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Abstract: In a smart home linked to a smart grid (SG), demand-side management (DSM) has the
potential to reduce electricity costs and carbon/chlorofluorocarbon emissions, which are associated
with electricity used in today’s modern society. To meet continuously increasing electrical energy
demands requested from downstream sectors in an SG, energy management systems (EMS), developed
with paradigms of artificial intelligence (AI) across Internet of things (IoT) and conducted in fields of
interest, monitor, manage, and analyze industrial, commercial, and residential electrical appliances
efficiently in response to demand response (DR) signals as DSM. Usually, a DSM service provided
by utilities for consumers in an SG is based on cloud-centered data science analytics. However,
such cloud-centered data science analytics service involved for DSM is mostly far away from on-site
IoT end devices, such as DR switches/power meters/smart meters, which is usually unacceptable
for latency-sensitive user-centric IoT applications in DSM. This implies that, for instance, IoT end
devices deployed on-site for latency-sensitive user-centric IoT applications in DSM should be aware
of immediately analytical, interpretable, and real-time actionable data insights processed on and
identified by IoT end devices at IoT sources. Therefore, this work designs and implements a smart
edge analytics-empowered power meter prototype considering advanced AI in DSM for smart homes.
The prototype in this work works in a cloud analytics-assisted electrical EMS architecture, which is
designed and implemented as edge analytics in the architecture described and developed toward a
next-generation smart sensing infrastructure for smart homes. Two different types of AI deployed
on-site on the prototype are conducted for DSM and compared in this work. The experimentation
reported in this work shows the architecture described with the prototype in this work is feasible
and workable.

Keywords: artificial intelligence; cloud analytics; demand-side management; edge/fog analytics;
electrical energy management; Internet of things; smart grid; smart homes/factories; smart sensing

1. Introduction

There is a growing interest in applying recent breakthrough technologies in relevant fields
such as smart homes in smart cities. Recent breakthrough technologies are trending for today’s
technologically driven society, from the fundamental constituents of a city, smart homes, buildings,
and factories in the Fourth Industrial Revolution (Industry 4.0), to smart cities. Smart cities are derived
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from the intense deployment of Internet of things (IoT) technologies with artificial intelligence (AI).
The technical combination of IoT technologies with AI brings novel insights into home automation,
home healthcare, home surveillance, and home energy management in smart homes as examples in
today’s modern society.

Electrical energy forms an indispensable part of today’s modern society; people’s lives would be
impossible without the aid of electricity, which is one of the most common and important commodities
in use every day. To meet continuously increasing electricity energy demands requested from
downstream sectors of a smart grid (SG) and reduce greenhouse gases such as carbon dioxide and
chlorofluorocarbons produced, it is of utmost importance to monitor and manage industrial, commercial,
and residential electrical appliances. The traditional power grid/electrical power system expected to
monitor and manage electrical appliances effectively in electrical energy management is inadequate to
overcome modern-day challenges addressed in an SG [1]. An SG that incorporates ICT (information
and communication technologies)/IoT with AI innovatively appears as the next generation of the
traditional power grid [2]. In an SG, one of the most important functionalities developed by utilities
and provided for consumers is the self-decision-making ability. To enable the self-decision-making
ability in an SG, utilities developed viable and effective demand response (RD) mechanisms for
demand-side management (DSM)/electrical energy management [3–6]. In an SG, DSM refers to
initiatives and technologies that encourage end customers/consumers to optimize their electrical
energy consumption patterns in response to DR signals, while improving the stability and reliability of
the compromised traditional power grid that serves as an SG. To participate in DR programs/DSM
in an SG, the first important step is to keep track of fine-grained electrical energy consumed by
individual major electrical appliances in practical fields of interest. For example, in a residential
field linked to an SG via advanced metering infrastructure (AMI), a smart home energy management
system (EMS) can be conducted for DSM/electrical energy management [1,3–6] and installed with
an intrusive deployment of smart plugs [3,4,7,8] that connect with a power company-owned smart
meter in AMI and keep track of electric power consumption on each individual major electrical
appliance monitored. The worldwide adoption of EMSs that identify and communicate electrical
energy consumption data with an intrusive deployment of smart plugs [3,4,7,8] gives rise to new
user-centric IoT applications, electrical energy efficiency services, in DSM. However, it is based on
a centralized cloud architectural model [9,10]; in smart homes connected with a smart city in an SG,
deployed IoT end devices generate substantial amounts of data that must be transmitted, stored,
and processed in powerful cloud computing. Cloud-centered data science analytics, cloud analytics,
is based on network connectivity/the internet, which is not always available or is limited, which is
usually unacceptable for latency-sensitive user-centric IoT applications developed for smart home
services in an SG [11]. Compared with cloud analytics, where data gathered by IoT end devices
and transmitted to cloud storage are treated in centralized cloud-centered data science analytics,
edge analytics (fog computing), a promising technique dedicated and used to analyze data that need
to be processed for immediately analytical, interpretable, and real-time actionable data insights at
IoT sources, extends cloud analytics (to the edge of the internet) and covers its shortage. As a result,
edge analytics that supports immediately analytical, interpretable, and real-time actionable data
insights at IoT sources is necessary for latency-sensitive user-centric IoT applications in smart homes,
where AI models are trained in cloud analytics and then deployed on-site on IoT end devices as edge
analytics at the edge of the internet. In this sense, fog-cloud analytics is formed [12,13].

In fog-cloud analytics, IoT end devices, edge devices or edge sensors, can be gateways,
industrial controllers/switches, routers, and video surveillance cameras/vision sensors in smart
homes, manufacturing, and cities considering DSM, and they can process data on-site for immediately
analytical, interpretable, and real-time actionable data insights and store data near where data processed
are produced on-site for latency-sensitive user-centric IoT applications. In DSM, fog-cloud analytics
developed and conducted for latency-sensitive user-centric IoT applications can serve as converged
analytics that consolidates data from distributed data aggregation as a next-generation AMI/smart



Sensors 2019, 19, 2047 3 of 26

sensing infrastructure. For example, power meters can be distributed and deployed in multiple fields
of interest for DSM in an SG. Each deployed power meter is used to gather micro data transmitted to
and analyzed in cloud analytics. AI trained in cloud analytics and converged into resulting macro
insights is then deployed on-site/sent back to each deployed power meter to perform edge analytics in
fields of interest.

As motivated above, edge analytics is necessary for latency-sensitive user-centric IoT applications
in DSM, where immediately analytical, interpretable, and real-time actionable data insights processed
on and identified by IoT end devices at IoT sources are required and gained with cloud analytics
collaborated together [11,14,15]. Also, much attention remains to be paid in conducting and applying
fog-cloud analytics in smart homes, as examples, for DSM/electrical energy management in an SG.
Therefore, this work designs and implements a smart edge analytics-empowered power meter prototype
considering AI in smart homes for DSM/electrical energy management. The prototype in this work
works in a cloud analytics-assisted electrical EMS architecture, which aims to bring AI trained in
cloud analytics and then embedded/deployed on-site on the designed and implemented prototype
as edge analytics. The AI-embedded smart power meter prototype designed and implemented in
this work is based on an Arduino micro-controller unit (MCU). Arduino is an open-source electronics
prototype MCU based on flexible and easy-to-use hardware and software, which is very popular
amongst artists, designers, hobbyists, and professionals. Arduino MCU is an excellent tool, which can
be used to quickly test and prototype ideas. The specification of load signature, which is used in
load monitoring as load identification, without an intrusive deployment of smart plugs for electrical
appliances in fields of interest, is another important aspect in DSM, as identifying electrical appliances
via an intrusive deployment of smart plugs installed for monitored electrical appliances is laborious
and cost-intensive [3,7,8,16–20]. Thus, a load monitoring approach, the designed and implemented
AI-enabled smart power meter prototype presented as edge analytics and collaborated together with
cloud analytics, is developed in fog-cloud analytics in this work. The load monitoring approach
identifies electrical appliances with no intrusive deployment of smart plugs installed for electrical
appliances monitored in the architecture described. AI, such as artificial neural networks (ANNs) used
to perform (on-line) load monitoring in this work, analyzes collected data at sensor points rather than
waiting for data collected and transmitted to a cloud/on-premise server for further data analysis. In this
work, two different types of ANN are conducted and compared. ANNs in AI are powerful connectionist
systems vaguely inspired by biological neural networks. The widely used backpropagation ANN
(BP-ANN) [8,16–19,21] and radial basis function ANN (RBF-ANN) incorporated with fuzzy C-means
(FCM) clustering are considered and compared in this work. The superior AI model trained in cloud
analytics and compared is then deployed on-site on the Arduino MCU-based smart power meter
prototype as edge analytics in the architecture described in this work. For the push notification
service, IFTTT (if this, then that) is implemented, in the described architecture, with LINE Notify.
A proof-of-concept demonstration reported in this work experimentally confirms that the architecture
described with the prototype in this work is feasible and workable. The architecture described in this
work and presented with the designed and implemented AI-embedded smart power meter prototype is
a preliminary design toward a next-generation AMI/smart sensing infrastructure motivated previously
and dedicated for advances in smart homes, manufacturing, and cities considering DSM. The work
done in this work is an extended effort against the work that was finished in References [21–23], which is
also a comparative study done with References [21,23]. The prototype designed and implemented
in the described architecture in this work can be further developed, through preventive analysis,
for preventative maintenance in DSM.

The remainder of this work is structured as described below. Section 2 shows a brief overview
of related work done in DSM/electrical energy management. The cloud analytics-assisted electrical
EMS architecture collaborated together with the designed and implemented Arduino MCU-based
smart power meter prototype as edge analytics for DSM is described in Section 3. Improved AI,
the FCM clustering/piloting RBF-ANN compared with the BP-ANN in References [21,23] and used by
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the AI-enabled smart power meter prototype in this work, is also described in Section 3. In Section 4,
a proof-of-concept demonstration of the described architecture with the smart prototype in this work
is shown. Lastly, Section 5 concludes this work with its future work.

2. Related Work

Significant research, in recent years, was carried out to identify and communicate electrical energy
consumption data with an intrusive deployment of smart plugs based on EMSs for new user-centric
IoT applications, electrical energy efficiency services, in DSM/electrical energy management.

In Reference [9], the authors proposed a self-learning home management system comprising
(1) an EMS, (2) a DSM system, and (3) a supply-side management system. The three parts of the
home management system were developed and integrated for the real-time operation of a smart
home. The functionalities of the centralized and integrated home management system include price
forecasting, price clustering, and power alert system capabilities for smart home energy management.
In Reference [10], the authors aimed to develop a multilayer cloud architectural model that enables
effective and seamless interactions/operations on heterogeneous IoT end devices from different IoT
smart homes. In addition, an ontology-based security service framework was developed and used
to support security and privacy preservation in the process of the interactions/operations of the
heterogeneous IoT devices. The model developed in Reference [10] is a centralized cloud architectural
model. In smart homes connected with a smart city in an SG, deployed IoT end devices generate
substantial amounts of data. Substantial amounts of data generated from IoT end devices deployed in
smart homes in a smart city in an SG must be transmitted, stored, and processed in powerful cloud
computing, which is usually unacceptable for latency-sensitive user-centric IoT applications developed
for consumers in smart homes in a smart city in an SG [11]. This is because powerful cloud computing,
cloud-centered data science analytics/cloud analytics, is based on network connectivity/the internet,
which is not always available or is limited. Compared with cloud analytics where data gathered by IoT
end devices and transmitted to cloud storage are treated in centralized cloud-centered data science
analytics, edge analytics/fog computing extends cloud analytics (to the edge of the internet) and covers
its shortage. Edge analytics is a promising technique dedicated and used to analyze data that need to
be processed for immediately analytical, interpretable, and real-time actionable data insights at IoT
sources. As a result, edge analytics that supports immediately analytical, interpretable, and real-time
actionable data insights at IoT sources is needed for latency-sensitive user-centric IoT applications
in smart homes, where AI models are trained in cloud analytics and then deployed on-site on IoT
end devices as edge analytics at the edge of the internet. In this sense, fog-cloud analytics is formed;
resulting insights from cloud analytics are sent back to edge analytics. In Reference [12], the authors
presented a simulated OpenFog reference architecture-based smart home system considering fog-cloud
computing. However, the simulated system was not evaluated in a realistic environment; a practical
evaluation was lacking in the study. Also, the study was absent in terms of a demonstration of analysis
capabilities in which AI is trained in cloud analytics and deployed on-site on IoT end devices as edge
analytics for user-centric IoT applications in smart homes. In Reference [11], the authors concentrated
on a fog computing-based home automation system that allows for seamless communication among
IoT end devices for heterogeneous communication technologies. Nevertheless, the research finished
in Reference [11] was also absent in terms of a demonstration of analysis capabilities in that no AI is
trained in cloud analytics and deployed on-site on the IoT end devices for IoT applications. The IoT
end devices did not act as edge analytics in the research. The system developed in Reference [11]
can be further developed for DSM in smart homes. In Reference [13], the authors studied a fog
computing-based Internet of energy (IoE) architecture for transactive energy (TE) management systems.
TE management utilizes optimal day-ahead energy consumption scheduling and an inter-customer
energy trading mechanism for exchanging electrical energy among end users. A real testbed consisting
of an IoT end device and hypertext transfer protocol (HTTP) gateway connected over the internet
with a cloud server was implemented and used to experimentally evaluate the fog computing-based
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architecture in the study. However, no demonstration of on-site deployment of AI for IoT end devices
as edge analytics in fields of interest was addressed in the study; IoT end devices implemented in the
fog computing-based architecture/testbed in the study are not capable of non-intrusively identifying
electrical appliances used in smart homes.

The work developed here against related work in the literature above is summarized as follows:
firstly, a smart edge analytics-empowered power meter prototype considering AI in smart homes for
DSM/electrical energy management in an SG is designed, implemented, and practically evaluated in this
work, which works in a cloud analytics-assisted electrical EMS architecture. The architecture described
in this work brings AI trained in cloud analytics and then embedded/deployed on-site on the designed
and implemented power meter prototype as edge analytics. Secondly, a load monitoring approach,
the designed and implemented AI-enabled smart power meter prototype collaborated together with
cloud analytics and used as edge analytics to non-intrusively identify electrical appliances with no
intrusive deployment of smart plugs installed for electrical appliances monitored in the described
architecture, is developed in fog-cloud analytics in this work. In this work, AI, BP-ANN and RBF-ANN
incorporated with FCM clustering, is investigated. Thirdly, a push notification service based on IFTTT
with LINE Notify is considered in DSM and implemented in the described architecture.

3. Methodology

The cloud analytics-assisted electrical EMS architecture collaborated together with the AI-enabled
and Arduino MCU-based smart power meter prototype, smart AIoT (AI across IoT) edge
analytics-empowered power meter prototype, with a push notification service for DSM in smart
homes, is described in this section. Section 3.1 describes the cloud analytics-assisted electrical
EMS architecture; Section 3.2 presents the AI (FCM clustering/piloting RBF-ANN)-enabled Arduino
MCU-based smart power meter prototype designed and implemented, in the described architecture
with push notification service, for edge analytics in this work. Home EMS is crucial for DSM in an
SG, which can manage, control, and optimize electrical energy consumption in home environments.
A home EMS serves as a bi-directional communication interface between a residential environment
that responds to DR signals based on market pricing and an electric utility that monitors, controls,
and analyzes gathered electrical energy consumption data from smart homes [24]. In this sense,
involved communication technologies, wide area network (WAN), neighborhood area network (NAN),
and home area network (HAN) [11,25–27], are the preliminaries used for DSM in smart homes
connected in an SG. Figure 1 depicts a typical home EMS model. The typical home EMS model
studied in this work is composed of (1) a power company-owned smart meter (instead of a power
company-owned traditional wattmeter) communicated with a utility via AMI and used to transmit data
records/electrical energy consumption data and receive DR signals, based on market pricing, for highly
efficient generation of electricity by the utility from bulk generation; (2) a central energy management
controller (EMC) installed in a smart home environment and communicated, via the internet, with a
cloud, providing user-centric IoT applications for homeowners; and (3) home appliances monitored
remotely and reacted with DR signals received.

In Figure 1, AMI referring to automated metering and advanced data management is responsible
for measuring, collecting, and managing electrical energy consumption data from the smart meter to
the utility. The smart meter acts as a communication gateway between the smart home environment
and the utility, receiving electricity pricing signals/DR signals from the utility with market pricing for
DSM in an SG. It is associated with electrical energy consumption data gathered from the EMC and
transmitted to the utility via AMI for further data science analytics.

Further data science analytics in Figure 1 is based on cloud-centered data science analytics.
Electrical energy consumption data transmitted to and electricity pricing signals received from the
utility are delivered through the commonly available fixed networks, PLC (power line communication),
GSM (global system for mobile communications), and/or WiMax [28,29].
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an ARM® (Advanced (Reduced Instruction Set Computing) RISC Machine) processor-based 
embedded system [1,3,4,7,8]. 

In the typical home EMS model depicted in Figure 1, the smart AIoT edge analytics-empowered 
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presented later, is needed. This is because data science analytics for user-centric IoT applications in 
DSM in Figure 1 is based on (centralized) cloud analytics and a future fog-cloud analytics-enabled 
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Figure 1. Typical home energy management system (EMS) model involving three main stakeholders.

In a typical home EMS model, it is assumed that each home environment is equipped with an
EMC. An EMC installed is able to communicate with smart plugs intrusively attached to/deployed on
electrical home appliances monitored for DSM in a home environment. Smart plugs can use ZigBee as
the communication protocol [3,7,8]. An EMC installed also serves as an in-home display, to realize data
visualization and remote load control in a home environment. Typically, an EMC is configured with
heterogeneous communication protocols [11,30–32] in an HAN, and it is based on an ARM® (Advanced
(Reduced Instruction Set Computing) RISC Machine) processor-based embedded system [1,3,4,7,8].

In the typical home EMS model depicted in Figure 1, the smart AIoT edge analytics-empowered
power meter prototype studied in this work, collaborated together with cloud analytics and presented
later, is needed. This is because data science analytics for user-centric IoT applications in DSM in
Figure 1 is based on (centralized) cloud analytics and a future fog-cloud analytics-enabled AMI/smart
sensing infrastructure for DSM in an SG is expected. The conceptual vision of the future fog-cloud
analytics-based AMI/smart sensing infrastructure expected is shown in Figure 2.
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Figure 2. Conceptual vision of the presented prototype considering a future user-centric Internet
of things (IoT) application, based on fog-cloud analytics, for demand-side management DSM in a
smart grid (SG). Advances, user-centric IoT service-oriented single and/or multiple sensing modalities,
for DSM in an SG and many others in a smart city can build upon this infrastructure.



Sensors 2019, 19, 2047 7 of 26

In Figure 2, the smart AIoT edge analytics-empowered power meter prototype, the AI-enabled
and Arduino MCU-based smart power meter prototype, can be deployed in multiple fields of interest
in an SG. All smart AIoT edge analytics power meters distributed and deployed for DSM in an SG
are time-synchronized. Micro data gathered and analyzed by each of local smart AIoT edge analytics
power meters are transmitted to cloud storage and converged in cloud analytics. Macro insights by
AI trained in cloud analytics and then deployed on-site on each of local smart AIoT edge analytics
power meters are sent back to IoT sources/end users. To deploy AI, which is trained in cloud analytics,
on-site on the Arduino MCU-based smart power meter prototype, OTA (over the air) functionality [17]
conducted in Figure 1 for edge analytics can be extremely useful in cases of limited or no physical
access to MCUs that update their firmware remotely.

The architecture with the prototype considering the FCM-piloting RBF-ANN to perform on-line
load monitoring in this work is described below, which is a preliminary design toward such a scenario
in Figure 2.

3.1. Cloud Analytics-Assisted Electrical EMS Architecture

Figure 3 depicts the described cloud analytics-assisted EMS architecture that comes up with the
IoT technology stack in References [21–23], using the typical home EMS model studied in Figure 1,
and considering the AI (the FCM clustering-piloting RBF-ANN)-empowered and Arduino MCU-based
smart power meter prototype as edge analytics for DSM in this work. The push notification service is also
considered in the architecture. In Figure 3, a WampServer, (1) ApacheTM HTTP server (Apache Software
Foundation, Forest Hill, MD, USA), (2) MySQLTM relational database (Oracle Corporation, Redwood
City, CA, USA), and (3) PHP hypertext preprocessor (PHP) scripting language (Rasmus Lerdorf,
Qeqertarsuaq/Disko Island, Greenland) sous the Windows® operating system (OS), is configured on
the personal computer (PC)-based data science analytics engine as cloud analytics in this work. The PC
serves as the core/central entity of the data science analytics engine as cloud analytics, where the
WampServer is established with a mashup of JavaTM, R language, and Python. The WampServer is a
Windows web development environment, which allows developers to create web applications with
an Apache HTTP server, MySQLTM relational database, and PHP. Alongside, phpMyAdmin allows
developers to easily manage their databases. A mashup of JavaTM, R language, and Python is suited
for data science analytics/AI trained in cloud analytics. The Java Virtual Machine configured and
shown in Figure 3 is a virtual machine. It enables the configured data science analytics engine to run
cross-platform Java programs, as well as programs coded in other programming languages, where
programs are also compiled to Java bytecode. R language, supported by the R Foundation [33], is a
free software environment for statistical computing and graphics; it publicly provides a free package
repository that features more than 11,800 available software packages covering from “Machine Learning
and Statistical Learning” to “Graphics” for data analysis and visualization. The representational state
transfer (REST)-ful Web Services application programming interface (API) [21] is also suited for AI in
cloud analytics in this work.

Figure 4 shows the Rserve() in R language, which is conducted and also configured on the
data science analytics engine for high-performance parallel processing/computing, where, Rserve(),
a Transmission Control Protocol/Internet Protocol (TCP/IP), socket server, (1) allows programs to
use facilities of R from various programming languages without the need to initialize R or link
programming languages against R libraries, and (2) is capable of starting multiple Rserves() to handle
multiple connections via different TCP/IP ports for concurrent R sessions.

The software R packages “nnet” (applied for BP-ANN), “stats” (applied for k-means clustering),
“fclust”/“e1071” (applied for FCM clustering), and “neural”/“RSNNS” (applied for RBF-ANN) provide
feed-forward ANN algorithms and partitioning-based clustering algorithms hybridized and used in this
work. The FCM clustering/piloting RBF-ANN trained in cloud analytics on the data science analytics
engine and deployed on-site on the AI-enable and Arduino MCU-based smart power meter prototype
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as edge analytics is presented in the next section. High-performance parallel processing/computing in
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high-performance parallel processing/computing.

The widely used BP-ANN model and FCM clustering/piloting RBF-ANN model are trained in
cloud analytics and compared in this work. Then, the superior AI model is embedded/deployed on-site
on the presented smart Arduino MCU-based power meter prototype. The presented AI-enabled and
Arduino MCU-based smart power meter prototype, used in a residential environment to monitor



Sensors 2019, 19, 2047 9 of 26

electrical appliances for DSM in an SG, is designed and implemented as edge analytics in the described
architecture in Figures 2 and 3. Fog-cloud analytics that involves collecting and analyzing sensor
data at sensor points of the internet is considered in this work for advances in future user-centric
IoT applications in Figure 2. In Figure 3, the Gmail Simple Mail Transfer Protocol (SMTP) e-mail
service can be conducted as a third-party service in Figure 1, where the Highcharts Serverside Export
framework providing a Java API for Highcharts, including image generation capabilities for routine
electrical energy reports, is suited. In this work, to the third-party push notification service in Figures 1
and 3, IFTTT (if this, then that) is conducted and used in the described architecture to send LINE
Notify messages. IFTTT is a real free and handy way to get all developers’ apps and devices talking to
each other; its “Webhooks” service allows developers to integrate other services on its platform with
their IoT project(s) via simple web requests. In this work, the presented AI-embedded and Arduino
MCU-based smart power meter prototype, which triggers a pre-specified IFTTT/Maker event when
an identified real-time actionable insight is present, is designed and implemented in the described
architecture with LINE Notify. Receiving push notifications from an LINE Notify official account
is realized in the described architecture in Figures 1 and 3. Providing a push notification service to
IoT end users (clients), the PC-based data science analytics engine configured in Figure 3 can also
suit Google-maintained Firebase Cloud Messaging (Google Cloud Messaging) to engage IoT clients
across Android/iOS mobile devices. In the described architecture in Figure 3, data transmitted by or
requested from the designed and implemented AI-embedded and Arduino MCU-based smart power
meter prototype are over the HTTP [21]. To cloud storage/IoT data stores, a network-attached storage
providing data access via the HTTP GET()/POST() methods for a heterogeneous group of IoT clients
can be configured. Instead, an open IoT analytics platform, ThingSpeakTM, is conducted and suited in
this work. ThingSpeakTM is an open-source IoT platform with MATLAB® analytics (by MathWorks®),
which provides an API to be used by IoT clients to store IoT data to and retrieve IoT data from it over
the HTTP [21].

As electrical appliances monitored in a residential environment in the described cloud
analytics-assisted electrical EMS architecture in Figures 1–3 are able to react to DR developed by
utilities to shift electrical energy consumption patterns during peak load periods for DSM in an
SG [3,4], the prototype developed in the architecture described above accommodates AI, the FCM
clustering/piloting RBF-ANN, to identify electrical appliances monitored on-line without an intrusive
deployment of smart plugs for monitored electrical appliances. The prototype that accommodates the
FCM-piloting RBF-ANN to perform on-line load monitoring is presented below.

3.2. AI-Embedded and Arduino MCU-Based Smart Power Meters Prototype Designed and Implemented as
Edge Analytics with Push Notification Service for DSM in an SG

The AI-embedded and Arduino MCU-based smart power meter prototype designed and
implemented as edge analytics in the described architecture with push notifications service is depicted
in Figure 5. It can be seen in Figure 5 that the core/main entity of the prototype is based on the Arduino
board. More specifically, Arduino MEGA 2560 [34,35] was chosen and used for the hardware/software
design and implementation of the prototype in this work. Arduino MEGA 2560 is an open-source and
inexpensive product, and it provides sufficient analog pins for its possible different future ideas in
smart homes.

The general specification of Arduino MEGA 2560 is shown in Table 1. Arduino MEGA 2560 is an
MCU board based on Atmel® 8-bit ATmega2560 MCU, which is designed and conducted for more
complex projects. It has 54 digital Input/Output (I/O) pins (of which 15 can be used for pulse width
modulation (PWM)), 16 analog inputs, four Universal Asynchronous Receiver/Transmitter (UARTs)
(hardware serial ports), a large memory space for coded Arduino sketch, a 16-MHz crystal oscillator,
a Universal Serial Bus (USB) connection, a power jack, an ICSP (in-circuit serial programming) header,
and a reset button. In an Arduino MCU, the flash memory, the program space, is where the coded
Arduino sketch is stored. The SRAM (static random-access memory) is where the coded sketch creates
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and manipulates variables when it runs. The Electrically Erasable Programmable Read-Only Memory
(EEPROM) is the memory space that programmers can use to store long-term data. The Arduino
MEGA 2560 MCU is compatible with most shields designed for Arduino UNO and the former MCUs
such as Arduino Duemilanove.Sensors 2019, 19, x FOR PEER REVIEW 10 of 27 
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Table 1. Technical specification of Arduino MEGA 2560 [34,35].

Microcontroller ATmega 2560

Operating voltage 5 V
Input voltage (recommended) 7–12 V

Input voltage (limit) 6–20 V
Digital Input/Output (I/O) pins 54 (of which 15 provide Pulse Width Modulation (PWM) output)

Analog input pins 16
Direct Current (DC) current per I/O pin 20 mA

DC current for 3.3-V pin 50 mA
Flash memory 256 kB (8 kB used by its bootloader)

Static Random Access Memory (SRAM) 8 kB
Electrically Erasable Programmable Read-Only

Memory (EEPROM) 4 kB

Clock speed 16 MHz
LED_BUILTIN, the number of the pin to which

the on-board LED is connected 13

Length ×width 101.52 mm × 53.3 mm

The Arduino MEGA 2560 MCU is programed in Arduino language. Arduino language is based
on the C/C++ programming language, and it comes with a user-friendly IDE (integrated development
environment) [36]. In this work, the designed and implemented prototype in Figure 5 is based on the
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Arduino MEGA 2560 MCU, which modules (1) a current transducer (CT) coil clipped on the live wire of
electrical wiring and used to sense/measure currents for on-line load monitoring; (2) a WizNet W5100
hardwired TCP/IP embedded ethernet shield mounted and used to support internet connectivity; (3) a
real-time clock (RTC) chip used to keep track of present time, as timestamps, via network time protocol
(NTP) (all AI-embedded and Arduino MCU-based smart power meters distributed and deployed
on-site for DSM in smart homes in an SG are time-synchronized); (4) a micro Secure Digital (SD) card
used to store IoT data (an SD Library, “sdfatlib”, by William Greiman allows for reading data from
and writing data to an SD card); and (5) AI, the commonly used BP-ANN model [8,16–19,21,23] and
comparative FCM clustering/piloting RBF-ANN model, embedded/deployed on-site on the Arduino
MEGA 2560 MCU and used as edge analytics to perform on-line load monitoring.

Wireless communication technology such as Bluetooth [37], ZigBee [38], and Wi-Fi [39–41] can be
conducted and used for the presented prototype in the described architecture in this work. ZigBee
(the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard) [38] is arguably the
most popular technology for creating wireless sensor networks, and it was included in some of the
latest commercial [40] and academic home automation cases, including water pump control in a
smart fish farm with efficient energy consumption [15,42,43], and several others [39,40,44]. The new
Android smartphone application that uses the open-source Massachusetts Institute of Technology
(MIT) App Inventor 2 software to monitor voltage and current measurements in Reference [37] can
also be conducted, developed, and used by the presented prototype in the described architecture.
In this sense, the WizNet W5100 hardwired TCP/IP embedded ethernet shield mounted on the Arduino
MEGA 2560 MCU for the design and implementation of the presented AI-embedded and Arduino
MCU-based smart power meter prototype in this work can be replaced with a low-cost ESP8266
ESP-01 SoC (system on a chip) Wi-Fi microchip; an open-source firmware based on ESP8266 Wi-Fi-SoC
NodeMCU in Reference [21] is used.

In the presented AI-embedded and Arduino MCU-based smart power meter prototype in the
described architecture in this work, the widely used BP-ANN model [8,16–19,21,23,45] in Figure 6 is
constructed, trained in cloud analytics, and compared with an RBF-ANN model in Figure 7.Sensors 2019, 19, x FOR PEER REVIEW 12 of 27 
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Figure 6. Structure of a feed-forward backpropagation (BP) artificial neural network (ANN) model
used in this work, trained by a gradient-descent (GD) learning process in cloud analytics and compared,
as a comparative study, with a fuzzy C-means (FCM) clustering/piloting radial basis function (RBF)
ANN model.
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this work.

The RBF-ANN model in Figure 7 is integrated with an FCM clustering algorithm in this work.
Both AI models in Figures 6 and 7 are trained in cloud analytics and compared in this work; the superior
AI model, well trained in cloud analytics, is then embedded/deployed on-site on the designed and
implemented smart Arduino MCU-based power meter prototype as edge analytics. The AI-embedded
and Arduino MCU-based smart power meter prototype presented in this section is used to perform
on-line load monitoring as load identification for DSM in an SG.

The process of on-line load monitoring by the presented prototype for DSM in this work comprises
feature extraction and load identification, as shown in Figure 2. In this work, real power (P in
Watts) [20,21] and turn-on transient power [21] are extracted from monitored electrical appliances
through feature extraction and are used as load signatures/electrical features to be trained in cloud
analytics and identified by the presented smart Arduino MCU-based smart power meter prototype
accommodating the superior AI model. The turn-on transient power is defined as real power
consumption in which real power consumed by an electrical appliance plugged into the presented
prototype and turned on is computed and captured. Electrical appliances will settle down. For feature
extraction, current waveforms acquired by the CT from the time domain can be transformed, through
fast Fourier transform (FFT) [46–49], into the frequency domain for current harmonics [20] as load
signatures. FFT is an algorithm that performs discrete Fourier transform. In this work, the two different
types of AI, the BP-ANN model [21,23] and FCM clustering/piloting RBF-ANN model, are conducted
and compared. They are introduced below.

3.2.1. Widely Used BP-ANN Model

In the biologically inspired and widely used BP-ANN model shown in Figure 6, artificial neurons
with synaptic weights including biases (weighting connections) are arranged and fully connected
in the input, hidden, and output layers. In this work, load signatures used as input data/training
samples are fed through the network to be trained. During the training process of the BP-ANN
network, the types of monitored electrical appliances indicated from actual output(s) of the network
to be computed are compared with the desired/target value(s) in a supervisory manner, and the
error(s) compared and computed are then fed back through the network to be trained. The BP-ANN
network incrementally adjusting its weighting connections will ultimately be trained (the total error is
systematically reduced, since the weighting connections are adjusted as the training process of the
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network proceeds). The adjustable parameters, the weighting connections of the BP-ANN network in
Figure 6, include vqj and wiq. The weighting connections of the BP-ANN network constructed in this
work with only one single hidden layer as an example in Figure 6 are updated according to Equations
(1) and (2), which are updated during the backward-pass process of the whole training process of the
network [8].

∆wiq = η[di − yi][a′(neti)][zq] (1)

In Equation (1), η is the learning rate, di is the desired/target output of the i-th artificial neuron
in the output layer of the BP-ANN network, yi is the computed output of the i-th artificial neuron
in the output layer of the network, a denotes the user-specified activation function—an abstraction
representing the rate of action potential firing in a biological neuron cell, which can be, for example,
a continuous sigmoid-type function, and neti is computed and considered the net input of the i-th
artificial neuron in the output layer of the BP-ANN network (from neurons outputted in the hidden
layer during the forward-pass process of the whole training process of the network), which is usually a
weighted sum of the inputs of the i-th artificial neuron. Furthermore, zq, zq = a

(
netq

)
= a

(∑m
j=1 vqjx j

)
,

is the computed output of the q-th artificial neuron in the hidden layer of the network (its net input,
a weighted-sum value, is computed when xj is presented during the forward-pass process).

∆vqj = η
n∑

i=1

[[di − yi][a′(neti)]wiq]a′(netq)x j (2)

The commonly used gradient-descent (GD) learning algorithm involving Equations (1) and
(2) is conducted and used to train the BP-ANN network in this work. Equations (1) and (2)
adopt the incremental approach in updating the weighting connections of the BP-ANN network;
that is, the weighting connections of the network are changed after one training sample is presented
and computed.

3.2.2. FCM Clustering/Piloting RBF-ANN Model

The RBF-ANN model [50–53], a rather simple three-layer ANN model, conducted and used in this
work, includes one input layer, one hidden layer involving radial basis functions to take on the role of
non-linear activation functions, and one output layer, as shown in Figure 7. RBF-ANNs have several
advantages in comparison to BP-ANN/multi-layer perceptron. For instance, they have conspicuous fast
and high learning and generalization performance [8,50,53]. Also, there are few principal design factors
to be determined for RBF-ANN compared with BP-ANN. As a result, the RBF-ANN model combined
with FCM clustering [54–56] is conducted and used in this work. The FCM clustering, the fuzzy version
of the known k-means clustering, is a partitioning-based clustering algorithm used in this work to
design the RBF-ANN model in Figure 7. To design the RBF-ANN model in Figure 7, the first important
step is to determine the parameters of each basis function in the hidden layer of the network. In this
work, the radially symmetric Gaussian basis functions involving the center and spread parameters are
used. The Gaussian basis functions used by the RBF-ANN model in this work are distributed, partially
overlapped, and coarsely determined through the FCM clustering. Once the specification of the center
and spread parameters of each Gaussian basis function is completed, a singular value decomposition
(SVD) technique [50] is used to train the RBF-ANN model.

The two-stage approach used in this work to design the RBF-ANN model in Figure 7 is
summarized below.

• Stage 1. FCM clustering is applied [54–56], with an on-site collected training dataset, to coarsely
determine the center and spread parameters of Gaussian-type basis functions of the RBF-ANN
model [50–53]. The Gaussian basis functions heuristically initialized are evenly spanned.
The spread parameter of each of the Gaussian basis functions can be computed with e−1 from
clustered data with their center mean.
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• Stage 2. The SVD technique is used [50], with the on-site collected training dataset, to train the
RBF-ANN model heuristically initialized in Stage 1. Once the FCM clustering/piloting RBF-ANN
model is trained, in cloud analytics, with an acceptable level of performance, it is then deployed
on-site on the presented smart Arduino MCU-based power meter prototype. Also, it is used to
classify new data instances for on-line load monitoring in DSM.

The FCM clustering allows each datum to belong to two or more clusters, as demonstrated in fuzzy
logic theory. The goal of the FCM clustering applied in this work is to find c cluster centers/codebook
prototypes/centroids with respect to an on-site collected training dataset. The c centers found are used
to roughly allocate Gaussian-type basis functions of the RBF-ANN model involving the center and
spread parameters.

The FCM clustering algorithm used in this work for the RBF-ANN model initialized is given below.

Step 1. For an on-site collected training dataset = = {Xk, dk}
Q
k=1, where there are Q input–output

pairs of training samples, Xk ∈ Rn and dk ∈ R: fix c ∈ {2, 3, . . . , (Q − 1)}, set m ∈ (1, ∞),
and initialize U(0)

∈ Mfc. Here, Mfc = {U ∈ Vcn|uik ∈ interval [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ Q;
c∑

i=1
uik = 1, ∀k ∈ {1, 2, . . . , Q} is true}; Vcn is the set of real c × Q matrices U = [uik]; uik is the

membership value of Xk that belongs to the i-cluster.
Step 2. At iteration l, where l = 0, 1, 2, . . . , compute the c mean centers using Equation (3).

Vi =

∑Q
k=1 (uik

(l))
m

Xk∑Q
k=1 (uik

(l))
m , 1 ≤ i ≤ c (3)

Step 3. Update U(l) to U(l + 1) = [uik
(l + 1)] using Equation (4).

uik
(l) =

1∑c
j=1 (

∣∣∣∣∣∣Xk−Vi
(l)

∣∣∣∣∣∣∣∣∣∣∣∣Xk−V j
(l)

∣∣∣∣∣∣ )
2

m−1

, 1 ≤ i ≤ c, 1 ≤ k ≤ Q (4)

Step 4. If ||U(l + 1)
−U(l)|| is less than or equal to a pre-specified tolerance, stop; otherwise, set l = l + 1

and go to Step 2.

The cluster centers identified, by Equation (3), through the FCM clustering are used as the center
parameters of the Gaussian basis functions of the RBF-ANN model trained by the SVD technique as
described below.

According to the same training dataset = = {Xk, dk}
Q
k=1, the goal of the training process of the

RBF-ANN model is to search for map f that takes each input Xk (k = 1, . . . , Q) and then maps it exactly
onto its desired/target output dk: f (Xk) = dk. With the purpose of mapping f (Xk) = dk to be learned
through the training process of the RBF-ANN model, the RBF-ANN model assumes a set of exact q
non-linear Gaussian-type basis functions φ(‖Xk − µi‖) whose argument involves a Euclidean distance
metric ‖Xk − µi‖. The Euclidean distance metric measures the distance between the k-th inputted input
Xk and the i-th center (cluster mean) µi, where i = 1, 2, . . . , q (= c) and µi ∈ Rn. In this work, q is equal
to c; the c cluster means in Equation (3) are found by the FCM clustering that was given previously.
The map f above is then generated with a weighted linear superposition of the q non-linear basis
functions, as shown in Equation (5).

f (X) =

q∑
i=1

wiφ(‖X k − µi
∥∥∥) (5)

In Equation (5), wi is the i-th weight coefficient of the RBF-ANN model that needs to be trained.
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The map f in Equation (5) is solved in a least squares sense. Toward this end, the familiar squared
error function that computes the squared error that is summed over all Q training samples is introduced
in Equation (6).

ε =
1
2

Q∑
k=1

[dk −

q∑
i=1

wiφ(‖X k − µi
∥∥∥)]2 (6)

To obtain the optimal weight coefficients in a least squares sense, we differentiate Equation (6)
with respect to wi, and set it equal to zero as shown in Equation (7).

Q∑
k=1

φki(

q∑
l=1

wlφkl) =

Q∑
k=1

dkφki (7)

By the following matrix definitions:

Φ =


ϕ11 . . . ϕ1q
ϕ21 . . . ϕ2q

...
. . .

...
ϕQ1 . . . ϕQq

, D =
[
d1, . . . , dQ

]T
, and W =

[
w1, . . . , wq

]T
, Equation (7) is recast into a

matrix form of Equation (8). (
ΦTΦ

)
W = ΦTD (8)

Finally, the weight vector, W, in Equation (8) is solved by the SVD technique [50,57,58], and it is
given in Equation (9).

W = (ΦTΦ)
−1

ΦTD = Φ∗D (9)

In Equation (9), Φ∗, a q-by-Q matrix, is the pseudo-inverse [50].

In this work, q (= c) non-linear Gaussian basis functions are ϕ(‖Xk − µi‖) = exp (−
‖Xk−µi‖

2

2σ2 ).
Assuming that the Gaussian basis functions are centered, by the c cluster means in Equation (3),
at

{
µi

}q
i=1, we define the maximum distance α between any of the chosen center parameters as

α = max
1≤i, j≤q

(
‖µi − µ j‖

)
. Then, the spread parameters, σ, of the Gaussian basis functions are heuristically

initialized by Equation (10) [50].
σ =

α√
2q

(10)

Equation (5) admits the RBF-ANN model hybridized with the FCM clustering, as shown in
Figure 7. The FCM clustering is used to find c cluster centers from an on-site collected training dataset,
which are used as the center parameters of the Gaussian basis functions of Equation (5), and each
spread parameter of the Gaussian basis functions is computed according to Equation (10). Algorithm 1
gives the pseudo code of code implementation of the FCM clustering/piloting RBF-ANN model, in this
work, trained in cloud analytics and embedded/deployed on-site on the presented smart Arduino
MCU-based power meter prototype for on-line load monitoring in DSM.

4. Proof-of-Concept Demonstration

4.1. Demo Prototype and Evaluation

In this section, the cloud analytics-assisted electrical EMS architecture empowered by the
AI-embedded and Arduino MCU-based smart power meter prototype as edge analytics for on-line
load monitoring in DSM in this work is demonstrated and validated experimentally. Figure 8
shows the proof-of-concept demonstration of the described cloud analytics-assisted electrical EMS
architecture with the presented AI-embedded and Arduino MCU-based smart power meter prototype.
The presented prototype is designed and implemented as edge analytics for on-line load monitoring in
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the described architecture in this work, which is installed in a realistic laboratory environment for an
electrical network topology and used as a smart electrical outlet/wall socket as shown in Figure 8a.

AI considered in this work includes the BP-ANN model and the comparative FCM
clustering/piloting RBF-ANN model. The two AI models are trained in cloud analytics on a laptop
computer suited, configured, and acted as the data science analytics engine in Figure 3. The laptop
computer suited, configured, and acted as cloud analytics is shown in Figure 8b. In Figure 8a,b,
the AI-embedded and Arduino MCU-based smart power meter prototype depicted in Figure 5 are
shown. We assembled hardware and software of the smart Arduino MEGA 2560 MCU-based power
meter prototype with its mounted Arduino W5100 Ethernet shield, in order to (1) acquire electrical
currents measured by the CT; (2) identify load signature/electrical features, based on embedded AI,
extracted from electrical appliances monitored for on-line load monitoring/load identification in DSM
in this work; (3) realize remote on/off load control based on a mobile responsive web server configured
on the Arduino MEGA 2560 MCU mounted with the Arduino W5100 ethernet shield and wired
with a relay; and (4) provide a mobile push notification service to end users for user-centric IoT
applications in DSM. The mobile responsive web server configured on the Arduino MEGA 2560 MCU
and used to realize electrical EMS web control is shown in Figure 8c. The push notification service
provided is shown later. In this experimentation, the two AI models, the BP-ANN model and the
FCM clustering/piloting RBF-ANN model, are trained, in R language installed on the laptop computer,
in cloud analytics. Then, the superior AI model is embedded/deployed on-site on the Arduino MEGA
2560 MCU as edge analytics for on-line load monitoring/load identification, auto-labeling of monitored
electrical appliances [21,23], in DSM in this work (refer to Figures 2 and 8a). On-line load identification
in this work can be developed on a daily basis of appliance-level load identification, as appliance-level
load identification is disaggregated from whole-house load data with no intrusive deployment of
smart plugs installed for electrical appliances monitored. The BP-ANN model is trained according to
Equations (1) and (2). The FCM clustering/piloting RBF-ANN model, an AI model compared with the
BP-ANN model, is trained according to Algorithm 1. Both AI models trained, compared, and used to
identify electrical appliances in this experimentation are shown later. How to size the burden resistor
used by the AI-embedded and Arduino MCU-based smart power meter prototype in Figure 8b to
convert CT current into a voltage reference can be found in Reference [59].
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Figure 8. Proof-of-concept demonstration of the described cloud analytics-assisted electrical EMS
architecture with the presented AI-embedded and Arduino MCU-based smart power meter prototype,
the smart AIoT edge analytics-empowered power meters prototype based on Arduino MCU, as edge
analytics for on-line load monitoring as load identification in DSM in this work. (a) Sketch of the
designed and implemented prototype installed in a practical environment for an electrical network
topology and used as a smart electrical outlet/wall socket. (b) Experimental set-up of the presented
prototype in the described architecture in the realistic laboratory environment. (c) Electrical EMS web
control: the mobile responsive web server configured on the Arduino MEGA 2560 MCU mounted with
the Arduino W5100 ethernet shield and wired with a relay for remote on/off load control.

In Figure 8c, network address translation (NAT), port forwarding/port mapping, is configured
and used to allow remote computers/mobile devices to connect to the privately configured and local
area network (LAN)-dominated mobile responsive web server via the internet, where the external
interface of the NAT is configured with a public IP (Internet Protocol) address. In computer networking,
NAT redirects HTTP requests based on a translation of a private IP address to a public IP address.

To feature extraction in this experimentation, (instantaneous) currents are acquired, and electrical
features, real power (RMSPower) and turn-on transient power (peakPower), are extracted. RMSPower
and peakPower are used as the input variables of the BP-ANN and FCM clustering/piloting RBF-ANN
models; the electrical features are fed into the two AI models and learned. Current harmonics by FFT
can be calculated and used as additional electrical features. That is, the electrical features learned
can be P/RMSPower, peakPower, and/or current harmonics. To calculate current harmonics by FFT,
the sampling frequency used by Arduino MCU has to be customized/modified according to the
Nyquist–Shannon sampling theorem where the sampling frequency to frequently sample a signal you
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are trying to acquire needs to be at least twice the frequency of the signal you are trying to acquire.
For load identification demonstrated in this experimentation, the BP-ANN and FCM clustering/piloting
RBF-ANN models are used to learn and identify RMSPower and peakPower extracted from electrical
appliances monitored for on-line load monitoring in DSM in this work.

Algorithm 1. Algorithm for the FCM clustering/piloting RBF-ANN model.

Applying the FCM clustering on an on-site collected training dataset = = {Xk, dk}
Q
k=1 to coarsely determine the

center and spread parameters of the q (= c in the FCM) Gaussian basis functions of the RBF-ANN model of
Equation (5).

# Specify values: the number of clusters c, the degree of fuzziness m > 1, and a tolerance to be set.
# Generate the c cluster centers randomly.

l← 0
# Repeat
Compute the c cluster centers, using Equation (3).
Update the membership matrix, U, using Equation (4).

l← l + 1,
until
the tolerance, ||U(l+1)

− U(l)||, is approximately met.

# Return the resulting c cluster centers found with the membership matrix U.

# Center the Gaussian basis functions of Equation (5) at the resulting c cluster centers found through the FCM
clustering.
# Compute the spread parameters of the Gaussian basis functions of Equation (5), using Equation (10). 1

Use the SVD technique, with the on-site collected training dataset, to train the RBF-ANN model of Equation (5).
Its Gaussian basis functions are heuristically initialized by the FCM clustering.

# Train Equation (5), by Equation (9), in cloud analytics, to get W.
# Deploy the well-trained AI model on-site on the presented smart Arduino MCU-based power meter
prototype for on-line load monitoring in DSM.
(1 The spread parameter of each of the Gaussian basis functions can be computed with e−1 from clustered data
with their cluster mean/the membership matrix.)

In the proof-of-concept demonstration shown in this work, the ThingSpeakTM IoT
platform [21,23,60] that provides free cloud storage for IoT data stores is used. Table 3 shows
the ThingSpeakTM update executed by the presented prototype and used to upload electrical features,
RMSPower and peakPower, defined above and summarized in Table 2, to the ThingSpeakTM platform
for data stores.

Table 2 shows the field of RMSPower and peakPower gathered from the presented prototype and
uploaded through the internet to ThingSpeakTM.

Table 2. Field of RMSPower and peakPower (turn-on transient power consumption) in ThingSpeakTM.

Channel Field Physical Meaning/Sensor

Electrical energy management
Field1

(RMSPower) Real power/CT

Field2
(peakPower) Turn-on transient power/CT
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Table 3. ThingSpeakTM update executed by the presented prototype.

/* . . . */
byte server[[] = {184, 106, 153, 149}; // IP Address (or api.thingspeak.com) for the ThingSpeak
(https://thingspeak.com/)
String writeAPIKey = “E18Q*X*TY**8A*4U”; // Write API Key for a ThingSpeak Channel
. . .
. . .

updateThingSpeak(“field1=” + String(RMSPower) + “&field2=” + String(peakPower));
. . .
. . .

void updateThingSpeak(String tsData) { // RMSPower, peakPower, . . . , more 1

if (client.connect(server, 80)) {
Serial.println(F(“Connected to ThingSpeak...”));
client.print(“POST /update HTTP/1.1\n”);
client.print(“Host: api.thingspeak.com\n”);
client.print(“Connection: close\n”);
client.print(“X-THINGSPEAKAPIKEY: “+writeAPIKey+”\n”);
client.print(“Content-Type: application/x-www-form-urlencoded\n”);
client.print(“Content-Length: ”);
client.print(tsData.length());
client.print(“\n\n”);
client.print(tsData);

}
. . .

}
. . .

1 The current readings are calibrated by scaling factors [59] for power computation.

The open ThingSpeakTM IoT platform also provides a simple web page/dashboard to IoT clients
for data visualization. As shown in Figure 9, data identified by the presented AI-embedded and
Arduino MCU-based smart power meter prototype are visualized in ThingSpeakTM.
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In this experimentation, the BP-ANN model in References [21,23] and the FCM clustering/piloting
RBF-ANN model in this work are compared. Electrical appliances monitored and identified by the
two AI models in this experimentation include an electric fan (~115 W) and a hair dryer (~900 W);
the electrical features extracted from the monitored electrical appliances and used to train the two
different types of AI models are RMSPower and peakPower. A network structure of 2–3–3 was
structured for the BP-ANN model in Reference [23], and it was trained, by the GD algorithm, in cloud
analytics. A network structure of 2–8–3 was used for the BP-ANN model in Reference [21], and it was
also trained, by the GD algorithm, in cloud analytics. In the FCM clustering/piloting RBF-ANN model
trained according to Algorithm 1, for the FCM clustering used to heuristically initialize the RBF-ANN
model, the number of clusters, c, was pre-specified as 5, the degree of fuzzification, m, was set to 2,
the maximum number of iterations executed was 100, and the Euclidean metric in Equation (4) was
considered. The cluster centers found by the FCM clustering and used to allocate the Gaussian basis
functions of Equation (5) in the RBF-ANN model are shown in Table 4. The spread parameters of the
Gaussian basis functions, which are computed by Equation (10), were 570.28. The RBF-ANN model
heuristically initialized by the FCM clustering was fine-tuned, by Equation (9), in cloud analytics.

Table 4. Cluster means found through the fuzzy C-means (FCM) clustering in this experimentation and
used as center parameters of the Gaussian basis functions of the radial basis function (RBF) artificial
neural network (ANN) model to be heuristically initialized.

RMSPower peakPower

0 0
901.30 901.30

0 901.30
112.58 123.22
97.45 123.31

In this experimentation, the superior AI model, the well-trained FCM clustering/piloting
RBF-ANN model compared with the two BP-ANN models, is shown in Table 5. The superior
FCM clustering/piloting RBF-ANN model was then embedded/deployed on-site on the presented
smart Arduino MEGA 2560 MCU-based power meter prototype as edge analytics for on-line load
monitoring in DSM in this work.

Table 5. Well-trained FCM clustering/piloting RBF-ANN model embedded/deployed on-site on the
Arduino MEGA 2560 MCU as edge analytics for on-line load monitoring in DSM in this work.

W

0 0.5311 −14.9229
0 1.1154 −0.5784
0 −0.2486 −1.8118
0 −0.9397 −4.3011
0 0.3614 20.3958

In this experimentation, the Arduino sketch coded with the superior FCM clustering/piloting
RBF-ANN model used 33,750 bytes (13%) of the maximum program storage space of 253,952 bytes;
the global variables used 2524 bytes (30%) of the maximum dynamic memory of its maximum
8192 bytes, leaving 5668 bytes for local variables. On-site measured data were identified by the
superior FCM clustering/piloting RBF-ANN model for on-line load monitoring in DSM in this work,
which were written to an SD card and uploaded to the ThingSpeakTM platform for IoT data stores and
data visualization. The feature space was of RMSPower and peakPower extracted from the electrical
appliances monitored and identified by the superior FCM clustering/piloting RBF-ANN model.
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Table 6 summarizes the overall load identification rates obtained, as a comparative study, in this
work. The overall load identification rate of 99.12% was achieved by the FCM clustering/piloting
RBF-ANN model, for load identification in this experimentation. For the push notification service in
Figure 1, Figure 3, and Figure 8a, Figure 10 shows the received LINE Notify message based on the IFTTT
push notification service. As shown in Figure 10, for the push notification service via IFTTT setting up its
own/specified applet, the LINE message was received when an appliance event pre-specified in IFTTT,
identified by the presented AI-embedded and Arduino MCU-based smart power meter prototype,
and then triggered through Webhooks, was published by Webhooks. IFTTT (https://ifttt.com/line &
https://notify-bot.line.me/zh_TW/) conducted in this work is an easy and free way to get your apps
and devices working together, which provides free web-based services to create chains and applets of
simple conditional statements. LINE (https://line.me/zh-hant/ and https://linecorp.com/zh-hant/) used
in this work is a global messaging app used in over 230 countries and regions, which offers fun and
free voice, video, and chat communication across multiple platforms. A webhook in IFTTT is a method
of augmenting or altering the behavior of a web page/web application with custom callbacks.

Table 6. Load identification rates obtained, as a comparative study, in this work.

The RBF-ANN Model Hybridized with
the FCM Clustering in This Work 1

The BP-ANN Model in
Reference [21] 2

The BP-ANN Model in
Reference [23] 3

Overall Load
Identification Rate (%) 4 99.12 99.12 94.12

1 The elapsed time consumed through the whole process of the FCM clustering/piloting RBF-ANN model was
0.255879 s, where (1) the number of cluster centers, c, found by the FCM clustering and used to heuristically initialize
the 2–5–3 network structure of the RBF-ANN model was 5; 2) λ, a regularization parameter used to control the
trade-off between the closeness to data fitted and the smoothness of the Tikhonov regularization called a stabilizer
that forces the approximation to become as smooth as possible [50], was 0.05; and (3) only one data instance was
misidentified. The output, the load indicator, of all the three ANN models compared in this work, was based on
the winner-takes-all principle considering a threshold of 0.5 pre-specified. The output of all three ANN models
was, in size, extensible with {1, 2, 3, ..., n + 1} for more electrical appliances monitored and identified by the
presented prototype in the described architecture, where n, a value of 2 in this experimentation, is the total number
of monitored electrical appliances. 2 A 2–8–3 network structure of the BP-ANN model was configured. 3 A 2–3–3
network structure of the BP-ANN model was configured. 4 A total of 102 data were measured are identified in
this experimentation.

Sensors 2019, 19, x FOR PEER REVIEW 22 of 27 

 

1 The elapsed time consumed through the whole process of the FCM clustering/piloting RBF-ANN 
model was 0.255879 s, where (1) the number of cluster centers, c, found by the FCM clustering and 
used to heuristically initialize the 2–5–3 network structure of the RBF-ANN model was 5; 2) λ, a 
regularization parameter used to control the trade-off between the closeness to data fitted and the 
smoothness of the Tikhonov regularization called a stabilizer that forces the approximation to become 
as smooth as possible [50], was 0.05; and (3) only one data instance was misidentified. The output, the 
load indicator, of all the three ANN models compared in this work, was based on the winner-takes-
all principle considering a threshold of 0.5 pre-specified. The output of all three ANN models was, in 
size, extensible with {1, 2, 3, ..., n + 1} for more electrical appliances monitored and identified by the 
presented prototype in the described architecture, where n, a value of 2 in this experimentation, is the 
total number of monitored electrical appliances. 2 A 2–8–3 network structure of the BP-ANN model 
was configured. 3 A 2–3–3 network structure of the BP-ANN model was configured. 4 A total of 102 
data were measured are identified in this experimentation. 

 
Figure 10. Received LINE Notify (https://notify-bot.line.me/zh_TW/) message based on the IFTTT (if 
this, then that) push notification service. The appliance event was pre-specified, identified, and then 
triggered for the monitored hair dryer. 

4.2. Discussion 

Figure 8 shows the proof-of-concept demonstration of the described cloud analytics-assisted 
electrical EMS architecture with the presented AI-embedded and Arduino MCU-based smart power 
meter prototype as edge analytics for on-line load monitoring and load identification in DSM in this 
work. Table 6 shows the overall load identification rate of the two different types of AI models 
accommodated and compared in the demonstrated architecture. As shown in Table 6, the FCM 
clustering/piloting RBF-ANN model presented in this work outperformed the two BP-ANN models 
applied in References [21,23]. The RBF-ANN model, integrated with the FCM clustering and 
compared with the two BP-ANN models, demonstrated its conspicuous fast and high learning and 
generalization performance, and there were few principal design factors that needed to be considered 

Figure 10. Received LINE Notify (https://notify-bot.line.me/zh_TW/) message based on the IFTTT
(if this, then that) push notification service. The appliance event was pre-specified, identified, and then
triggered for the monitored hair dryer.

https://ifttt.com/line
https://notify-bot.line.me/zh_TW/
https://line.me/zh-hant/
https://linecorp.com/zh-hant/
https://notify-bot.line.me/zh_TW/


Sensors 2019, 19, 2047 22 of 26

4.2. Discussion

Figure 8 shows the proof-of-concept demonstration of the described cloud analytics-assisted
electrical EMS architecture with the presented AI-embedded and Arduino MCU-based smart power
meter prototype as edge analytics for on-line load monitoring and load identification in DSM in
this work. Table 6 shows the overall load identification rate of the two different types of AI models
accommodated and compared in the demonstrated architecture. As shown in Table 6, the FCM
clustering/piloting RBF-ANN model presented in this work outperformed the two BP-ANN models
applied in References [21,23]. The RBF-ANN model, integrated with the FCM clustering and compared
with the two BP-ANN models, demonstrated its conspicuous fast and high learning and generalization
performance, and there were few principal design factors that needed to be considered and determined
for the RBF-ANN model. The two BP-ANN models in References [21,23] involved the forward and
backward propagation processes in the GD algorithm and Equations (1) and (2), whereas the RBF-ANN
model admitted by Equation (5) involved Equation (9) for its training process. The performance
of the two BP-ANN models that were applied in References [21,23], compared to the RBF-ANN
model, depended on three principal design factors [8,50,53]: (1) the architecture of the neural network
structured, (2) the types of transfer functions specified, and (3) the training algorithm of learning from
data used to train weighting connections of the structured neural network, which need to be considered
and determined through trial and error. As pointed out in References [8,50,53] and shown in Table 6,
in contrast to BP-ANN, RBF-ANN owns several advantages. For the partitioning clustering process
conducted for the RBF-ANN model in this work, data collected on-site in a field of interest can be
clustered through the nearest-neighbor clustering mechanism [7] in an unsupervised/self-organizing
manner, where there will be no need to pre-specify the number of cluster centers, c, to be discovered
ahead of time. In summary, the cloud analytics-assisted electrical EMS architecture empowered by the
AI-embedded and Arduino MCU-based smart power meter prototype was demonstrated in this section.
Moreover, the AI-embedded and Arduino MCU-based smart power meter prototype presented, as edge
analytics, in the demonstrated architecture worked with a third-party push notification service, as shown
in Figure 10. In the demonstrated architecture, for feature extraction processed through time-domain
analysis, electrical features, RMSPower and peakPower, were extracted from electrical appliances
monitored by the presented prototype. For load identification addressed by the two data-driven
AI models, BP-ANN and FCM clustering/piloting RBF-ANN, the superior FCM clustering/piloting
RBF-ANN model, advanced AI, compared with the BP-ANN model, was deployed on-site on the
presented prototype and used to perform on-line load monitoring as load identification/auto-labeling
of electrical appliances in DSM in this work. The different AI methods were trained, with a comparative
analysis, in cloud analytics, and the superior AI was then embedded/deployed on-site on an IoT end
device as edge analytics. This is necessary for a next-generation AMI/smart sensing infrastructure,
as IoT end devices such as power meters deployed in fields of interest (for DSM) in an SG should be
aware of interpretable and real-time actionable data insights at IoT sources. In the future, prognostics
and health management (PHM) in fog-cloud analytics will be developed for Industry 4.0 applications,
where data-driven PHM aims to predict the time, remaining useful life, at which a system or
components of that system will no longer perform its or their intended function. It will be based on
feature analysis in which electrical waveforms acquired from the time domain are transformed, through
FFT, into the frequency domain with their past trends. In this sense, the presented prototype in the
described architecture in this work can be further developed for and accommodated with preventative
maintenance in DSM. For cloud analytics in the described architecture, a scalable cloud analytics
engine spanning multiple technologies including graphics processing units (GPUs), message passing
interface (MPI), and parallel NetCDF will be developed for more high-performance cloud analytics.

5. Conclusions and Future Work

Electrical energy forms an indispensable part of today’s modern society; people’s lives would be
impossible without the aid of electricity. To meet continuously increasing electrical energy demands
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requested from downstream sectors of an SG, EMSs monitor and manage industrial, commercial,
and residential electrical appliances efficiently in response to DR signals in DSM. In this work, a cloud
analytics-assisted electrical EMS architecture empowered by an AI-embedded and Arduino MCU-based
smart power meter prototype as edge analytics was described. Moreover, the AI-embedded and
Arduino MCU-based smart power meter prototype presented, as edge analytics, in the described
architecture worked with a third-party push notification service. In the described architecture,
for feature extraction processed through time-domain analysis, electrical features, real power and
turn-on transient power consumption, were extracted from electrical appliances monitored by the
presented prototype; for load identification addressed by data-driven AI models, BP-ANN and FCM
clustering/piloting RBF-ANN, the superior FCM clustering/piloting RBF-ANN model, compared with
the BP-ANN model, was deployed on-site on the presented prototype and used to perform on-line
load monitoring in DSM in this work. The BP-ANN model and the FCM clustering/piloting RBF-ANN
model were used, as a comparative proof-of-concept demonstration, in this work. The activation of
the RBF-ANN model compared to the BP-ANN model and hybridized with FCM clustering was not
sigmoid, but radially symmetric. Therefore, information was represented locally in the neural network.

The practicality of the described architecture with the presented prototype in this work was
based on a proof-of-concept demonstration. As the experimentation reported in this work shows,
the described cloud analytics-assisted electrical EMS architecture having the presented AI-embedded
and Arduino MCU-based smart power meter prototype as edge analytics for on-line load monitoring
in DSM is feasible and workable. Different AI methods were trained, with a comparative analysis,
in cloud analytics, and the superior AI was then embedded/deployed on-site on an IoT end device as
edge analytics. This is necessary for a next-generation AMI/smart sensing infrastructure, as IoT end
devices such as power meters deployed in fields of interest in an SG should be aware of interpretable
and real-time actionable data insights at IoT sources.

In the future, a scalable cloud analytics engine spanning multiple technologies including GPUs,
MPI, and parallel NetCDF will be developed for more high-performance cloud analytics. PHM in
fog-cloud analytics will also be developed for Industry 4.0 applications, where data-driven PHM aims
to predict the time, remaining useful life, at which a system or components of that system will no
longer perform its or their intended function. It will be based on feature analysis in which electrical
waveforms acquired from the time domain are transformed, through FFT, into the frequency domain
with their past trends. In this sense, the presented prototype in the described architecture in this work
can be further developed for and accommodated with preventative maintenance in DSM.
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