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Abstract: The worldwide utilization of surveillance cameras in smart cities has enabled researchers
to analyze a gigantic volume of data to ensure automatic monitoring. An enhanced security system
in smart cities, schools, hospitals, and other surveillance domains is mandatory for the detection
of violent or abnormal activities to avoid any casualties which could cause social, economic, and
ecological damages. Automatic detection of violence for quick actions is very significant and can
efficiently assist the concerned departments. In this paper, we propose a triple-staged end-to-end
deep learning violence detection framework. First, persons are detected in the surveillance video
stream using a light-weight convolutional neural network (CNN) model to reduce and overcome the
voluminous processing of useless frames. Second, a sequence of 16 frames with detected persons is
passed to 3D CNN, where the spatiotemporal features of these sequences are extracted and fed to the
Softmax classifier. Furthermore, we optimized the 3D CNN model using an open visual inference
and neural networks optimization toolkit developed by Intel, which converts the trained model into
intermediate representation and adjusts it for optimal execution at the end platform for the final
prediction of violent activity. After detection of a violent activity, an alert is transmitted to the nearest
police station or security department to take prompt preventive actions. We found that our proposed
method outperforms the existing state-of-the-art methods for different benchmark datasets.

Keywords: abnormal activity; deep learning; 3D convolutional neural network; violence detection;
surveillance cameras

1. Introduction

In the past decade, with the growth and advancements in the field of computer vision, an
enormous amount of modern techniques has emerged and gained much attention among researchers
due to their vast surveillance applications [1–5]. For instance, in 2017, about 954,261 CCTV cameras
were installed in public in South Korea, which was an increase of 12.9% compared to the previous
year [6]. The purpose of these cameras is to ensure security in public places. For this purpose, we focus
on the detection of violence using these cameras. Violence is an abnormal behavior and an activity
that involves some physical force to damage something, to kill or hurt a human or an animal; these
actions can be identified through a smart surveillance system which could be used to prevent these
events before further fatal accidents. One of the main functions of surveillance systems deployed
on a large scale in different areas, such as schools, streets, parks, and medical centers, is to facilitate
the authorities by alerting them to the violent activity. However, the response of human operators
monitoring the surveillance footage is very slow, causing loss of human life and property; thus, there is
a demand for an automated violence detection system [7]. Hence, this field of study is growing steadily
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and gaining interest in the computer vision society. Many techniques based on deep features [8–10]
and handcrafted features have emerged.

1.1. Handcrafted Features-Based Approaches

In these approaches, certain methods are developed by the researchers. For instance,
Datta et al. [11] used the trajectory of motion information and limb orientation of a person in the scene
to detect violence. Similarly, Nguyen et al. [12] suggested the use of the hierarchical hidden Markov
model (HHMM) to recognize violent activities. Their main contribution involves the utilization of
a shared structure of HHMM for violence detection. Some of the researchers integrated audio and
video modalities for the detection of violent activities. For instance, Mahadevan et al. [13] developed
a system to recognize violent scenes via detecting blood and flames combined with the degree of
motion and sound. A research work proposed by Hassner et al. [14] considered the flow vector
magnitude represented by violent flow descriptors (ViF). Using a support vector machine (SVM),
these ViF descriptors were then classified into violent and non-violent in crowd scenes. Furthermore,
Huang et al. [15] presented a method for violent crowd behavior analysis by considering only the
statistical properties of the optical flow field in video data. These properties were then classified into
normal or abnormal activity classes using SVM. To detect and localize the violence in a surveillance
video stream, Zhang et al. [16] presented a Gaussian model of optical flow for violent region extraction
and used an orientation histogram of optical flow to distinguish the violent from non-violent class via
linear SVM. Similar to this method, Gao et al. [17] proposed an oriented violent flow descriptor (OViF),
which depicts both motion magnitude and orientation information.

1.2. Deep Learning-Based Approaches

Violence detection in video data is a challenging task due to the presence of complex patterns in
the form of sequential information. For this purpose, numerous methods are developed, for instance,
Chen et al. [18] used spatiotemporal interest points, including Harris corner detector, space–time
interest points (STIP) [19], and motion scale-invariant feature transform (Mo SIFT) [7,20], for violence
detection. Similarly, Lloyd et al. [21] developed new descriptors called grey level co-occurrence texture
measures (GLCM), where changes in crowded texture are encoded by temporal summaries to detect
violent and abnormal crowds. In addition, this, Fu et al. [22] developed a model to detect a fight scene;
its function is to search a series of features based on motion analysis using three attributes, including
motion acceleration, motion magnitude, and the motion region. These features are collectively called
motion signal which is obtained by the summation of motion region. Similarly, Sudhakaran et al. [23]
proposed a method where they used long short-term memory (LSTM) and the adjacent frame difference
as an input into the model by encoding the changes that occur in the videos. Mahmoodi et al. [24]
used a histogram of optical flow magnitude and orientation (HOMO) for violence detection. Recently,
a violent activity recognition framework was presented by Fenil et al. [25] for a soccer game. They
extracted histogram of oriented gradient (HoG) features from each frame. These features were used to
train bidirectional long short-term memory (BD-LSTM) and ensure its usage for both forward and
backward information access. This generated output contains information about violent scenes.

The approaches mentioned above tried to tackle many challenges in violence detection, including
camera views, complex crowd patterns, and intensity variations. For instance, they failed to capture
the discriminative and effective features by their extraction when variation occurs in the human body
for violence detection. These variations occur due to viewpoint, significant mutual occlusion, and
scale [26]. Next, [14] when considering ViF only, this method encounters a problem: If the flow vector
for one pixel in two consecutive frames has the same magnitude and different direction, then the ViF’s
effect is restricted because ViF detects no difference between these two flow vectors. Furthermore,
earlier methods used flames, explosions, and blood for violence detection; these are limited because
of low detection rates and can produce false alarms. Moreover, the HHMM based method [12] and
HOMO [24] failed for complex crowd behavior recognition.
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Recently, convolutional neural networks (CNNs) evolved to have higher accuracy and better
results for various computer vision techniques, such as behavior recognition and security [10,27,28],
object tracking and activity recognition [29,30], video summarization [31], and disaster management [8].
Inspired by the performance of CNNs in the mentioned domains, we tackle the problems mentioned
above by proposing 3D CNN-based violence detection in surveillance. The key contributions of the
proposed method are summarized in the following bullet points:

• Violence detection from video data is a challenging problem because of complex sequential
visual patterns’ identification. The mainstream techniques use traditional low-level features for
this task, which are inefficient at recognizing such complex patterns as well as being hard to
implement in real-time surveillance. Considering the limitations of the existing techniques, we
present a deep-learning-based 3D CNN model to learn complex sequential patterns to predict
violence accurately.

• Most violence detection algorithms suffer from the problem of processing a massive number
of unimportant frames, which results in occupying more memory and is very time-consuming.
Considering this major limitation, we first detected the persons in the video stream using a
pre-trained MobileNet CNN model. Only the sequence of 16 frames containing persons was
passed to the 3D CNN model for final prediction, which helped achieve efficient processing.

• The current mainstream methods do not learn effective patterns due to lack of data in violence
detection benchmark datasets and an often low accuracy rate. Inspired by the concept of transfer
learning, the 3D-CNN was fine-tuned using publicly available benchmark datasets for violence
detection in both indoor and outdoor surveillance. It experimentally dominates conventional
hand-engineered features extraction algorithms by improving the accuracy rate.

• After obtaining the trained deep learning model, it was optimized using an OPENVINO toolkit to
speed up and improve its performance at the model deployment stage. Using this strategy, the
trained model was converted into an intermediate representation (IR) based on trained weights
and topology.

The rest of the manuscript is organized as follows: Section 2 covers the proposed method, and
the experimental evaluation is discussed in Section 3. A conclusion and future work are provided in
Section 4.

2. Proposed Method

In this section, we discuss our proposed method in detail where a violent activity ĂI is detected
using an end-to-end deep learning framework. First, the camera captures the video stream VI, which
is directly passed to a trained MobileNet CNN model to detect the people. When a person in the video
stream is detected, the sequence Š of 16 frames is passed to the 3D CNN model for spatiotemporal
features extraction. These features are fed to the Softmax classifier CS to analyze the activity features
at the end and give predictions. An alert is sent to the nearest security department when violence is
detected so that they can take immediate action accordingly. The proposed method is further discussed
in detail in the sub-sections, where each step is given in Figure 1. The e input and output parameters
are described in Table 1 with symbols.
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and applying the convolution filters. The boundary box is composed of a predicted class with a 

probability for each class. The class with the highest probability indicates the object, while zero 

represents no object indication. A demonstration of person detection in some samples of the hockey 

fight dataset is shown in Figure 2. 

Figure 1. The framework of the proposed violent detection method. In the first phase, a video stream
from a surveillance camera is acquired in which persons are detected. The second phase extracts deep
features by feeding a selected sequence of frames to a 3D CNN model which detects the violent activity.
Lastly, if a violent activity is detected, then we report this information to the nearest station to take
immediate action before any injury or disaster occurs.

Table 1. Description of the input and output parameters used in the proposed method.

Symbols Description Symbols Description

ĂI Violent activity Ď Dataset
VI Violent video CS Softmax classifier
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2. Proposed Method 

In this section, we discuss our proposed method in detail where a violent activity ĂI is detected 

using an end-to-end deep learning framework. First, the camera captures the video stream VI, which 

is directly passed to a trained MobileNet CNN model to detect the people. When a person in the 

video stream is detected, the sequence Š of 16 frames is passed to the 3D CNN model for 

spatiotemporal features extraction. These features are fed to the Softmax classifier CS to analyze the 
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N Number of frames Fc Fully connected layer
Š Sequence of frames Ň Number of clips

ĹTr Training list ĹTe Testing list

2.1. Pre-Processing

Person detection is an essential step in our proposed method to ensure efficient processing before
the violence detection step. In this section, we detect the persons in the video stream for efficient
processing. Instead of processing the whole video stream, we process only those sequences that
contain persons by avoiding unimportant frames. The video stream is fed into the MobileNet-SSD
CNN model [32] for person detection. We used this CNN architecture because it helps the system to
restrict for latency and size. MobileNet possesses depthwise separable convolutions to detect objects
instead of regular convolutions. If depthwise and pointwise convolutions are counted separately,
there are 28 layers, where every layer is followed by nonlinearity batch norm and ReLU except the
final fully connected layer. The first convolutional layer contains a stride of two with a filter shape of
3 × 3 × 3 × 32 and has an input size of 224 × 224 × 3; its next depthwise convolution has one stride,
the filter shape is 3 × 3 × 32, and the input size is 112 × 112 × 32. The MobileNet is mainly used
for classification while its SSD version is used to locate the multibox detector, and their combination
performs object detection. For this purpose, the SSD is added at the end of the network, which performs
feedforward convolution and produces a fixed-size group of bounding boxes, to ensure the presence
and detection of object instances in those boxes via extracting the features map and applying the
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convolution filters. The boundary box is composed of a predicted class with a probability for each class.
The class with the highest probability indicates the object, while zero represents no object indication.
A demonstration of person detection in some samples of the hockey fight dataset is shown in Figure 2.
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Figure 2. Persons detected in the frames of both classes from video clips of the hockey fight dataset
using MobileNet-SSD.

2.2. Learning with 3D CNN

A 3D CNN is well-suited to extract spatiotemporal features and can preserve the temporal
information better owing to its 3D convolution and pooling operation. In addition, in 2D CNNs,
there is spatial information only, while a 3D CNN can capture all temporal information regarding
the input sequence. Some of the existing methods use 2D ConvNets to extract the spatial correlation
in video data, which possess temporal correlation. For instance, in [33,34], the 2D CNN processes
multiple frames, and all the temporal feature information is collapsed. The 3D convolution operates by
convolving a 3D mask on the cube designed via assembling attached frames. The obtained feature
maps from the convolution layer are linked to multiple attached frames in the prior layer, capturing
the motion information. Hence, the value on position x,y,z at the qth feature map in the pth layer with
bias tpq is illustrated by

Nxyz
pq = tanh(tpq +

∑
k

Ap−1∑
a=0

Bp−1∑
b=0

Cp−1∑
c=0

wabc
pqkN(x+a)(y+b)(z+c)

(p−1)k
) (1)

where Cp is the 3D mask size with the temporal dimension and wabc
pqk is the (a, b, c)th value of the

mask attached to the kth feature map in the prior layer. Only one type of feature is extracted by 3D
convolutional mask from the frame cube since the weights of the kernel are replicated in the entire
cube. In Figure 3, the feature maps of the 3D CNN obtained from two layers conv3a and conv5a are
provided. The input sequence is taken from the violence category in the movies’ dataset. A principle
for CNN is to increase the amount of feature maps in late layers by creating several kinds of features
from the same feature maps. The input data to this network is a sequence of frames. Before starting
the training process, the volume mean of training and testing data is calculated. The architecture of the
network is fine-tuned to obtain these sequences as inputs. The final prediction at the Softmax layer is
calculated as belonging to the violent or non-violent class.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 15 

 

 

Figure 2. Persons detected in the frames of both classes from video clips of the hockey fight dataset 

using MobileNet-SSD. 

2.2. Learning with 3D CNN 

A 3D CNN is well-suited to extract spatiotemporal features and can preserve the temporal 

information better owing to its 3D convolution and pooling operation. In addition, in 2D CNNs, there 

is spatial information only, while a 3D CNN can capture all temporal information regarding the input 

sequence. Some of the existing methods use 2D ConvNets to extract the spatial correlation in video 

data, which possess temporal correlation. For instance, in [33,34], the 2D CNN processes multiple 

frames, and all the temporal feature information is collapsed. The 3D convolution operates by 

convolving a 3D mask on the cube designed via assembling attached frames. The obtained feature 

maps from the convolution layer are linked to multiple attached frames in the prior layer, capturing 

the motion information. Hence, the value on position x,y,z at the qth feature map in the pth layer with 

bias tpq is illustrated by 

𝑁𝑝𝑞
𝑥𝑦𝑧

= 𝑡𝑎𝑛ℎ( 𝑡𝑝𝑞 + ∑ ∑ ∑ ∑ 𝑤𝑝𝑞𝑘
𝑎𝑏𝑐𝑁(𝑝−1)𝑘

(𝑥+𝑎)(𝑦+𝑏)(𝑧+𝑐)

𝐶𝑝−1

𝑐=0

𝐵𝑝−1

𝑏=0

𝐴𝑝−1 

𝑎=0𝑘

) (1) 

where Cp is the 3D mask size with the temporal dimension and 𝑤𝑝𝑞𝑘
𝑎𝑏𝑐  is the (a, b, c)th value of the 

mask attached to the kth feature map in the prior layer. Only one type of feature is extracted by 3D 

convolutional mask from the frame cube since the weights of the kernel are replicated in the entire 

cube. In Figure 3, the feature maps of the 3D CNN obtained from two layers conv3a and conv5a are 

provided. The input sequence is taken from the violence category in the movies’ dataset. A principle 

for CNN is to increase the amount of feature maps in late layers by creating several kinds of features 

from the same feature maps. The input data to this network is a sequence of frames. Before starting 

the training process, the volume mean of training and testing data is calculated. The architecture of 

the network is fine-tuned to obtain these sequences as inputs. The final prediction at the Softmax 

layer is calculated as belonging to the violent or non-violent class. 

 

Figure 3. The input sequence is taken from violence in movies dataset. Feature map of the conv3a and 

conv5a is formed. As the process of the convolution proceeds, deeper features are extracted. 

2.3. Data Preparation and Usage 

This section specifies the preparation of data and their usage for learning violence activity 

patterns. First, violence dataset Ď was used, containing Ň number of short video clips with different 

durations. Each video dataset contains two categories: i.e., violent class and non-violent class. Before 

Figure 3. The input sequence is taken from violence in movies dataset. Feature map of the conv3a and
conv5a is formed. As the process of the convolution proceeds, deeper features are extracted.



Sensors 2019, 19, 2472 6 of 15

2.3. Data Preparation and Usage

This section specifies the preparation of data and their usage for learning violence activity patterns.
First, violence dataset Ď was used, containing Ň number of short video clips with different durations.
Each video dataset contains two categories: i.e., violent class and non-violent class. Before the learning
process, the whole dataset Ď was divided into a sequence of 16 frames Š with an 8-frame overlay
between the two successive clips. Subsequently, having obtained the frames, we split the whole data
into training and testing sets. For this purpose, we used 75% and 25% of data for training and testing,
respectively. Once the training and testing data were obtained, we generated a file list containing the
paths of training list ĹTr = {S1, S17, S33, . . . , SN} and testing list ĹTe = {S1, S17, S33, . . . , SN}. The subscript
of S is the starting frame number in the sequence where each path is given in the list, pointing towards
the extracted frames in the directories.

2.4. C3D Network Architecture

Inspired by the performance of 3D CNN in [35–38], we also fine-tuned the 3D CNN model
proposed in [36]. A starting version of the C3D model [36] was developed in 2014 with a version of
Caffe [39]. This network consisted of eight convolutions: five pooling and two fully connected layers
with a Softmax output layer. Each convolutional layer has 3 × 3 × 3 kernels with one stride, and all the
pooling layers are max pooling with a 2 × 2 × 2 kernel size except for the first pooling layer where
kernel size is 1 × 2 × 2 with two strides, preserving the time-based information. The number of filters
in each convolution is 64, 128, 256, for first, second, and third layers, respectively. The kernels for each
convolution have a defined temporal depth, with size D. The kernel size and padding used to apply the
convolution were kept as 3 and 1, respectively. Two fully connected layers (fc6 and fc7) contained 4096
neurons and the Softmax layer containing N number of outputs depended on the classes of the dataset.
In our case, the output is only two because we have only two classes: i.e., violent and non-violent
scenes. The overall detailed architecture is illustrated in Figure 4.
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size of filters for each layer.

This architecture of a 3D convolutional network obtained the short sequence of 16 frames as an
input of size 128 × 171, but we used random crops of size 3 × 16 × 112 × 112 from the original input
sequence at the time of training to avoid the overfitting problem and to achieve effective learning. After
this, the sequence of frames is followed by 3D convolution and pooling operations. When training
is performed, the network acts as a generic feature extractor. In fact, diverse features are learned at
each layer of hierarchy in the network. The bottom’s activation layers contain smaller receptive fields
making it sensitive towards patterns, such as corners, edges, and shapes, while the top activation layers
contain larger receptive fields learning high-level and global features to collect complex invariances.
Finally, the output label is predicted as violent or non-violent at the end.

2.5. Model Optimization

Model optimization is the process used to generate an optimal and fine-tuned design model based
on some prioritized constraints while keeping the model strength, efficiency, and reliability maximized.
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Optimizing the model enables CNN network inference at the end and speeds up the process by using
pre-optimized kernels and functions. Inspired by these strategies, we used an open source toolkit
known as OPENVINO provided by the Intel Corporation. This toolkit extends the work process across
the hardware by maximizing its performance. It works on Intel hardware and takes pre-trained models,
such as Caffe, ONNX, MXNet, and TensorFlow, as inputs and converts these into an IR using a model
optimizer. The model optimizer is used to enable a transition between the training and deployment
floor to adjust the model for optimal execution on the end platform. Figure 5 shows the flow and
process of the model optimization, taking the trained model as input and producing an intermediate
model. At the end platform, this output is deployed for further analysis.
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3. Results

We conducted various experiments to evaluate the performance of the proposed method concerning
three publicly available datasets for violence detection, such as violent crowd [14], hockey fight [7], and
violence in movies [7]. To perform the experiments, we used different parameters and learning rates to
achieve the greatest accuracy. Detailed descriptions of the datasets are given in Table 2. Furthermore,
we compared our method with different handcrafted and deep-learning-based state-of-the-art methods
to evaluate its accuracy and performance over three datasets. To perform the experiments, the Caffe
toolbox was used to extract deep features on GeForce-Titan-X GPU. The operating system was Ubuntu
16.04 using CoreTM i5-6600 with 64GB RAM.

Table 2. Detailed description and statistics of the used datasets.

Datasets Samples Resolution
Violent Scenes Non-Violent Scenes

No. of Clips Frame Rate No. of Clips Frame Rate

Violent
Crowd [14] 246 320 × 240 123 25 123 25

Violence in
Movies [7] 200 360 × 250 100 25 100 29.97

Hockey
Fight [7] 1000 360 × 288 500 25 500 25

3.1. Datasets

This section describes the datasets used in the experiments. Each dataset has a different number
of samples. A detailed explanation is given as follows:

3.1.1. Violent Crowd

The violent crowd dataset was presented by Hassner et al. [14]. This dataset contains 246 videos
taken from YouTube, presenting different types of scenes and scenarios. At first, the dataset contains
five sets of video clips. In each set, there are two categories: i.e., violent and non-violent. For the
experiments, we merged these five sets to form two categories where 123 video clips are related to
violent events, and 123 videos are related to non-violent clips. Each video clip has a resolution of
320 × 240 pixels with lengths varying from 50 to 150 frames. Some sample frames from this dataset are
given in Figure 6.
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3.1.2. Violence in Movies

This dataset was introduced by Nievas et al. [7] for fight detection, and it consists of 200 videos
clips, in which person-on-person fight videos have been taken from action movies while non-fight
videos have been extracted from publicly available action recognition datasets. This dataset covers a
variety of scenes, with an average resolution of 360 × 250 pixels and each clip is limited to 50 frames.
In this dataset, a first person in the sequence has low or no camera motion. Some sample frames from
this dataset are given in Figure 6.

3.1.3. Hockey Fight

This dataset was introduced by Nievas et al. [7] and contains 1000 short video clips taken from
the National Hockey League (NHL). In this dataset, 500 video clips are labeled as fight, and 500 are
labeled as non-fight. Each clip consists of 50 frames with a resolution of 360 × 288 pixels. In the fight
class, all the clips are related to fights in the hockey grounds, and the non-fight class is also related to
the same environment containing non-fight clip so as to reliably detect violent scenes in sports videos.
Some sample frames from this dataset are given in Figure 6.

3.2. Discussion

Table 3 explains the experiments performed on the violent crowd dataset, where the highest
achieved accuracy was 98%, with 1.89 × 10−9 loss at the maximum iteration of 5000 with a base learning
rate of 0.001. The loss value is given in scientific notation, which is equivalent to 1.89 × 10−9. We kept
the learning rate normal because the learning rate has two terminologies for its usage. First, the
learning rate should not be very large because it oscillates when searching for the minimal point
and can cause drastic updates leading to divergent behaviors. Second, the learning rate should not
be very small because it slows down the convergence towards the minimal point and requires too
many updates before reaching the minimum point. At first, the learning rate is large, and the random
weights at that position are far from the optimal point; then, it slowly and gradually decreases as
further iterations proceed.
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Table 3. Classification accuracies of the proposed method on the violent crowd dataset [14].

Learning Rate (Batch Size = 20) Iterations Loss Accuracy

0.01
1000 1.30

55%3000 8.28 × 10−1

5000 7.07 × 10−1

0.001
1000 1.52 × 10−5

98%3000 1.79 × 10−8

5000 1.89 × 10−9

Testing the obtained model on violence in movies dataset [7] 65%

Testing the obtained model on hockey fight dataset [7] 47%

Table 4 explains the experiments performed on the violence in movies dataset [7], where the
highest achieved accuracy was 99.9% with 1.67 × 10−7 loss at a maximum iteration of 5000 with
the base learning rate of 0.001. After conducting experiments on the violence in movies dataset,
we made various observations. For instance, detecting the fights in the movies dataset footage
was easier than detecting it in the crowd dataset because when we tested the obtained model on
the violent crowd dataset, we achieved 54% accuracy, which is low because fights in the violent
crowd dataset are very varied in appearance or cinematography. In addition, the clips included a
large number of people; however, in the violence in movies dataset, a majority of the videos clips
contained person-to-person violence. Notwithstanding this, the hockey fight dataset was relatively
very consistent. The same model was tested using the hockey fight dataset [7], in which the obtained
accuracy was 63%, which is better than the accuracy obtained for the violent crowd dataset. We also
tested the model obtained from the violent crowd on the other two datasets, i.e., violence in movies
and hockey fight dataset, which gave an accuracy of 65% and 47%, respectively. The obtained accuracy
on these two datasets is lower due to pattern footage because the hockey fight and violence in movies
datasets contained person-to-person fights and the violent crowd dataset contained multiple numbers
of persons. The graphical representation for the experiments performed in Table 4 is given in Figure 7.

Table 4. Classification accuracies of the proposed method on violence in movies dataset [7].

Learning Rate (Batch Size = 20) Iterations Loss Accuracy

0.001
1000 0

99.9%3000 0
5000 1.67 × 10−7

1 × 10−5
1000 1.21 × 10−2

99.9%3000 1.99 × 10−3

5000 5.4 × 10−4

Testing the obtained model on violent crowd dataset [14] 54%

Testing the obtained model on hockey fight dataset [7] 63%

Table 5 explains the experiment’s performance in relation to the hockey fight dataset [7], where
the highest achieved accuracy was 96% with a 5.77 × 10−4 loss at the maximum iteration of 5000 and
the base learning rate of 0.001. Furthermore, we evaluated the accuracy of the fine-tuned model of the
hockey fight dataset [7] on the violent crowd dataset [14] and violence in movies, giving 52% and 49%
accuracy, respectively.
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Table 5. Classification accuracies of proposed method on hockey fight dataset [7].

Learning Rates (Batch Size = 20) Iterations Loss Accuracy

0.001
1000 1.59 × 10−4

96%3000 0
5000 2.31 × 10−7

0.0001
1000 9.1 × 10−2

96%3000 2.27 × 10−6

5000 5.77 × 10−4

Testing the obtained model on violent crowd dataset [14] 52%

Testing the obtained model on violence in movies dataset [7] 49%

In addition, we observed that changing the learning rate has an effect on loss and with iterations.
In Figure 7a, the graph shows the change in loss with the variation in the number of iterations with
a base learning rate of 0.001 for the hockey fight dataset. At the iteration of 500, the loss obtained is
1.97 × 10−2, which decreases as the number of iterations proceeds; at the maximum iteration of 5000,
the obtained loss is 2.32 × 10−7 while keeping the same experiment, we only changed the learning rate
to 0.0001, so the obtained loss at the initial iteration of 500 is 7.39 × 10−2, and at the maximum iteration
of 5000 the obtained loss is 5.77 × 10−4.
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Figure 7. (a) Variation of loss with different iterations on hockey fight [7] dataset with a learning rate of
0.001; at the horizontal position, the initial iteration from zero grows towards the final iteration, which
is 5000, while in the vertical a loss is given. The loss is decreasing as the iterations proceed; likewise in
(b) the variation in loss with different iterations on violence in movies dataset [7] when the learning
rate is 0.00001, it shows the loss is decreasing as the iterations proceed. (c) shows a variation of loss
with different iterations on the violent crowd dataset [14], with a learning rate of 0.001, it shows that at
the 500th iteration the loss is very high, but with further iterations, it decreases.

The loss to iteration comparison for violent crowd is given in Figure 7c, where the loss decreases
from the start and becomes less than zero after 1000 iterations. The loss for the violence in movies
dataset in the initial stages is high; then, it decreases as iterations proceed. In this way, the loss obtained
at the 5000th iteration becomes 5.4 × 10−4. The decrease in loss for the violence in movies dataset
is graphically presented in Figure 7b, where the vertical axis represents the loss, and the horizontal
axis represents the training iterations. We also evaluated the performance of the proposed method
by examining precision, recall, and the comparison among the datasets by providing the values of
area under the curve (AUC) in Table 6, which show the effectiveness of the proposed method on each
dataset. In addition, the obtained confusion matrix is given in Table 7. The precision and recall values
for each dataset ranges between Xmin, Ymin and Xmax, Ymax, respectively. Here the X represents the
precision, and Y represents recall for each dataset. The precision obtained for hockey fight, violence in
movies, and violent crowd dataset is 0.9597, 1.0, and 0.9815, respectively, while the recall is 0.9667, 1.0,
and 0.9876, respectively. We also calculate the time complexity of the proposed method, considering
the testing phase during this experiment. For each 16 frame sequence, the average calculated time is
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1.85 s, while, for a one-minute clip with 25 FPS it takes about 2 min and 54 s to complete the testing
phase through all the sequences. We further evaluated the effectiveness of the proposed method by
plotting the receiver operating characteristic (ROC) curve across the true positive rate and false positive
rate. This is briefly illustrated in Figure 8, where the AUC values are compared for each dataset.
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Figure 8. The ROC curve and comparison amongst the datasets based on AUC value, i.e., (a) Hockey
fight dataset; (b) Violent crowd dataset; and (c) Violence in movies dataset.

Table 6. Precision and recall with AUC values are compared for each dataset.

Datasets
Values

Precision Recall AUC
TP TN FP FN

Hockey Fight [7] 262 230 11 9 0.95970696 0.966789668 0.970
Violence in Movies [7] 50 57 0 0 1.0 1.0 0.997

Violent Crowd [14] 160 128 3 2 0.981595092 0.987654321 0.98

Table 7. Confusion matrix for each dataset.

Classes\Datasets
Hockey Fight Violence in Movies Violent Crowd

Violent Nonviolent Violent Nonviolent Violent Nonviolent

Violent 262 11 50 0 160 3
Non-violent 9 230 0 57 2 128

We also compared the accuracies for the benchmark datasets in Figure 9, where the highest
achieved accuracy is 99.9% obtained in the movies dataset, 98% accuracy is obtained in the violent
crowd dataset, and 96% is obtained in the hockey fight dataset.
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3.3. Comparative Analysis

In this section, we compare the results of each dataset with existing state-of-the-art methods.
The comparative analysis with all the state-of-the-art methods is shown in Table 8. In the first row, we
present the results of method [17], which used oriented violent flows (OViF) for motion magnitude
and AdaBoost as feature extraction, and SVM for classification. Using these parameters, they obtained
an accuracy of 88% and 87.50% for the violent crowd and hockey fight datasets, respectively. Recently,
another method [40] used Hough forests with 2D CNN to detect violence and obtained 99% accuracy
on the violent movies dataset and 94.6% on the hockey fight dataset. Apart from this, there was
another method [7] to detect violence in videos; this method used a spatiotemporal descriptor called
space–time interest point (STIP), bag-of-words (BoW), and SVM to classify the output classes. They
used only the violence in movies dataset and obtained 89.5% accuracy. Furthermore, we compared the
results with another method [41], which used motion blobs and random forests for detection of the
fast fight. They also used only the violence in movies dataset and obtained 96.9% accuracy. Moreover,
in [42], two descriptors were used to detect and localize the abnormal behaviors; they used a simplified
histogram of oriented tracklets (sHOT) combined with a dense optical flow to recognize abnormal
behavior at the final result and obtained an accuracy of 82.2% for the violent crowd dataset. In [14],
the authors used ViF and then classified the final prediction using SVM, where they used five-fold
cross-validation for testing and obtained 82.90% accuracy for the hockey fight dataset and 81.3% for the
violent crowd dataset. In method [43], the authors used the sliding window approach and improved
the Fisher vector method to detect violence. They obtained accuracies of 99.5%, 96.4%, and 93.7% for
violence in movies, violent crowd, and hockey fight datasets, respectively. Finally, in the last row, we
present our approach, which obtained 99.9%, 98%, and 96% accuracies for violence in movies, violent
crowd, and hockey fight datasets, respectively.

Table 8. Comparative analysis of the proposed method with state-of-the-art methods based on
overall accuracy.

Methods
Datasets Accuracies (%)

Violence in Movies [7] Violent Crowd [14] Hockey Fight [7]

ViF, OViF, AdaBoost and SVM [17] - 88 87.50
Hough Forests and 2D CNN [40] 99 - 94.6

STIP, BoW, and SVM [7] 89.5 - -
Motion Blobs and Random Forests [41] 96.9 - -

ViF [14] - 81.3 82.90
sHOT [42] - 82.2 -

Improved Fisher Vectors [43] 99.5 96.4 93.7
Proposed Method 99.9 98 96

4. Conclusions and Future Work

In this paper, a three-staged end-to-end framework is proposed for violence detection in a
surveillance video stream. In the first stage, persons are detected using an efficient CNN model
to remove unwanted frames, which results in reducing the overall processing time. Next, frames
sequences with persons are fed into a 3D CNN model trained on three benchmark datasets, where
the spatiotemporal features are extracted and forwarded to the Softmax classifier for final predictions.
Finally, an OPENVINO toolkit is used to optimize the model to speed up and increase its performance
at the end platform. Experimental results over various benchmark datasets confirm that our method is
the best fit for violence detection in surveillance and achieved better accuracy than several employed
techniques. In the future, we intend to ensure our system is implemented over resource-constrained
devices. Furthermore, we plan to propose edge intelligence for violence recognition work in the IoT
using smart devices for quick responses.
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