 €1.00 €0.85 €0.59
Water €0.27 €0.25 €0.28 €0.21 €0.29 €0.28

Labour €8.32 €9.47 €8.85 €8.73 €9.48 €10.03
Costs €22.76 €24.82 €22.92 €24.50 €25.67 €21.11

Income €43.94 €49.60 €42.95 €31.88 €42.82 €36.21
Net Profit €21.18 €24.78 €20.03 €7.38 €17.15 €15.10
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strategy) they could have realized a yield of approximately 40 kg/m2, while with the lighting strategy 

of AiCU, it would have been only approximately 33 kg/m2. 

Figure 13. Realized cucumber production (greyscale bars) and predicted cucumber production per
greenhouse compartment of different teams (iGrow, Reference, AiCU, Sonoma, The Croperators), using
the cropping (1st bar), lighting (2nd bar), or CO2 (3rd bar) strategy of each of the other teams. Solid
lines within the greyscale bars indicate lower production than that realized by the team, whereas the
top colorless bars represent higher predicted production, e.g., team iGrow realized a cucumber yield of
approximately 36 kg/m2; with the lighting strategy of Sonoma (but same climate and cropping strategy)
they could have realized a yield of approximately 40 kg/m2, while with the lighting strategy of AiCU, it
would have been only approximately 33 kg/m2.
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Figure 14. Realized net profit (greyscale bars) and predicted net profit per greenhouse compartment of
different teams (iGrow, Reference, AiCU, Sonoma, The Croperators) using the cropping (1st bar), or
lighting (2nd bar) strategy of each of the other teams. The predicted net profit under the different CO2

strategies for each team is not illustrated due to the limited effect on net profit.

4. Discussion

4.1. Crop Growing Strategy

The goal of climate and crop management is to maximize total crop growth rate by finding the
best balance between climate factors (light, CO2, temperature) and crop characteristics (plant and
stem density, leaf area, fruit removal), such that the maximum fraction of assimilates is distributed to
the fruits. This is achieved by maintaining the maximum number of fruits per m2 without affecting
photosynthetic capacity. If fruit load is too high in relation to photosynthetic capacity, young fruits will
abort, which will have a negative impact on total production. If fruit load is too low, production will
be relatively low, as there is a limit to fruit weight. The consequence is that there is a close association
between the total number of fruits harvested and total fresh production. Cucumber fruits are harvested
when they have achieved a certain weight, and fruit weight is closely related to fruit length [48], which
is the most important quality trait.

Light is the basis for plant growth, as it provides the energy for photosynthesis [47,49]. CO2 air
concentration is the other important environmental factor, being the carbon source for plant growth.
Light and CO2 interact in a non-linear manner, but on the whole, both factors have a stronger positive
effect at higher levels of the other factor [50,51]. Under the circumstances of the experiment, higher light
integrals resulted in higher yields for the teams. Team iGrow, AiCU, and the Reference would have
reached higher yields under the supplemental lighting use of Sonoma or The Croperators (Figure 13).
The large relative effect of light on yield is illustrated by the fact that team Sonoma could have reached
only slightly higher yields at higher CO2 dosages. Inter-changing CO2 application strategies did not
result in strong production increase (Figure 13). This does not mean, however, that other settings with
different levels of light and CO2 in combination with a different crop management could not have
resulted in even higher productions. Furthermore, light and CO2 management are an integral part
of greenhouse and crop management [52]. The scenarios illustrate the importance of simultaneously
defining the lighting regime with crop management, plant and stem density, and leaf pruning strategy,
as these affect light interception.

As photosynthetic capacity is mainly determined by light and CO2, teams that maximized these
factors achieved the highest production (Figure 13). The difficulty is in anticipating future weather
conditions. For example, if high light levels are expected, fruit load can be increased; however, if
light levels remain low relative to the fruit load, abortion and un-even distribution of fruits over the
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stem will be the result. Growers manage their crops with this understanding, but may reduce risks
by maintaining sub-optimal amounts of fruits in relation to future conditions. AI control can make
such choices more explicit and find better combinations of growing conditions (combining weather
forecasts, lighting, and CO2 strategies). This was demonstrated in this experiment, where the reference
team of growers would have increased their yield and net profit by applying the lighting and cropping
strategy of Sonoma.

The different lighting strategies of the teams illustrated the predominant effect of daily light
integrals on yield and net profit. Among the factors affecting the economic feasibility of implementing
higher light integrals are the energy costs and the product market price. Considering the low cost of
electricity and the rule of thumb that a 1% increment in light returns a 1% increase in yield [50], the
strategy of Sonoma to maximize the amount of artificial light while optimizing limiting factors, such as
temperature and CO2, paid off.

4.2. Control Strategy

Greenhouse production is the result of complex interactions between physical, chemical, and
biological processes of climate, water and nutrient supply, crop growth, and development [53]. Despite
occurring instantaneously, the effects of climate on the crop are not immediately perceptible, but in
response times that differ from less than a second (e.g., photosynthesis) to weeks (e.g., harvest
weight). Crop responses to greenhouse management in conventional greenhouse systems are
observed and evaluated by the growers who optimize the dynamic behavior of the system based on
long-term accumulated experience and intuition [53]. In modern greenhouses, climate computers allow
adjustment of a great amount of settings by the grower. However, crop management (fruit and leaf
pruning, harvest) is decided upon, and carried out, manually. In the autonomous challenge, the climate
in the manually grown reference was managed by growers with the aid of a climate computer that
provided information on the outdoor and indoor climate. As modern greenhouse climate computers
are parameterized in order to perform large parts of the greenhouse climate control automatically,
the manually operated greenhouse required only occasional adjustments of the settings based on the
observed and registered crop responses.

Optimal control refers to a control strategy that maximizes an explicit goal function [53]. Dynamic
modelling is a key element towards intelligent determination of set points while considering optimal
control. Previous research on this topic encompassed combined dynamic crop [18] and climate
models [16] to determine temperature strategies that reduce production fluctuations and heat
consumption in sweet pepper [19]. A multi-objective hierarchical control system was applied in a
previous study [20] to determine reference trajectories for diurnal and nocturnal climate (temperature)
and fertigation (EC) set points to maximize profit, tomato fruit quality, and water use efficiency.
Mathematical dynamic models are built on scientific knowledge that describes the complex interactions
within a greenhouse system. They enable a quantitative approach of the greenhouse system as
transparent mechanistic models [13], allowing for optimization algorithms to find an optimal control,
and they are physically interpretable.

Together with the expansion of cloud computing technology and the greater capacity of data, AI
techniques are likely to be more suitable than mathematical models [54] in dealing with complex systems
such as greenhouses. Continuous learning and adaptation of AI algorithms on historical data allows
optimization of greenhouse processes and performance of certain tasks [45], such as determination of
climate set points for growers. Previous studies in the field of greenhouse production on the control of
climate variables with AI techniques have been carried out [21,22,28,35,54,55]. However, the studies
were focused on the optimization of restricted amounts of environmental or crop variables.

During the autonomous greenhouse challenge, 5 teams developed an AI framework to reach
a high net profit while maximizing the resource use efficiency of cucumber greenhouse production.
The value of estimating optimal strategies on time series input depends on the future states of the
system, which can be difficult to model using conventional supervised learning methods. Even though
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time series forecasting remains a complex task, deep neural networks have demonstrated in previous
studies their ability to learn the non-linear dependencies and generate robust algorithms [56,57].
The complexity of the greenhouse production systems in these experiments was addressed by almost
all teams with deep neural networks (deep_greens), architectures such as convolutional neural network
(CNN; The Croperators) and recurrent neural network (RNN; AiCU tested this next to dynamic
regression model and expert decisions), combined with reinforcement learning principles, such as
model-based Bayesian reinforcement learning (BRL; Sonoma) and deep deterministic policy gradient(
DDPG; iGrow used this together with GAN networks).

Model-based Bayesian reinforcement learning (BRL) has generated significant interest by the AI
community. Learning with BRL is achieved by calculating the posterior distribution of the observed
data. Incorporation of domain knowledge in prior distribution and notions of risks into the algorithm
enables the acceleration of the learning process, yielding more robust policies [58,59]. BRL provides an
elegant solution to the action-selection (exploration-exploitation) tradeoff in classical reinforcement
learning [60]. Team Sonoma built a BRL algorithm that included different components aiming at
encoding the expert policy and transferring it into a learnable model by means of imitation learning.
The initialized agent operated on a continual model-based policy optimization process, that improved
its performance through every environmental interaction. Due to the relatively short timeframe of the
challenge, the team relied on a hand-crafted expert policy without accounting for continuous learning.
Sonoma tried to incorporate the best knowledge on climate and crop management, starting from the
assumption that light is a defining growth factor for a high-wire cucumber crop [50]. Based on this
assumption they developed a temperature and CO2-based artificial light control optimization strategy.
The algorithm accounted for short-term forecasts of outside global radiation to facilitate decisions on
the control of the lighting system.

Deep Deterministic Policy Gradient (DDPG) is a policy-based learning algorithm, suitable for
solving continuous actions, in which the agent directly learns from unprocessed observations through
the policy gradient method, which relies upon the optimization of parametrized policies with respect
to an expected return through gradient ascent [61]. Furthermore, Generative Adversarial Networks
(GAN) belongs to a set of generative models, as they are able to produce new content. The GAN
framework simultaneously trains a generative model that captures the distribution of data and a
discriminative model that estimates the probability that a sample comes from training data rather than
from the data of the generative model. The learning of the generative model is based on maximizing
the probability of the discriminative model to detect the origin of the data. This competition enables
improvement of both methods until the data origin is indistinguishable [62]. Team iGrow implemented
a DDPG lifelong learning algorithm and a GAN framework to initially train their AI agent on a
simulation environment and then transfer the knowledge gain into the greenhouse experiment. In their
methodology their algorithm learned conditional distributions over future states of the greenhouse
system, given the current states and possible actions that the agent could receive as an input. The agent
queried the model with the various actions and selected those that maximized net profit by considering
predictions of the cucumber price and resource efficiency. The final decisions were made by selecting
the actions that resulted in less variance of the Q value.

The Croperators developed a greenhouse control system aiming to be easily implementable in
commercial greenhouses. The conceptual scheme is based on a 3-layer approach trying to mimic the
levels of greenhouse management normally performed by growers. The system ranges from a top
layer that is close to the growers and includes a transparent understandable model, to a bottom layer
that is based on black box CNN model. A similar hierarchical approach decision system has been
previously described [54]. The top layer was used to determine the long-term crop management strategy
based on a crop growth simulation model that is able to predict crop growth and the energy-climate
requirements. The output of the top layer is the average climate targets of temperature, relative air
humidity, CO2, and supplemental light needed to reach their goal function, which was maximizing net
profit. The intermediate layer received the daily climate targets together with weather forecast, real
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time indoor climate, and data from the additional sensors of the team, and generated as an output
the ideal climate trajectories, aiming at meeting the daily targets. The bottom layer was the actual
operative section, meant to define the setpoints in order to reach the optimal climate profiler. Unlike
the other teams The Croperators measured crop fresh weight with a weighing gutter, estimated fruit
weight, and incorporated these data along with 24 h climate data into their algorithm. Data from the
plant-based monitoring system of a previous study [28] were also included, as suggested in literature
by different authors [28,54,63,64].

The teams integrated expert policy into their AI approach in a unified framework. Decisions
regarding the climate and irrigation control strategies were taken autonomously in different time
intervals by the learning algorithms, whereas the additional expert agents corrected for extremes.
Despite the available results on crop responses, crop-related decisions, such as leaf pruning strategy
for all teams, except The Croperators, were determined by expert policies and not by the algorithms.

Artificial datasets were initially generated with the available climate and crop models and enabled
the development of the elementary framework. The predictive and prescriptive power of the algorithms
depended partly on the training datasets, and may have restricted algorithms in making early-season
crop management decisions. Algorithms capture information present in the data, and the limited
variation among the attributes in the training datasets may have affected the performance of the
algorithms in the beginning of the experimental period [65]. However, the idea of the experiment was
that over the course of the season, the AI algorithms would be improved on the basis of provided
management decisions and their effects on greenhouse climate and crop production. As could be
observed, towards the end of the growing period, all algorithms indeed managed to establish a
favorable greenhouse climate.

4.3. Sensors

Next to the standard sensors, teams used additional sensors (data not shown). We did not see
a correlation of overall yield and net profit results obtained by the teams with the type and number
of additional sensors used. Team Sonoma only used an additional leaf wetness sensor for their AI
algorithm and obtained the overall best results. The good result was, however, satisfactorily explained
by the high light integral and CO2 concentration. At the beginning of the experiment they also
installed 8 RGB cameras. However, the images from these cameras were not used in the AI algorithm.
Team iGrow did not install any additional sensors but was able to come close to performance of the
reference. The Croperators installed the highest number of additional sensors. They installed several
crop related sensors, such as a weighing gutter to determine crop transpiration (by measuring crop
and substrate weight), and other sensors to monitor crop temperature, stem diameter, and crop sap
flow meters. All the additional information from the other sensors did not seem to give them an
obvious advantage concerning the end result. Therefore, no clear correlation of overall performance
of teams can be made with the type and number of additional sensors used. However, since in this
experiment important crop performance information was still obtained by manual counting and
measuring, we cannot conclude that additional sensors may not be useful in the future. It might be
that AI control of crops in greenhouses can substantially be improved by a dedicated choice of robust
sensors giving direct information on crop performance, instead of indirect information on aerial or
root zone environment of the crop (climate and irrigation). Automated information on crop growth
parameters (stem elongation, fruit development time, leaves formation rate, cumulative number of
leaves), now manually obtained by the greenhouse workers, would be essential.

5. Conclusions

The first successful benchmark experiment on remote control of greenhouse cucumber production
with the use of state-of-the-art artificial intelligence algorithms has been carried out. We showed that
AI algorithms can compete with experienced manual growers and can even outperform them.
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However, more developments towards robustness, scalability, and generalization of algorithms
will be essential. For the development of new AI algorithms, a large and complete set of training data
with a wide range of variations will be needed. We have shown that artificial training data do provide
a first step when real training data is lacking. However, current artificial data do not cover all aspects
(e.g., pest and diseases) and provide only a limited description of the actual crop management.

To make the step towards a real “autonomous greenhouse”, it would be required to automate
crop registrations and obtain automated data on pest and diseases. Next to that, it might be helpful to
explore how manual labor in the greenhouses can be automated or robotized.

In the meantime, AI has affirmed that a combination of high amount of light, temperature, and
CO2 at the right moments during the production process are essential to obtain high profits in an
autumn cucumber crop cycle. Analyses showed that this strategy would have paid off even more at
high plant densities. Manual growers can apply the lessons learned directly to their daily practice,
even without AI.

AI-assisted or -managed greenhouse production can potentially improve crop production in
locations where knowledge is limited, possibly also in greenhouses operated by highly skilled personnel.
The technical make-up of the greenhouse has to meet certain minimum criteria to enable this. For
example, sensor and communication facilities have to be in place, the greenhouse construction and
installations should enable interventions, and fertigation and crop protections should meet minimum
standards. Further development will be needed to make AI a full alternative for the top grower-skills
that are nowadays required for (near)-optimal greenhouse production.

Supplementary Materials: Data collected in this research is available on https://doi.org/10.4121/uuid:e4987a7b-
04dd-4c89-9b18-883aad30ba9a.
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Figure A4. Cucumbers harvested, pictures of fruits from different compartments of teams:
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