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Abstract: Precise measurements of low pressure are highly necessary for many applications. This study
developed novel structured fibre sensors embedded in silicone, forming smart skin with high
sensitivity, high durability, and good immunity to crosstalk for precise measurement of pressure
below 10 kPa. The transduction principle is that an applied pressure leads to bending and stretching
of silicone and optical fibre over a purposely made groove and induces the axial strain in the gratings.
The fabricated sensor showed high pressure sensitivity up to 26.8 pm/kPa and experienced over
1,000,000 cycles compression without obvious variation. A theoretical model of the sensor was
presented and verified to have excellent agreement with experimental results. The prototype of
smart leg mannequin and wrist pulse measurements indicated that such optical sensors can precisely
measure low-pressure and can easily be integrated for smart skins for mapping low pressure on
three-dimensional surfaces.

Keywords: pressure sensor; fibre Bragg grating; high sensitivity; high durability; soft matrix

1. Introduction

Precise measurements of low pressure are highly necessary for many applications involving
human interaction with industrial machines, vehicles in traffic accidents, robotic exoskeletons, contact
sports, daily activities and healthcare applications [1–6]. The exerted pressure on a human body
widely ranges from below one pascal to hundreds of kilo-pascals (kPa) or higher; for example, acoustic
pressure in ears is normally below one pascal, and plantar pressure can be over hundreds of kPa when
the people is running or jumping [7,8]. Excessive pressure, that is, pressure of about 4.33 kPa and above
that induces capillary closure, will make people feel uncomfortable, have numbness of the affected
body part, or even suffer from series health issues [9–11], and on the contrary, insufficient pressure will
limit the efficacy of treatments. These differences highlight the significance of the precise measurement
of pressure. Extensive research has been devoted to developing sensors, converting variation of the
excreted pressure to perceptible signals including mechanical [12], electrical [3,12–16] and optical
signals [2,5,17–21], for precise measurement. Relative to electrical sensors [14–16], optical fibre sensors
have specific advantages of high sensitivity, robustness, good immunity to electromagnetic interference,
the intrinsic safety without electricity at the measuring point, and ease of integration, that is, one
optical fibre can have multiplexed strain/temperature sensing units by using the technologies of
wavelength-division-multiplexing, fibre Bragg gratings and others. Such optical sensors have been
demonstrated to monitor low pressure in the healthcare fields, such as measurements of planter
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pressure [2], blood pressure [22] and human vital signs [23], showing immense potential to form
the sensing network for smart skins for precise measurement of low-pressure at human–machine,
human–building, human–human and human–garment contact.

Various types of pressure sensors have been investigated based on fiber Barrage gratings (FBGs).
The sensitivity of the FBG sensor, which is fabricated either by using FBGs alone or FBGs combined with
a conventional transfer-structure, is too small for precise measurement of low-pressure. For example,
the sensitivity using FBGs written on the conventional single mode fibre is only ~4 pm/MPa [24], and
the sensitivity can be improved to ~13 pm/MPa using a six-hole suspended-core fibre [25], ~44 pm/kPa
using a single-ring suspended fibre [26], and ~200 pm/MPa using polymer optical fiber [27]. Through
an effective transfer-structure, we reported that a pressure sensor with lab-made polymer fiber Bragg
gratings embedded in silicone, an ultrahigh pressure sensitivity was demonstrated up to 0.8 pm/Pa
(800,000 pm/MPa) in the range of 0–2.4 kPa [17]. However, the size of such transfer-structure was large
and thus the fabricated sensor was inconvenient for integration of smart skins. Furthermore, compared
with commercial FBGs made of silica optical fibers, the lab-made polymer fiber Bragg gratings has
a poor humidity stability, a short life and high cost. Therefore, it is highly desirable to develop an
effective transfer-structure for small-size pressure sensors based on commercial silica FBGs.

Embedded in a soft matrix that forms a smart skin, the sensor acquires flexibility, softness and
ease in integration. A smart skin normally requires numerous sensors for pressure mapping, in which
one optical fibre integrates several sensors. The embedded sensor may behave drastically different
from the stand-alone one, because of variation of constraint conditions and crosstalk. The physical
properties of the sensing unit, such as elastic modulus, flexibility and thermal expansion coefficient, are
normally different from those of matrix. These mismatching physical properties of optical fibre and soft
matrix cause that challenges remain. For example, the elastic modulus of optical fibre made of silica is
three orders higher than that of soft matrix (silicone). Stress/strain of optical fibre induced at adjacent
zones of the sensing unit will transmit along the optical fibre without enough reduction in amplitude.
This phenomenon drastically influences measurement. Furthermore, an effective transfer-structure
that induces strain at gratings is necessary when low pressure is applied to a soft matrix. If temperature
changes, the stress state among optical fibre, matrix and other components also varies due to different
thermal expansion. Such variations cause that the responses of optical sensor drastically deviate
from those of stand-alone sensors. Although previous studies reported the application of optical
sensors [17,22,23,28,29], with high sensitivity, they mainly research behaviors of the stand-alone sensor.
Therefore, a holistic design is highly necessary for developing a stable and sensitive sensor integrated
in smart skin for the precise measurement of low-pressure.

This paper develops a novel structured fibre sensor embedded in silicone for the precise
measurement of low pressure. The fabricated sensor has high sensitivity, good repeatability and good
durability. A theoretical model of such optical sensor is presented and verified to have an excellent
agreement with the experimental results, which can be a powerful tool to guide the structural design of
devices and the selection of materials utilised in the structured fibre sensor for intended applications.
The demonstrations of a smart leg mannequin and pulse wave measurements show the potential
applications of smart skin for mapping low-pressure on three-dimensional surface.

The paper is organized as follows. The design and theoretical treatments of optical sensors are
first introduced in Section 2. The calibration of the fabricated optical sensors as well as durability,
temperature effect and mutual influence of optical sensors are discussed in Section 3. Two applications
are demonstrated in Section 4. Finally, conclusions are drawn in Section 5.

2. Materials and Methods

2.1. Structural Design

To enhance the stability and sensitivity of structured fibre sensors, we introduced an effective
transfer-structure, that converts the applied pressure into the axial tension of gratings. The proposed
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sensor, shown in Figure 1a, comprises an optical fibre with Bragg gratings, a rigid base with a
rectangular groove, a spacer, a thin film on the base and matrix, where the thin film and matrix
are made of same soft materials. This architecture has the following merits. (1) Unlike those of the
previous designs [17,22,23,28,29], the sensing behavior of FBGs can be localized at a small zone, that
is, the groove on the rigid base. The rigid base as the transfer-structure can effectively isolate the
deformation of soft matrix and optical fibre due to its high rigidity and the strong constraints between
the base and optical fibre, and between the base and the thin film. Thus, such transfer-structure can
effectively reduce crosstalk among sensors; (2) High sensitivity to pressure can be easily achieved,
because after fabrication, an air pocket forms in the groove and a spacer is mounted between the thin
film and the optical fibre, making the FBGs is easily deformable and highly sensitive to the variation of
applied pressure; (3) The measured range of pressure and the sensitivity can be adjusted by selecting
matrix with different elastic modulus, or by changing geometric parameters of components, including
the size of the groove and the spacer, and the thickness the thin film; (4) Reducing the temperature
effect can be achieved by selecting materials with proper thermal expansion and high elastic modulus
for the base.
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Figure 1. (a) Schematic of the smart skin with optical sensing networks and a measurement system,
the proposed optical sensor, and the cross-section of optical fibre; Three models are utilised in theoretical
analysis: (b) A simply supported rectangular plate under uniform load, p1, uniformly distributed on
a rectangle zone at centre, which is corresponding to the size of the spacer; (c) A simply supported
rectangular plate under uniform pressure; p, and (d) A built-in beam under a uniform load, q, at the
centre part, which corresponds to the length of the spacer.



Sensors 2019, 19, 1811 4 of 15

2.2. Materials and Fabrications

SMF-28® ultra-optical fibre (Corning Inc., New York, NY, USA), made of silica and polymer
coating, is selected as optical fibre, due to its good mechanical and thermal reliability. The length of
gratings is about 3 mm, and the Bragg wavelength is 1548 ± 0.5 nm. The thin film and matrix are made
of silicone (Type of 903, Dongguan Xinrun Group Limited, Dongguan, China), because this material
has an approximately linear relationship between stress and strain and low hysteresis, as shown in
Figure S1 of the Supporting Information. The base is made of Acrylonitrile Butadiene Styrene (ABS) or
invar, whose elastic modulus is several orders higher than that of silicone. Photo paper is used as the
spacer, due to its elastic modulus of dozens of megapascal in compression, in the medium between
those of silicone and optical fibre, smooth, and ease of fabrication.

Fabrication of the proposed sensor includes seven major steps. Step 1: A silicone film measuring
50 mm in length, 20 mm in width and 1 mm in thickness was manufactured by using a Teflon mould.
Step 2: Bases made of ABS or invar were manufactured by 3D numerically controlled machine tools.
These bases have a rectangular groove with 20 mm in length, 5 mm in width and 1 mm in depth. Step 3:
Optical fibre with Bragg gratings was straightened by stretching and then fixed on the base using
instant glue (Aron Alpha, Toagosei Co., Ltd., Japan). The gratings were placed at the centre of the
groove. It is noted that the coating layer of optical fibre at the parts connected to the base was stripped
away, to ensure a good connection between optical fibre and the base. Step 4: A spacer was fixed
on the centre of the silicone film, and then the silicone film was fixed on the top surface of the base
using a small amount of silicone sealant. An air pocket was thus formed in the groove. Thereafter, the
optical fibre in the groove achieved a slight pre-tension below 0.05% strain. Step 5: The fabricated
unit was placed on the center of the mold, fixed by some silicone mixture (Type of 903, A: B = 100:1
in weight ratio). Additional silicone mixture was then added into the mould unit it was full. Step 6:
The whole set was placed on a horizonal table at room temperature of 22 ± 1 ◦C for more than 8 h,
until all the silicone was curing, meanwhile, and all air bubbles were removed. Step 7: The optical
sensor was demoulded.

2.3. Theoretical Analysis

2.3.1. Construction of Theoretical Models

The facture strain of an optical fibre made of silica is about 0.6% [30,31], showing the upper limit
of the applied strain in measurements. Meanwhile, the durability of optical fibre sensors mainly relies
on the level of the working strain [31]. The measured ranges in applications are normally different,
such as the pressure applied by garments ranges from unit to several kPa [9,11], whereas the foot
plantar of human can be up to 3 MPa [8]. Therefore, reasonable sensitivity is required in applications.
And thus, it is highly desirable to construct a theoretical model to guide the design of the structured
fibre sensor for intended applications.

To construct the theoretical model, several assumptions are made. First, all components only
experience small deformation due to the small fracture strain of optical fibre made of silica. Accordingly,
assuming that all components are made of linear-elastic materials is reasonable. Secondly, optical fibre
is well fixed on the base by instant glue. Such fixed optical fibre with gratings in the groove can be
considered as an elastic beam with the built-in condition at both ends. Thirdly, the film over the groove
is simplified as a simply supported plate, because only part of bottom surface of the film is fixed on
the base, whereas the top surface of the film is free. Fourthly, the groove has enough depth, thus,
optical fibre does not touch the bottom of the groove during measurements. Fifthly, the influences of
the spacer on the flexural stiffness on optical fibre and the film are neglected. Moreover, the spacer
is sufficiently thick to separate optical fibre and the film over the groove. Sixthly, the wavelength
shift of FBGs induced by radical pressure from the spacer can be neglected [18]. On the base of these
assumptions, three cases are included in theoretical analysis: a simply supported rectangular plate
with a load uniformly distributed over a rectangle zone, which corresponds to the size of the spacer
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(Figure 1b), a simply supported rectangular plate under a uniform pressure (Figure 1c), and a built-in
beam under a uniform load over the centre part (Figure 1d).

From the theoretical treatment shown in Section S1 of the Supporting Information, the average
stain, ε, of FBGs in the axial direction can be estimated by

ε =
1
a

∫ a/2

−a/2
Wdx− a

, (1)

where a is the length of the groove, and W represents the deflection of optical fibre in the groove. W is a
complex function of the applied pressure, p, the structural parameters and mechanical properties of the
components of the optical sensor, thus, the possessing ε is equally complex. Then the wavelength shift,
∆λ, of FBGs, induced by ε and the change of temperature, ∆T, is given by the following relation [32,33].

∆λ = (Csε+ CT∆T)λB, (2)

where λB is the initial Bragg wavelength of FBGs, CS is the coefficient of strain, and CT is the coefficient
of temperature change.

2.3.2. Effects of Parameters in Simulation

Figure 2 presents the effects of parameters, including parameters of structures and mechanical
properties of the components, on the wavelength shift of FBGs based on the above theoretical models.
The parameters of the structure and materials utilised in calculation are listed in Table 1. As shown
in Figure 2a, the contour lines of the wavelength shift of FBGs indicate that a larger value of the
wavelength shift is normally obtained at a larger groove width, b. Moreover, the contour lines have
valleys or monotonically increase with the increase in the groove length, a, indicating an optimal value
of a for obtaining the highest value of the wavelength shift when b is given. For example, when b is
4.5 mm, the peak value of the wavelength shift of 500 pm is obtained at a of 7.5 mm, and when b is
3 mm, the highest value of 484 pm is obtained at a of 5 mm. The effective stiffness of the thin film,
D, which is a combined factor of elastic modulus of E, Poisson’s ratio of µ and thickness of h, shown
in Section S1.1 of the Supporting Information, plays an important role on the wavelength shift: with
reducing the value of D, the wavelength shift has a drastic increase. As shown in Figure 2b, when D
decreases from a unit to a half unit of D0, the wavelength shift increases from 200 to 555 pm at the
applied pressure of 10 kPa. With the decrease in width, as, and length, bs, of the spacer, respectively,
the wavelength shift of FBGs increases monotonically and tends to be stable when the ratio of bs/b is
below 0.2 in Figure 2c and the ratio of as/b is below 1.2 in Figure 2d. Because the hypothesis of uniform
interaction force between the film and the spacer (Figure 1b) and between the spacer and the optical
fibre (Figure 1d) have been simulated. Another hypothesis in which the average deflection of the zone
on the film and the optical fibre in contact with the spacer is provided in Section S1.3 of the Supporting
Information. Therefore, the ratio of size between the spacer and the film over the groove affects the
wavelength shift of FBGs. When such ratio declines, the contact conditions in simulation approach the
hypothesized uniform pressure and uniform deflection, resulting in the contact zone changes from a
surface close to a line or a point and the possessing wavelength shift trends of FBGs becomes stable.
Finally, as shown in Figure 2d, a large slope of curves of the wavelength shift and the applied pressure
is obtained at a large thickness of the spacer, hs, due to a high pre-tension of FBGs.
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Figure 2. Effects of parameters on the wavelength shift of the proposed optical sensor based on the
theoretical models: (a) length, a, and width, b, of the groove, where the wavelength shift of FBGs
is obtained at the applied pressure of 10 kPa; (b) Effective stiffness of the thin plate, D, where D0 is
calculated based on the parameters listed in Table 1; (c) Width of the spacer, bs; (d) Length of the spacer,
as; and (e) Thickness of the spacer, hs. Without specification, all the parameters utilised in calculation
are listed in Table 1.



Sensors 2019, 19, 1811 7 of 15

Simulate Effect

Table 1. Parameters utilized in calculations.

Symbol Value Symbol Value

Length of the groove, a 20 mm Elastic modulus of the core of
optical fibre, Ec1

70 GPa

Width of the thin groove, b 5 mm Poison’s ratio of the core of
optical fibre, µc1

0.17

Elastic modulus of the thin film, E 1.5 MPa Diameter of the cladding layer
of optical fibre, dc2

125 µm

Poison’s ratio of the thin film, µ 0.45 Elastic modulus of the cladding
layer of optical fibre, Ec2

70 GPa

Thickness of the thin film, h 1 mm Poison’s ratio of the cladding
layer of optical fibre, µc2

0.17

Length of the spacer, as 4 mm Diameter of the coating layer of
optical fibre, dc3

242 µm

Width of the spacer, bs 3 mm Elastic modulus of the coating
layer of optical fibre, Ec3

2.5 GPa

Thickness of the spacer, hs 0.3 mm Poison’s ratio of the coating
layer of optical fibre, µc3

0.34

Diameter of the core of optical
fibre, dc1

8.2 µm Coefficient of strain, CS 0.78 [33]

3. Results and Discussions

3.1. Calibration of Optical Sensors

A calibration system, comprising by a compressed-air source, an air pressure governor, an air tank
with a digital pressure meter and a digital temperature meter, an optical integrator and a computer,
is shown in Figure 3a. The optical interrogator (si 155-Micron Optic, Micro Optics Inc., Atlanta, GA,
USA) utilised in tests has a high sampling rate of 1000 Hz and wavelength accuracy of 1 pm and can
thus provide a reliable and accurate measurement for dynamic tests. Meanwhile, a prediction based
on the theoretical model in Section 2.3 was performed to verify the model. As shown in Figure 3b,
the prediction of the wavelength shift curve in red shows an excellent agreement with the experimental
results, indicating that theoretical models can be an effective tool to guide the structural design and
selection of material of optical sensor for intended applications. The state of the first measured point at
0 kPa of the loading cycle is defined to be the initial state for the corresponding cycle. The measured
and theoretical results show a non-linear relationship between the wavelength shift and the applied
pressure. However, such relationship is close to be a linear one, where the coefficient of determination
in the linear fitting is over 96%, showing that the sensitivity to the applied pressure is about 26.8 pm/kPa,
beyond two orders higher than the other FBG sensors fabricated using FBGs alone or FBGs combined
with a traditional transfer-structure [24–27]. As shown in Figure 3b, the wavelength shift of FBGs is
below zero when the applied pressure goes back to 0 kPa, indicating some residue compression is
applied on the FBGs. The reason is that the used silicone naturally is a viscoelastic material rather than
an ideal elastic material; as expected, after compression, it cannot recover to the initial state quickly.
The selected silicone has mechanical hysteresis about 2% full-scale output within the range of 25 kPa
(Figure S1 in the Supporting Information). Thus, the sensor fabricated by such silicone also has similar
properties. When the applied pressure goes back to zero, the film made of such silicone normally has
not recovered to the initial state, inducing a residue compression on FBGs. Such residue compression
will fully disappear after resting for several minutes, that is, ~10 min in this case.
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Figure 3. (a) Schematic of the calibration system; (b) Comparison between experimental results and
theoretical results, where the thickness of the film is about 1.01 mm, and elastic modulus of the film
is 1.3 MPa according to the experimental results shown in Figure S1, temperature is 22.6 ± 0.2 ◦C,
and other parameters are consistent with those listed in Table 1; and (c) Results of cyclic compression,
where the experiment was carried out on a keyboard life tester, setup in a room environment, the peak
pressure is about 20 kPa and the frequency is 2.2 Hz.

The sensor normally was rested for enough long time before the first loading, while the rested time
among the follow-up cycles was short. Thus, the data in the first cycle are slightly different from those
in follow-up cycles, as well as the data in follow-up cycles are consistent with each other. As shown
in Figure 3b, the curves indicate a hysteresis of about 10% full-scale-output (~1 kPa) and the largest
hysteresis occurs in the zone from 0 to 2 kPa. The hysteresis becomes below 5% full-scale-output
(<0.5 kPa) if the data in the first cycle were excluded. Such hysteresis is reasonable because of soft
polymer used. And this hysteresis is lower than other electrical sensors of ~9% (~1.3 kPa) [34],
and < 30 kPa [35]. As the phenomenon of the residue compression and hysteresis increase systematic
errors, several scenarios are proposed to reduce the systematic error. (1) Since the largest hysteresis
occurs in the zone from 0 to 2 kPa, the measured pressure in the applications can avoid this zone;
an example is the measurement of pressure in compression stockings, which normally ranges from
2.4 kPa to 6.5 kPa or higher; (2) Only the data during the loading process are utilised for evaluations,
whereas the data during the loading process are well consistent with each other; (3) Before tests,



Sensors 2019, 19, 1811 9 of 15

pre-compression can be performed on the sensor to avoid the first cycle, whereas the hysteresis of the
cyclic test is about 10% full-scale-output (~1 kPa) and becomes below 5% full-scale-output (<0.5 kPa) if
the data in the first cycle are excluded.

Compressed air is a good candidate for supplying uniform pressure for calibrations, especially
when the measured object has a curved surface. However, a long time is needed for the compressed air
in the tank to reach balance. Hence, it is not convenient for cyclic tests. Moreover, the pressure applied
by a flat plate can be assumed to be uniform when the top and bottom surfaces of the optical sensor
are also flat, and the deformation is small. Therefore, in this study, the cyclic test was conducted on the
fabricated sensor using a machine (Keyboard Life Tester ZX-A03, Shenzhen ZXD Testing Equipment
Co., Ltd., Shenzhen, China), which can provide a continues sinusoidal motion and record the force
synchronously by using an additional load cell [36]. After 1,000,000 cycles, the fabricated sensor still
works well. During the first 10,000 cycle, the peaks of the wavelength shift shows a good repeatability.
After 10,000 cycles, the peak wavelength shift of the fabricated sensor slightly increases from 323 to
363 pm (Figure 3c), possibly because the environmental is uncontrolled, where temperature increases
from 21.9 ± 1 to 22.9 ± 1 ◦C and the relative humidity also changes from 45% ± 5% to 67% ± 5%.
Small negative peaks induced by adhesion between the moving plate and the top surface of optical
sensors are also observed, as shown in the measured curves in blue. After 100,000 cycles, the negative
peaks of curves in red and black increase because of increase in the adhesive force possibly induced
by the increased relative humidity. The behaviour of the optical sensor under compression, that is,
the positive peak, is crucial for applications. The positive peaks of the wavelength shift do not show
an obvious degradation or increase, indicating that the fabricated optical pressure sensor has excellent
durability and repeatability.

3.2. Temperature Effect

The coefficient of temperature for bare FBGs comprises the thermal expansion coefficient and
the thermos-optic coefficient [32,33]. The wavelength shift of the proposed optical sensor is sensitive
to strain and change of temperature, as Equation (2), where the coefficient of temperature becomes
increasingly complex, because besides variations in material properties, the internal stress state also
changes due to different thermal expansion.

Two samples with different basses made of ABS and invar, respectively, were utilised to illustrate
the temperature effect on the wavelength shift. Invar has a proper thermal expansion coefficient
(0.8~1.6 × 10−6/◦C) [37], close to that of silica (0.55 × 10−6/◦C) [33], while ABS has a high coefficient
(72 × 10−6/◦C). These experiments were performed in an environmental chamber, shown in Figure 4a,
where the exerted pressure on the optical sensor was applied by weights. As shown in Figure 4b,c,
with an increase in temperature, the Bragg wavelength of FBGs increases. Meanwhile, the hysteresis of
loading-unloading curves becomes large; for example, the hysteresis of the curves in blue is small,
shown in Figure 4b, when temperature increases from 21 to 62 ◦C, hysteresis of the curve in red
become huge. Compared with the Bragg wavelength shown in Figure 4b, variations of the Bragg
wavelength induced by change in temperature are considerably small (Figure 4c), because the base
plays an important role in the thermal properties of the optical sensor due to its high rigidity. Adoption
of materials with proper thermal expansion coefficients, such as invar, can be an effective way to reduce
the influence of thermal expansion. However, the hysteresis also increases with the rise in temperature,
making that the correction for precise measurement is too complex. The measured deviation induced
by the change of temperature still needs more investigations due to the complex thermal properties
of martials.
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3.3. Inflence of Tension on Fibre

A smart skin normally requires numerous sensors for pressure mapping, in which one optical
fibre normally integrates several sensing units. The elastic modulus of optical fibre made of silica
is about 70 GPa, several orders higher than that of silicone matrix (~1.3 MPa). Stress can be easily
transmitted along the optical fibre from one sensor to the other without enough reduction, because
of the weak constraint from soft matrix. Such mismatching physical properties of optical fibre and
silicone matrix may induce crosstalk in an integrated sensing network. The crosstalk among optical
sensors is demonstrated by stretching. The optical fibre was stretched at the end, as shown in Figure 5a.
The load cell fixed on the machine (Intron 5566, Instron, New York, NY, USA) can move up and down
to provide force pulses at the end of optical fibre (Figure 5b). The max force applied on the fibre is
about 2.5 N, inducing a large strain of up to 0.25%. One sample without any base, that is, a bare fibre
with FBGs embedded in the silicone matrix, and two samples with a frame base made of ABS and
Invar, respectively, were utilised. The elastic modulus of Invar of ~110 GPa [37] is higher than those of
silicone (~1.3 MPa), ABS (~3 GPa), and silica (~70 GPa). Figure 5c shows the peak wavelength shift
decreases from 800 pm (without any base) to 90 pm (ABS base), even only 3 pm (invar base), indicating
that the frame base can effectively block stress of the optical fibre. The reason is that the optical fibre is
well fixed on the base. Hence, an attachment layer is formed between the optical fibre and the base.
Such attachment layer is thin and has high elastic modulus. More importantly, the attachment area
between the fibre and the base is much larger than the cross-sectional area of the fibre, making an
effective constraint between the fibre and the base. Consequently, the base, the fibre and the attachment
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layer will be stretched together following the deformation compatibility condition. Therefore, the base
plays an important role on the wavelength shift of FBGs under tension of optical fibre. The base has
higher stiffness, the wavelength shift of FBGs shows smaller amplitudes.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 15 

 

shift of FBGs under tension of optical fibre. The base has higher stiffness, the wavelength shift of 
FBGs shows smaller amplitudes. 

  
(a) (b) 

 
(c) 

Figure 5. (a) Schematic of the designed loading system, aiming to analyze the influence of stress 
transmitted along the optical fibre on the output performance; (b) Illustration of the applied force at 
the end of optical fibre; and (c) Comparison among the measured results of three samples: one without 
any base (in red), the other two with a base made of ABS (in blue) and Invar (in green), respectively, 
at the room environment of 22.0 ± 1 °C and 65 ± 5% RH. 

4. Applications of Optical Pressure Sensors 

Compression garments, exerting the required pressure on the surface of target body zones, have 
been researched and utilised in fields of healthcare, body-shaping, medical applications, and athletic 
applications [38]. Magnitude and durability of a pressure exerted on a human body are the key 
indicators for the compression garment and garment fit [39]. Insufficient pressure will limit efficacy 
whereas excessive pressure makes people feel uncomfortable, even causes damage to health [9]. The 
pressure applied from a compression garment greatly relies on the mechanical properties and in-
location shapes of the human body or mannequin. Thus, small-sized and accurate pressure sensors 
are crucial for accurate measurement. 

Apart from compact measurement systems, such as KIKUHIME, HOSY, HATRA and MST, 
which are based on pneumatic or electric sensors, novel measurement systems based on the proposed 
optical pressure sensor network (Figure 6a) can be a better choice to evaluate the actual pressure 
exerted by compression stocking, because of their high accuracy, bionics of the shape and mechanical 
properties, immunity to electromagnetic interference, and continuous monitoring. The pressure 
sensing network was designed according to the measurement points of the medical compression 
hosiery standard (Quality Assurance RAL-GZ 387/1). The pressure mapping was measured through 

Figure 5. (a) Schematic of the designed loading system, aiming to analyze the influence of stress
transmitted along the optical fibre on the output performance; (b) Illustration of the applied force at the
end of optical fibre; and (c) Comparison among the measured results of three samples: one without any
base (in red), the other two with a base made of ABS (in blue) and Invar (in green), respectively, at the
room environment of 22.0 ± 1 ◦C and 65 ± 5% RH.

4. Applications of Optical Pressure Sensors

Compression garments, exerting the required pressure on the surface of target body zones, have
been researched and utilised in fields of healthcare, body-shaping, medical applications, and athletic
applications [38]. Magnitude and durability of a pressure exerted on a human body are the key
indicators for the compression garment and garment fit [39]. Insufficient pressure will limit efficacy
whereas excessive pressure makes people feel uncomfortable, even causes damage to health [9].
The pressure applied from a compression garment greatly relies on the mechanical properties and
in-location shapes of the human body or mannequin. Thus, small-sized and accurate pressure sensors
are crucial for accurate measurement.

Apart from compact measurement systems, such as KIKUHIME, HOSY, HATRA and MST, which
are based on pneumatic or electric sensors, novel measurement systems based on the proposed optical
pressure sensor network (Figure 6a) can be a better choice to evaluate the actual pressure exerted by
compression stocking, because of their high accuracy, bionics of the shape and mechanical properties,
immunity to electromagnetic interference, and continuous monitoring. The pressure sensing network
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was designed according to the measurement points of the medical compression hosiery standard
(Quality Assurance RAL-GZ 387/1). The pressure mapping was measured through two optical channels
(front and back), each channel has four pressure sensors, as shown in Figure 6a. The results indicated
that wavelength shift of FBGs has a linear relationship on the applied pressure. The structured fibre
sensors embedded in the leg mannequin slightly differ in terms of the sensitivity of pressure, Cp,
ranging from 20 to 27 pm/kPa, with an accuracy of about 0.05 kPa on the measured pressure. Thus the
exerted pressure, p, from compression stockings can be estimated easily form the wavelength shift
of FBGs.

p = ∆λ/Cp. (3)

when the compression stocking was placed on the leg mannequin, the exerted pressure will be
evaluated continually through the optical integrator, and the evaluated result will be listed on a simple
user interface for visible observation.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 15 

 

two optical channels (front and back), each channel has four pressure sensors, as shown in Figure 6a. 
The results indicated that wavelength shift of FBGs has a linear relationship on the applied pressure. 
The structured fibre sensors embedded in the leg mannequin slightly differ in terms of the sensitivity 
of pressure, Cp, ranging from 20 to 27 pm/kPa, with an accuracy of about 0.05 kPa on the measured 
pressure. Thus the exerted pressure, p, from compression stockings can be estimated easily form the 
wavelength shift of FBGs. 

/ pp Cλ= Δ . (3) 

when the compression stocking was placed on the leg mannequin, the exerted pressure will be 
evaluated continually through the optical integrator, and the evaluated result will be listed on a 
simple user interface for visible observation. 

Fibre Bragg grating-based sensors have demonstrated their potential in human health 
monitoring, such as in ballistocardiographic measurements [40], blood-pressure evaluation [22], and 
blood glucose evaluation [41]. Pulse palpation is another potential application, which is an important 
part of vascular physical examination, which can offer substantial useful information [42], such as 
over 20 types of pulses identified in Chinese medicine. These diagnoses are all essentially based on 
the detected pulse wave signals, such as the arterial pulse waveform reflecting the systolic and 
diastolic blood pressure [22], and differential wavelength shift of the measured pulse wave singles, 
which can also be utilised to evaluate the blood glucose [41]. Thus, a precise measurement on the 
pulse wave signals will be a solid base to boost the accuracy of diagnosis through the same methods 
in the reference [22,41,42] and to develop new methods. However, vibrations induced by pulse waves 
normally are extremely weak. Without an effective transduction mechanism, the measured signals 
have low magnitude and are easily affected by environmental factors. The laboratory-fabricated FBG 
pressure sensor can be fixed on a wrist strap or be fixed simply on the wrist by elastic tape as shown 
in Figure 6b, where the peak of wavelength shift induced by the measured pulses is up to 50 pm, 
which is 15 times higher than the measured value using optical sensors [28,41]. It means that the 
proposed optical sensor highly sensitive to the vibration induced by the pulse waves, and thus 
provides an accurate measurement of the pulse waves, which is benefit of various applications, 
including diagnosis of heart rates, the pulse pressure [22], the blood glucose [41] and others [42]. 

 
(a) 

Sensors 2019, 19, x FOR PEER REVIEW 13 of 15 

 

 
(b) 

Figure 6. (a) Photo of a fabricated leg mannequin with optical sensors, which are setup based on the 
standard (Quality Assurance RAL-GZ 387/1), marked by BF~DF and BB~DB in the front and back side, 
respectively; Illustration of the calibration result of one fabricated optical sensor on the system (Figure 
3a); Photo of compression stockings put on the fabricated leg mannequin, and a simple user interface 
for measurement of compression stockings, showing the pressure exerted on leg: green light is normal 
pressure, red light is high pressure in and blue light is low pressure; (b) Illustration of the application 
of wrist pulse measurement, where the thickness of the film over the frame base decreases to 0.4 mm 
for enhancing the sensitivity on pressure. 

5. Conclusions 

In summary, we have developed novel optical sensors embedded in silicone, forming a smart 
skin with merits of high sensitivity, good durability and good immunity to crosstalk. A theoretical 
model for the structured fibre sensors was presented, showing an excellent agreement between the 
prediction and experimental results, which can effectively guide the design of such sensor in 
structures and selection of materials. The influences of temperature and stress from optical fibre were 
investigated, showing the use of a material with high elastic modulus and low thermal expansion for 
the frame base of the optical sensor is highly desirable. Prototypes of a smart leg mannequin and 
wrist pulse measurement show that such structured fibre sensor can accurately measure of the low 
pressure in these applications. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Derivation: Theoretical 
treatment of the structed fibre pressure sensor, and Figure S1: Stress-strain curves of a cubic specimen made of 
silicone 903. 

Author Contributions: Conceptualization, B.Y. and X.-m.T.; methodology, B.Y., S.L., X.W., R.Y.; software, B.Y., 
X.W., R.Y.; investigation, S.L., Y.X.; resources, S.L., Y.X.; supervision, X.-m.T. 

Funding: This research was funded by Research Grants Council, Hong Kong (Project NO. 525113, 15215214, 
15211016, 15200917), the Hong Kong Polytechnic University, Hong Kong (Project NO. 1-BBA3), and Innovation 
and Technology Commission, Hong Kong SAR Government (Project NO. ITP/039/16TP). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. de Oliveira, M.A.; Monteiro, A.V.; Vieira, J. A New Structural Health Monitoring Strategy Based on PZT 
Sensors and Convolutional Neural Network. Sensors 2018, 18, 2955. 

2. Domingues, M.F.; Alberto, N.; Leitão, C.; Tavares, C.; de Lima, E.R.; Radwan, A.; Sucasas, V.; Rodriguez, 
J.; André, P.; Antunes, P. Insole optical fiber sensor architecturefor remote gait analysis—An eHealth 
Solution. IEEE Internet Things J. 2017, 6, 207–214. 

Figure 6. (a) Photo of a fabricated leg mannequin with optical sensors, which are setup based on the
standard (Quality Assurance RAL-GZ 387/1), marked by BF~DF and BB~DB in the front and back
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Fibre Bragg grating-based sensors have demonstrated their potential in human health monitoring,
such as in ballistocardiographic measurements [40], blood-pressure evaluation [22], and blood glucose
evaluation [41]. Pulse palpation is another potential application, which is an important part of vascular
physical examination, which can offer substantial useful information [42], such as over 20 types of
pulses identified in Chinese medicine. These diagnoses are all essentially based on the detected
pulse wave signals, such as the arterial pulse waveform reflecting the systolic and diastolic blood
pressure [22], and differential wavelength shift of the measured pulse wave singles, which can also be
utilised to evaluate the blood glucose [41]. Thus, a precise measurement on the pulse wave signals will
be a solid base to boost the accuracy of diagnosis through the same methods in the reference [22,41,42]
and to develop new methods. However, vibrations induced by pulse waves normally are extremely
weak. Without an effective transduction mechanism, the measured signals have low magnitude and
are easily affected by environmental factors. The laboratory-fabricated FBG pressure sensor can be
fixed on a wrist strap or be fixed simply on the wrist by elastic tape as shown in Figure 6b, where the
peak of wavelength shift induced by the measured pulses is up to 50 pm, which is 15 times higher than
the measured value using optical sensors [28,41]. It means that the proposed optical sensor highly
sensitive to the vibration induced by the pulse waves, and thus provides an accurate measurement of
the pulse waves, which is benefit of various applications, including diagnosis of heart rates, the pulse
pressure [22], the blood glucose [41] and others [42].

5. Conclusions

In summary, we have developed novel optical sensors embedded in silicone, forming a smart skin
with merits of high sensitivity, good durability and good immunity to crosstalk. A theoretical model
for the structured fibre sensors was presented, showing an excellent agreement between the prediction
and experimental results, which can effectively guide the design of such sensor in structures and
selection of materials. The influences of temperature and stress from optical fibre were investigated,
showing the use of a material with high elastic modulus and low thermal expansion for the frame
base of the optical sensor is highly desirable. Prototypes of a smart leg mannequin and wrist pulse
measurement show that such structured fibre sensor can accurately measure of the low pressure in
these applications.
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