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Abstract: Motion segmentation is aimed at segmenting the feature point trajectories belonging to
independently moving objects. Using the affine camera model, the motion segmentation problem
can be viewed as a subspace clustering problem—clustering the data points drawn from a union of
low-dimensional subspaces. In this paper, we propose a solution for motion segmentation that uses a
multi-model fitting technique. We propose a data grouping method and a model selection strategy
for obtaining more distinguishable data point permutation preferences, which significantly improves
the clustering. We perform extensive testing on the Hopkins 155 dataset, and two real-world datasets.
The experimental results illustrate that the proposed method can deal with incomplete trajectories
and the perspective effect, comparing favorably with the current state of the art.
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1. Introduction

Motion segmentation is aimed at segmenting objects with different motions in the video and has
become an essential issue for many computer vision applications, such as a visual odometer and video
segmentation. A review of motion segmentation can be found in Zappella et al. [1].

In this paper, we propose a robust solution that addresses the issue of motion segmentation.
In the case of affine cameras, the trajectories of a rigidly moving object lie in a linear subspace of at
most four dimensions, and the trajectories of different objects lie in different subspaces [2,3]. Thus,
motion segmentation is equivalent to the clustering of the data into subspaces.

Based on subspace clustering, motion segmentation algorithms were classified into four
categories [4,5], i.e., algebraic methods [6–8], statistical methods [9–12], iterative methods [13–15],
and spectral clustering methods [16–23]. The first three categories’ methods require the dimension and
number of subspaces as prior information and are sensitive to the initial values and noise. The spectral
clustering methods are effective at data clustering but cannot handle outliers and noise and often
require post-processing. In recent years, there are some motion segmentation algorithms based on deep
learning [24–27], which usually obtain more accurate segmentation results. However, the results of the
deep-learning-based method depend strongly on the semantic segmentation. Therefore, deep learning
methods require a sufficient number of samples and may fail without concrete semantic information.
This is different from the motion segmentation problem we consider. There exist some objects without
semantic information in actual data. Our proposed solution for motion segmentation does not depend
on semantic information.

Recently, many multi-model fitting methods have been developed to solve the problem of motion
segmentation [28–34]. The multi-model fitting methods first generate a model hypotheses by sampling,
and then estimate the model parameters by analyzing the preferences from the point-to-model
hypotheses. J-linkage [28] involves constructing preference sets of the points in the conceptual space
through the selected inlier thresholds, and then computing the Jaccard distance between each point for
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bottom-up hierarchical clustering. Kernel fitting (KF) [29] does not directly use residual sequences
to represent the data points but instead uses non-descending sorted residual sequences to represent
the data points. T-linkage [30–32] is an extension of J-linkage, which expands the binary conceptual
space into a continuous conceptual space and replaces the Jaccard distance with a Tanimoto distance.
The random cluster model simulated annealing (RCMSA) method [33] expresses the point preferences
by constructing a weighted graph, and the multi-model fitting task is transformed into a graph cut
problem, which can be effectively solved in the simulated annealing framework. Robust multiple
model fitting with preference analysis and low-rank approximation (RPA) [34] uses a kernel matrix
instead of the Tanimoto metric and combines preference analysis with low-rank approximation,
which transforms the multi-structure model fitting problem into multiple single-structure model
fitting problems. RPA then uses m-estimator sample consensus (MSAC) to solve the single-structure
fitting problem.

Multi-model fitting methods have proven to be robust to noise and outliers. In motion
segmentation, there are always multiple motion subspaces, so multi-model fitting methods can solve the
motion segmentation problem well and have performed better than other advanced methods [30,31].
In this paper, we also propose a motion segmentation method based on the multi-model fitting
technique. We over-segment the data first, then perform model selection and clustering.

Model selection is largely dependent on the quality of the initial values. However,
some over-segmentation methods, such as sequential RANSAC and spectral clustering, are not
satisfactory. The former is time-consuming and often leads to inaccurate estimation due to the
“fitting-and-removing” framework. The latter is less stable due to the sensitivity to noise. We select
locality-sensitive hashing (LSH) for obtaining a series of clusters as the initial model set quickly.
By constructing a similarity matrix instead of the original data in performing LSH, we apply the dual
preference constraint to data points for accurate assignment. Then, we perform a model selection
process to obtain a few high-quality models and calculate the data point residuals to update the similarity
between data points. Some methods [29,35–40] balance the goodness of fit and the complexity of the
model without combining the potential spatial correlation in the data. However, points at relatively
close spatial distances should usually be assigned the same label. We adopt energy minimization
to introduce the spatial smoothness of the data points and thereby optimize the preference of data
points. Meanwhile, we combine with geometric robust information criterion (GRIC) [41] to improve
the convergence speed and accuracy of the model selection. In addition, we detect the number
of motion models by merging the possible model pairs in model selection. The authors [6,42–45]
put in the number of motion models as prior information, while [46,47] used a complexity or rank
measurement to estimate this number, which might lead to wrong estimates about the number of
motion models in the presence of noise and outliers. The method in [48] is able to estimate the number
of motions automatically, which first over-segments motions by the spectral clustering, then merges
the over-segmented motions. However, it has a high computational cost due to the use of a more
complex geometric model in a mixed norm optimization scheme. Moreover, the spectral clustering is
sensitive to noise. Our method is robust in the presence of outliers, since both energy minimization
and GRIC impose penalties on outliers.

The main contributions of this paper are three-fold:

1. We propose a data grouping method, which defines the similarity between data points,
and introduce the LSH tool in the processing of the similarity to group the data points;

2. We propose a model selection approach that combines energy minimization and the geometric
robust information criterion (GRIC) to optimize the model set obtained by the data grouping;

3. No prior knowledge is needed, such as the number of motions, as this can be automatically
estimated through the model selection.

The structure of this paper is as follows. In Sections 2 and 3, we describe the proposed motion
segmentation algorithm in detail. The data grouping process is presented in Section 2, and Section 3
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introduces the model selection approach. The experimental results are presented in Section 4. Finally,
we draw conclusions in Section 5.

2. Data Grouping in Permutation Space

Before we describe our method, we first briefly review the basic formulation setup in
motion segmentation.

Under the affine projection model, it is assumed that an f -frame image sequence is extracted from
the video. The image sequence is then preprocessed by a feature point extraction algorithm, such as
scale-invariant feature transform (SIFT) or speeded-up robust features (SURF), to obtain N tracked

feature points
{
(x f̂ n, y f̂ n)

}n=1...N

f̂=1...F
. The 3D coordinates

{
(Xn, Yn, Zn)

}N
n=1 of the tracking points can then

be converted into a 2D representation by Equation (1) [1]:

 x f̂ n
y f̂ n

 = A f̂


Xn

Yn

Zn

1

, (1)

where A f̂ =
[
R2 f̂×3

∣∣∣∣T2 f̂×1

]
∈ R2×4 is the affine motion matrix of the f̂ - frame image sequence. The input

of the motion segmentation problem under the affine projection model is a trajectory matrix composed
of the 2D coordinates of the N tracked feature points:

x11 x12 · · · x1N
y11 y12 · · · y1N

...
...

. . .
...

xF1 xF2 · · · xFN

yF1 yF2 · · · yFN


2F×N

=


A1
...

AF


2F×4


X1 · · · XN

Y1 · · · YN

Z1 · · · ZN

1 · · · 1


4×N

. (2)

We can write the above equation in the form of W2F×N = A2F×4S4×N, where W is the trajectory
matrix [49]. Clearly, rank(W) = rank(A2F×4SN×4) ≤ 4. That is, in the affine projection model, the N
trajectories from m rigid motions all lie in a union of m linear subspaces of dimensions at most four
in R2F, and similar trajectories from a single rigid motion also lie in the same subspace. Therefore,
the motion segmentation problem can be solved by the clustering of the data into subspaces.

2.1. Preference Analysis

As stated in [50], the probability of two points having arisen from the same model can be estimated
from the residual sorting information. Therefore, given the data point set X ={xi}

N
i=1, the proposed

method starts by shifting the data points to the permutation space. More specifically, firstly, in the

manner of random sampling, a large number of hypotheses
{
θ j

}M

j=1
are generated from X. The residuals

for the data points are then computed and stored in the N ×M matrix:

R =


r(1)1 · · · r(M)

1
...

. . .
...

r(1)N · · · r(M)
N

, (3)

where the rows represent N points and the columns represent M hypotheses. Therefore, for data point
xi its absolute residual to all the M hypotheses is the vector ri:

ri = [r(1)i r(2)i · · · r(M)
i ]. (4)



Sensors 2019, 19, 2936 4 of 15

The preference of xi is then the permutation:

τi = [τ
(1)
i τ

(2)
i · · · τ

(M)
i ], (5)

which sorts ri in ascending order, i.e., r
(τ

(1)
i )

i ≤ r
(τ

(2)
i )

i ≤ · · · ≤ r
(τ

(M)
i )

i . The “coincidence rate” between
two preferences τi and τ j is obtained as

f (τi, τ j) =
1
k

∣∣∣∣τ(1:k)
i ∩ τ

(1:k)
j

∣∣∣∣, (6)

where
∣∣∣∣τ(1:k)

i ∩ τ
(1:k)
j

∣∣∣∣ represents the number of identical elements in sets τ
(1:k)
i and τ

(1:k)
j .

Generally speaking, we are interested in the top k permutation preferences rather than a full ranking of
the permutation preferences to analyze the data in the model fitting problems, and we set k = M/10.
If the coincidence rate is larger, it indicates that data points xi and x j are more similar.

In order to better express the feature that points sharing the same preference may belong to the
same structure, we use a positive semi-definite kernel matrix S ∈ [0, 1]N×N to define the similarity
between xi and x j:

S(i, j) = exp(−ε(i, j)2/2), (7)

where ε(i, j) = 1− f (τi, τ j) represents the distance between xi and x j.

2.2. Data Grouping by Locality-Sensitive Hashing (LSH)

As stated in Section 2.1, the similarity matrix S ∈ [0, 1]N×N is used to measure the degree of

similarity between data points. Therefore, we use S(i, j) =


ŝ(1,1) · · · ŝ(1,N)

...
. . .

...
ŝ(N,1) · · · ŝ(N,N)

 instead of the original

data X ={xi}
N
i=1 to redefine each point, where the value on the diagonal is 1 and the point xi is expressed

as a similarity permutation vector ŝi = [ŝ(i,1) ŝ(i,2) · · · ŝ(i,N)]. We define a concept of “dual similarity”,
i.e., if the similarity permutation vectors ŝi and ŝ j are similar, the data points xi and x j have a high
probability of belonging to the same motion model. That is to say, grouping the data points by similarity
is a feasible solution.

Locality-sensitive hashing (LSH) is an approximate nearest neighbor search tool, as stated in [51],
and hashes high-dimensional points into buckets based on locality, where points of high similarity
are hashed into the same LSH bucket. However, if we directly use LSH to hash the data points by
Euclidean distance, as in [51], this will result in the points in an identical bucket most likely belonging
to different motion models. We therefore use the similarity matrix instead of the original data, which is
equivalent to applying a preference constraint to the data points. This is done so that the points in an
identical bucket have a high probability of belonging to the same motion model. We adopt the same
p-stable based LSH as in [51] to process the Euclidean distance between the similarity permutation
vectors, to complete the initial grouping of the original data points.

P-stable LSH is a locality-sensitive hashing method based on the p-stable thought, which calculates
the hash values h1 and h2 of the eigenvectors v1 and v2, where v1 and v2 are the eigenvectors of the
similarity permutation vectors ŝi and ŝ j, respectively. Since the hash function is locally sensitive, if the
two eigenvectors v1 and v2 are closer together, the probability that the hash values h1 and h2 map to
the same bucket will be larger, and vice versa.

The hash function p-stable LSH is defined as follows:

ha,b(x) =
⌊

a · x + b
w

⌋
, (8)
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where b·c is the round down function, each entry in vector a is chosen independently from a p-stable
distribution, w is a constant greater than 0, and b is a real number chosen uniformly from the range
[0, w]. For a detailed description of p-stable LSH, see [52].

In order to prevent the existence of small clusters (data points less than the minimal sample sets
(MSS)), we first choose a small number of high-density buckets as [51], which contain a significant
portion of the data. Because points with high similarity have a high probability of being assigned to
the same bucket, these buckets can be used to represent the initial model clusters C = {c1, c2, · · · , ct}.
These models are then spread to the rest of the data points in a top-down fashion, i.e., we map each
data point to its closest model. Finally, we obtain data clusters containing all the data points, as
shown in Figure 1, where points in an identical cluster belong to the same motion model. Therefore,
this approach can provide a good initialization for the iterative process in the model selection.
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Figure 1. Some data grouping results in video sequences of the Hopkins 155 dataset. Top (a–c):
Ground truth for the checkerboard sequence 2RT3RCT_B, the traffic sequence cars9, and the articulated
sequence people2, respectively, where the data points belonging to different motion models are labeled
with different colors. Bottom (d–f): The corresponding data point grouping results. We obtain many
data clusters and points in the same cluster almost always belong to the same motion mode.

3. Model Selection

The number of models in the initial model set C = {c1, c2, · · · , ct} obtained by LSH is redundant,
so we use a strategy combining energy minimization and the GRIC criterion to select the model that
best fits the data.

Firstly, with random sampling in ci, the MSS contains almost no outliers, and the generated
hypothesis is more likely to be a good fit to the data. We then use energy minimization to select the
hypothesis that best fits the cluster.

We adopt the energy E composed of the data energy Ed and smoothness energy Es to measure the
quality of the fitting:

E = Ed + Es. (9)

The data term Ed is used to penalize inaccuracies induced by the point-to-model assignment,
and is generally defined as

Ed =
N∑

i=1

D(xi, fi), (10)

where D is a distance function between point xi and the model hypothesis.
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If we let N denote the set of all such neighboring data point pairs, the smoothness energy is:

Es =
∑

<i, j>∈N

V( fi, f j). (11)

V( fi, f j) is derived from the Potts model:

V( fi, f j) =

0 i f fi = f j

1 i f fi , f j
, (12)

which penalizes fi , f j of the points in a neighborhood.
The minimization of Equation (9) can be optimized effectively with the α-expansion algorithm [53].
After the initial selection by energy minimization, we obtain t redundant models and then select n

(n ≤ t) models that best explain the input data using GRIC. GRIC is a model selection algorithm that
establishes a scoring mechanism to rate each model, allowing us to select the model with the lowest
score. The GRIC criterion can robustly select the motion model and detect the presence of outliers and
is defined as follows:

GRIC =
∑

i

]ρ(e2
i ) + (λ1dn + λ2k). (13)

The first term is the error function, which is defined according to the Huber function [54] as

ρ(e2
i ) =

 e2

σ2
e2

σ2 < 2.0(r− d)

2.0(r− d) e2

σ2 ≥ 2.0(r− d)
, (14)

where ei represents the residual of the point, and (r− d) is a codimension of the r-dimensional points
fitted by a manifold of dimension d. It can be seen that the error function represents the goodness of fit.

The term (λ1dn + λ2k) in Equation (10) represents a penalty on the complexity of the model.
λ1dn is a penalty term for the dimensionality of the model, where the greater the dimension of the
model, the greater the penalty. λ2k is a penalty term for the number of parameters of the model,
to greater penalize models with more parameters [41]. Therefore, the model GRIC selects is the one
with the highest information content, but the least complexity. In addition, we set the penalty factors
λ1 and λ2 as λ1 = log(4) = 1.4 and λ2 = log N = log 4n, where n is the number of data points, and k
is the number of parameters of the fitted model.

The energy minimization and GRIC are conducted alternately and continuously until the model
set is almost unchanged. Figure 2 shows the model selection results on the 2RT3RCT_B sequence by
the proposed model selection approach. As can be seen from Figure 2c, the selected models are very
similar to the real model.
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Figure 2. Model selection results obtained on checkerboard sequence 2RT3RCT_B. (a) Data grouping
results obtained by Equation (7), which is the initial input of the model selection; (b) intermediate
results of model selection during iterations; (c) final segmentation results obtained after model selection.
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4. Model Clustering

Through the model selection, we obtain the number of models and the data point permutation
preference information represented by the residual matrix R. The similarity matrix S of the data points
is derived from the residual matrix R according to the steps in Section 2.1, which can express the
data point permutation preferences well. Since permutation preferences for the points have been
proven to be able to distinguish inliers belonging to different models (“model” refers to subspace
in motion segmentation) [55,56], bottom-up linkage clustering is adopted in the permutation space
for clustering the points. Therefore, points with similar permutation preferences can be sampled
to generate good hypotheses, and good hypotheses can make the permutation preferences more
distinguishable, thereby improving the clustering.

We present the detailed steps in Algorithm 1.

Algorithm 1: Motion Segmentation Algorithm

Input: X // dataset
Output: M // clusters of point belonging to the same model
1: S = PermutationSpace (X) // get the similarity matrix
2: C = {c1, c2, · · · , ct} = LSH (S) // get the initial model set
3: Repeat
4: θi = RandomSampling (ci)

5: Θ= {{θ
j
1}

10
1 , . . . , {θ j

t}
10
1 } = AscendSort ({θi}

t
1) // sort θi by ascending order according to

the residuals and extract the top-10 hypotheses
6: C† = {c†1, . . . , c†t } = α-expansion (Θ) // select the best-quality hypothesis in each cluster
7: C∗ = {c∗1, . . . , c∗n} = GRIC (C†) // select the model fitting the data best, where n ≤ t
8:

Until C∗ is not changed. C∗ := C

9: M = {M1, . . . , Mn} = LinkageClustering (n,R) // n is the estimated number of motions, R is
the residual information of the data points

5. Experiments

To test the performance of the proposed method, we carried out motion segmentation experiments
on the Hopkins 155 dataset [57] and two real-world datasets. We evaluated the performance in terms
of the classification error [57].

5.1. Results of the Hopkins 155 Dataset

The Hopkins 155 dataset contain 155 video sequences, where 120 of the videos have two motions
and 35 of the videos have three motions. In addition, it contains complex motion scenes, with many
noise points and isolated points. The sequences can be roughly divided into three categories:
Checkerboard sequences, traffic sequences, and articulated sequences.

We compare the proposed method with the state-of-the-art approaches of random sample
consensus (RANSAC) [9], generalized principal component analysis (GPCA) [6], local subspace affinity
(LSA) [17], agglomerative lossy compression (ALC) [12], the sparse subspace clustering algorithm
(SSC) [5], J-linkage [28], and T-linkage [30]. The average and median classification errors of the different
scenes are listed in Tables 1 and 2, and the average and median classification errors of the other methods
are obtained from [19,30]. Note that in order to obtain satisfactory results, our method only requires to
tune one parameter (permutation length), which is much fewer than many other state-of-art methods.
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Table 1. Classification errors (%) for sequences with three motions.

Methods RANSAC GPCA LSA 4n ALC 5 SSC J-Lnkg T-Lnkg Proposed

Checkerboard: 26 sequences

Mean 25.78 31.95 5.80 6.78 2.97 8.55 7.05 0.17
Median 26.00 32.93 1.77 0.92 0.27 4.38 2.46 0.00

Traffic: 7 sequences

Mean 12.83 19.83 25.07 4.01 0.58 0.97 0.48 0.08
Median 11.54 19.55 23.79 1.35 0.00 0.00 0.00 0.00

Articulated: 2 sequences

Mean 21.38 16.85 7.25 7.25 1.42 9.04 7.97 1.65
Median 21.38 16.85 7.25 7.25 0.00 9.04 7.97 1.65

All: 35 sequences

Mean 22.94 28.66 9.73 6.26 2.45 7.06 5.78 0.24
Median 22.03 28.26 2.33 1.02 0.20 0.73 0.58 0.00

Table 2. Classification errors (%) for sequences with two motions.

Methods RANSAC GPCA LSA 4n ALC 5 SSC J-Lnkg T-Lnkg Proposed

Checkerboard: 78 sequences

Mean 6.52 6.09 2.57 2.56 1.12 1.20 7.05 0.02
Median 1.75 1.03 0.27 0.00 0.00 0.00 2.46 0.00

Traffic: 31 sequences

Mean 2.55 1.41 5.43 2.83 0.02 0.70 0.02 0.00
Median 0.21 0.00 1.48 0.30 0.00 0.00 0.00 0.00

Articulated: 11 sequences

Mean 7.25 2.88 4.10 6.90 0.62 0.82 7.97 0.82
Median 2.64 0.00 0.22 0.89 0.00 0.00 7.97 0.00

All: 120 sequences

Mean 5.56 4.59 3.45 3.03 0.82 1.62 0.86 0.09
Median 1.18 0.38 0.59 0.00 0.00 0.00 0.00 0.00

We can make the following observations from the two tables. The RANSAC, GPCA, LSA, and ALC
methods have high classification error in the entire experiment. Meanwhile, the SSC method always
performs well—even on the challenging sequence articulated, the classification error is only 1.42%
for three motions and 0.62% for two motions. However, the proposed method performs the best
among all the methods on the checkerboard and traffic sequences, obtaining the lowest classification
error. The classification error has been significantly reduced, about 12 times better than the best result
previously reported by SSC. On the articulated sequences, it scores second-best, and is fairly close
to the SSC algorithm. However, the classification error of the proposed method is still much lower
than that of the other methods. Moreover, most of the existing methods do not perform well on the
articulated sequences. This is because motions in the two_cranes video sequence are very complex
and partially dependent on each other (as shown in Figure 3). We can make the observation from
Figure 3a that the number of tracking points is only 94, making it impossible to generate sufficient
assumptions for good permutation preferences. Figure 3b is the segmentation result of three motions,
whose classification error is 3.29%. Figure 3c–e gives the segmentation results of two motions, with a
classification error of 5.13%, 3.9%, and 4.17%, respectively.
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Figure 3. The results of motion segmentation on the two_cranes video sequence. (a) Ground truth of the
two_cranes sequence, where the red dot represents the first motion model, the green dot represents the
second motion model, and the blue dot represents the third motion model; (b) the segmentation result
with three motions; (c) the segmentation result with two motions, which includes the second motion
model and the third motion model; (d) the segmentation result with two motions, which includes
the first motion model and the third motion model; (e) the segmentation result with two motions,
which includes the first motion model and the second motion model.

Figure 4 shows some example frames from the Hopkins 155 dataset, which is the corresponding
correct segmentation obtained by our method. The proposed method can correctly classify the points
belonging to different motions. Figure 4a–d gives the checkerboard video sequences, Figure 4e,f gives
the traffic video sequences, and Figure 4g,h gives the articulated video sequences. It is very difficult
for many methods to correctly segment motion models that are close in the spatial domain because
they involve the spatial constraints of data points, such as in sampling and clustering. On the contrary,
since we group the data points based on similarities in the feature space, instead of grouping the
data points with Euclidean distance directly in the Euclidean space, the spatial constraint is not so
important for motion model grouping. Therefore, our method can well segment motion models that
are spatially close.
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(b) 2RT3RTCRT, (c) 2T3RCR, (d) 2R3RTC, (e) cars5, (f) cars9, (g) people2, (h) articulated.

5.2. Results of the Real-World Dataset

The Hopkins155 dataset has some limitations, such as limited depth reliefs and dominant camera
rotations. Taking into account these limitations, it is not appropriate to use this dataset as a benchmark
for investigating motion segmentation capability in the wild [58]. Real-world sequences contain real
challenges, such as missing data, unknown number of motions, and perspective effects [48]. For this
reason, we also evaluated the proposed method on the real-world datasets: The MTPV62 dataset [48]
and the KITTI 3D Motion Segmentation Benchmark (KT3DMoSeg) [58].

The MTPV62 dataset comprises 62 video sequences, of which 50 are from Hopkins 155. Another 12
video sequences have heavy occlusions, of which four video sequences are from [54] and another
eight video sequences are provided by [48]. Of the 62 video sequences, 26 contain two motions,
36 contain three motions, 12 suffer from seriously missing data, and nine have strong perspective
effects. The KT3DMoSeg dataset is a more challenging dataset because it contains strong perspectives
and strong forward translations. All sequences of KT3DMoSeg involve strong perspective effects in
the background, but the foreground moving objects often have limited depth reliefs [58].

We compare the performance of the proposed method with seven state-of-the-art methods: ALC, GPCA,
LSA, SSC, TPV [48], LRR [59], and MSSC [60]. The quantitative results are presented in Table 3. All the
classification errors of the seven methods were obtained from [58]. We use Chen’s matrix completion
approach [61] to handle missing data. Some qualitative results are presented in Figures 5 and 6.

We make the following observations from Table 3. First, we achieved a pretty good performance
on Hopkins 50 clips. However, the average classification error on the Missing Data 12 clips is a
little high. As seen in Figure 5f, incorrect segmentation on the Raffles sequence results in the high
classification error of MTPV62 dataset. Actually, the classification error on the Raffles sequence is as
high as 31.33%. The reason is that the distribution of the inliers of the foreground and background
is extremely unbalanced, and the background is very complicated. In addition, there are only seven
points belonging to the foreground, which results in difficulty in sampling an all-inlier minimal set
and seriously impacts the performance of the preferences. Secondly, we obtained the best average
classification error on the KT3DMoSeg dataset. However, the segmentation accuracy can be further
increased when considering the complexity of KT3DMoSeg. Many background objects in Figure 6 have
noncompact shapes, thus the background is often separated and the segmentation on the junction of the
foreground and background is very difficult. The most obvious case is Figure 6d. In addition, we adopt
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a single geometric model in handling the motion segmentation problem. However, the comparison
in [58] shows that the performance of multi-view approaches is consistently better than when we adopt
a single geometric model. Sometimes subspace overlap occurs with a single geometric model. Just as
presented in Figure 6e,f, some foreground objects are incorrectly segmented into the background.

Table 3. Classification errors (%) for sequences with MTPV62 dataset and KT3DMoSeg dataset.

Methods MTPV62 KT3DMoSeg

State of the Art Perspective
9 clips

Missing Data
12 clips

Hopkins
50 clips

All
62 clips Average Median

LSA - - - - 38.30 38.58
GPCA 40.83 28.77 16.20 16.58 34.60 33.95
ALC 0.35 0.43 18.28 14.88 24.31 19.04
SSC 9.68 17.22 2.01 5.17 33.88 33.54
TPV 0.46 0.91 2.78 2.37 - -
LRR - - - - 33.67 36.01

MSSC - 0.65 0.65 0.65 - -
Proposed - 3.36 0.16 0.78 23.69 23.97
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Figure 5. Sample results in video sequences of the MTPV62 dataset with the proposed method, with
the different motions labeled with points of different colors and shapes. (a) Boat, (b) Bus, (c) Girl,
(d) Swing, (e) Van, (f) Raffles.
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Figure 6. Sample results in video sequences of the KT3DMoSeg dataset with the proposed method,
with the different motions labeled with points of different colors and shapes. (a) Seq005_Clip01,
(b) Seq009_Clip03, (c) Seq013_Clip02, (d) Seq113_Clip01, (e) Seq005_Clip01, (f) Seq071_Clip01.

6. Conclusions

In this paper we have proposed a robust subspace clustering method that applies multi-model
fitting to the problem of motion segmentation. We first transformed the data into permutation space
and then defined a similarity matrix based on data point permutation preferences and used this in
grouping and clustering the data points. Then, we used a model selection strategy that combines
energy minimization and the GRIC information criterion to select the best model, which can generate
more distinguishable permutation preferences for the data points, thereby obtaining better clustering
results. In the experiments undertaken in this study, the proposed method can deal with incomplete
trajectories and perspective effect, achieving state-of-the-art performance in motion segmentation.
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