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Abstract: Soil water content (SWC) monitoring is often used to optimize agricultural irrigation.
Commonly, capacitance sensors are used for this task. However, the factory calibrations have been
often criticized for their limited accuracy. The aim of this paper is to test the degree of improvement
of various sensor- and soil-specific calibration options compared to factory calibrations by taking the
10HS sensor as an example. To this end, a two-step sensor calibration was carried out. In the first step,
the sensor response was related to dielectric permittivity using calibration in media with well-defined
permittivity. The second step involved the establishment of a site-specific relationship between
permittivity and soil water content using undisturbed soil samples and time domain reflectometry
(TDR) measurements. Our results showed that a model, which considered the mean porosity and a
fitted dielectric permittivity of the solid phase for each soil and depth, provided the best fit between
bulk permittivity and SWC. Most importantly, it was found that the two-step calibration approach
(RMSE: 1.03 vol.%) provided more accurate SWC estimates compared to the factory calibration
(RMSE: 5.33 vol.%). Finally, we used these calibrations on data from drip-irrigated almond and apple
orchards and compared the factory calibration with our two-step calibration approach.

Keywords: soil water content; 10HS sensor; calibration; sensor variability; specific calibration;
CRIM model

1. Introduction

Efficient irrigation management is essential for reducing water consumption. To this end,
real-time monitoring of soil water content (SWC) is essential to optimize the amount and timing
of water irrigation [1,2]. Electromagnetic (EM) methods, such as time domain reflectometry (TDR)
(e.g., Reference [3]) and capacitance sensors [4,5], are most commonly used for soil water content
measurements at the point scale. Capacitance sensors are often preferred over TDR sensors, as they
provide real-time SWC at a lower cost. In addition, they were shown to be reasonably robust and
precise, and consume less energy compared to TDR sensors [6–8]. Both TDR and capacitance methods
make use of the strong dependence of the soil dielectric permittivity on volumetric SWC. As the
dielectric permittivity of liquid water is much higher than the dielectric permittivity of the other
soil components, SWC is the principal factor governing the apparent soil permittivity [9]. However,
other soil properties such as salinity and texture may cause dielectric losses and disturb the SWC
measurements with EM sensors [10]. These dielectric losses depend on the frequency of the electric
field generated by the sensors and are especially important for sensors that work at frequencies between
1 and 200 MHz [11]. In addition, capacitance sensors can show substantial sensor-to-sensor variability,
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which affects the accuracy of the soil water content measurements if this is not considered [12,13]. One
solution to compensate for this effect would be to directly calibrate each sensor individually with
soil samples [14]. However, this procedure is time consuming and thus often not viable in case of a
high number of sensors [5,6]. Alternatively, a two-step calibration procedure can be used [10,15–17].
In a first step, a calibration between sensor response and permittivity is established for each of the
sensors. In this step, media with well-known dielectric properties (referred to as reference permittivity),
such as air, glass beads [18], and 2-isopropoxyethanol [19], are used. The advantages of using these
reference media are: (i) the avoidance of air gaps and density variations, (ii) the possibility to separate
sensor- and soil-specific effects, and (iii) the ability to quickly calibrate multiple sensors for a wide
range of dielectric permittivity. In a second step, an appropriate relationship between permittivity and
SWC needs to be established. One possibility is to use available empirical or semi-empirical models
that relate permittivity and SWC [20,21]. To obtain more accurate SWC measurements, a site-specific
calibration accounting for variations in key soil properties can also be established using a limited
number of soil samples. Here, the use of TDR measurements should be preferred because of its ability
to directly provide dielectric permittivity and the higher accuracy of the permittivity measurements.

In this study, we focused on the low-cost capacitance SWC sensor 10HS (METER Group Inc.,
Pullman, WA, USA, 2018). The main goal was to analyze whether it is worthwhile to perform
sophisticated sensor- and soil-specific calibrations instead of using the factory calibration suggested by
the manufacturer. To this end, we carried out sensor-specific calibrations with 10HS sensors using
reference media with well-known dielectric properties and determined permittivity-SWC relationships
using undisturbed soil samples and TDR measurements. The permittivity of the undisturbed samples
was related to SWC taking into account different properties such as porosity and permittivity of the
solid phase. We then compared the factory and the two-step calibration approach using (i) packed
sand samples with known SWC in a laboratory experiments and (ii) SWC time series obtained at two
test sites.

2. Materials and Methods

2.1. Sensor Technology

In this study, we used the 10HS SWC sensor model manufactured by METER Group Inc., Pullman,
WA, USA. This sensor has a prong length of 10.0 cm and a distance between the prongs of 2.2 cm
(Figure 1). The 10HS sensor determines SWC using the capacitance method. According to the
manufacturer, it has a probing volume of about 1 dm3, which is much larger than other low-cost SWC
sensors like the EC-5 and EC-20, which have a volume of influence of 0.3 dm3 [13].
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The 10HS sensor determines SWC by measuring the charge time of a capacitor (i.e., the soil-probe
system), which is related to the permittivity of the soil surrounding the sensor [17]. The manufacturer
provides a factory calibration to obtain SWC from the sensor response:

SWC (vol.%) = (1.16 × 10−9 (RAW3) − 3.95 × 10−6 (RAW2) + 4.89 × 10−3 (RAW) − 1.92) × 100 (1)

where RAW is the raw sensor count. According to the manufacturer, this calibration equation is valid
for SWC in the range between 0 and 57 vol.%. Like all ECH2O SWC sensors of the METER Group, the
10HS sensor uses an oscillation frequency of 70 MHz. Therefore, the SWC measurements with the
10HS sensor may be affected by temperature and soil bulk electrical conductivity variations [13].

2.2. Study Area

We used 16 10HS sensors to measure SWC in an almond and apple orchard located in Menàrguens
and Mollerussa (Lleida, Spain), respectively. Both orchards were equipped with a drip irrigation
system. The almond plants were planted in ridges of 200 cm width and 50 cm height on top of the
original soil. The soil material used to create the ridges consisted of a mixture of local soil and an
organic amendment. The irrigation system of the almond orchard was located on the top of the ridge
and consisted of a double tube system separated by 40 cm with drippers spaced at 100 cm intervals.
The sensors were installed in the middle of the ridge at depths of 20 and 50 cm. The apple orchard
had a single tube system with drippers spaced every 60 cm and the sensors were located under and
between the drippers at depths of 15 and 30 cm. The properties of the soils are summarized in Table 1.

Table 1. Characteristics of the soils at different deeps in almond and apple crop.

Depth (m)
Menàrguens Mollerussa

0–0.5
(Ridge)

0.5–1
(Under Ridge) 0–0.2 0.2–0.4

Silt (0.002 < d < 0.05 mm) % 37.2 37.0 40.7 40.6
Clay (d < 0.002 mm) % 21.2 24.3 23.5 23.9

Sand (0.05 < d < 2 mm) % 41.6 38.7 35.8 35.5
USDA Soil Classification Loam Loam Loam Loam

Bulk density (Kg·m−3) 1370 1700 1480 1500

2.3. Laboratory Experiments

In this study, we relied on a two-step calibration approach to relate sensor response to SWC. In a
first step, the relationship between sensor response and permittivity was established for each sensor
(i.e., a sensor-specific calibration). In a second step, a site-specific relationship between permittivity
and soil water content was developed using a limited number of soil samples using the TDR method
(soil-specific calibration).

2.3.1. Sensor Response—Permittivity Calibration for the 10HS Sensor

For the first calibration step, we used the approach of Bogena et al. [5] and calibrated 16 sensors.
We used five calibration standards for sensor calibration (air, glass beads, and three mixtures of
2-isopropoxyethanol (i-C3E1) and deionized water with a defined volume fraction of i-C3E1). The
properties of these reference media are described in Table 2. We used soda lime glass beads (type:
Silibeads 4501, Sigmund Lindner GmBH, Warmensteinach, Germany) with a grain size between 0.25
and 0.50 mm and a dielectric permittivity of 3.34 [18]. The sensor response for all reference media was
measured at 25 ◦C using the ProCheck device (Meter Group Inc., Pullman, WA, USA). The permittivity
range from 1.0 to 34.8 covers most of the dielectric permittivity values found in natural soils. Table 2
shows that there is a considerable gap between 4 and 32%. Initially, pure I-C3E1 with an equivalent
water content of 24% was also considered. However, pure I-C3E1 is highly hydrophilic. Therefore,
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these measurements were unreliable and not stable during calibration. For this reason, we decided to
discard this solution from the analysis. Future studies should investigate alternative reference liquids
to fill this gap.

Table 2. Properties of the calibration media as well as the equivalent soil water content (SWC) calculated
with the Topp equation [20].

Calibration
Standard

Medium
Reference

Permittivity

Volume
Fraction
i-C3E1

Volume
Fraction

Water

Equivalent
SWC

- - - vol. %

M1 Air 1.00 - - -
M2 Glass beads 3.34 - - 4.0
M3 I-C3E1/water mixture 18.14 0.92 0.08 32.0
M4 I-C3E1/water mixture 26.26 0.80 0.20 41.0
M5 I-C3E1/water mixture 34.82 0.68 0.32 48.0

Each of the 16 sensors was calibrated taking into account two immersions variants. In the first
variant, only the sensor prongs were inserted in the reference media (i.e., incomplete immersion). In
the second variant, the entire sensor including the sensor head with the electronics (see Figure 1) was
fully immersed in the reference media. This second variant mimics a typical field installation where
the sensor head is fully surrounded by soil, whereas the first variant represents a typical situation for
crops planted in bags of growing media and laboratory SWC measurements. If the sensor electronics in
the sensor head are not influenced by the permittivity of the surrounding media, both variants should
provide the same sensor reading for a given dielectric permittivity.

Several precautions were considered to obtain precise calibrations. First, we used sufficiently
large (6.4 dm3) polyethylene bottles (diameter of 19.5 cm, height of 23.0 cm) to fully include the
sensing volume of the 10HS sensor (1 dm3). Second, the sensor was fixed and centrally immersed in
the reference media to reduce the effects of sensor position on the measurements. Finally, possible
degrading effects of the reference media on the plastic body of the sensor were minimized by carefully
cleaning the sensor after each measurement and minimizing the contact time. The calibration station
consisted of four plastic bottles containing the different dielectric reference media arranged on a
workbench. The bottle with the glass beads was placed on a vibration machine in order to maintain
the same packing density and not affect the calibration of the 10HS sensors. The other three bottles
were placed on magnetic stirring devices to avoid demixing of the reference media. They were also
covered with a lid to prevent evaporation. In addition, a bottle of water was used to clean the sensors
after each measurement. Bogena et al. [5] provided a more detailed description of the set-up of the
calibration workbench.

The sensor response (ν) was related to the dielectric permittivity (Ka) using an empirical sensor
response permittivity (SRP) model. In this study, the sensor response was related to the apparent
dielectric permittivity using the following empirical model:

Ka= γ + 1 / (α + β / ν) (2)

where ν was the sensor response (voltage, V) and α, β and γ were fitting parameters. The RMSE
between the predicted Ka and the reference permittivity, εref, was used to express the accuracy of the
SRP model. Empirical SRP models were already successfully applied to relate sensor readings of
low-cost sensors to dielectric permittivity in several studies to account for sensor-to-sensor variability
of various SWC sensors [6,22]. In addition, we investigate the decrease in accuracy when using a
universal SRP model that ignores sensor-to-sensor variability of the 10HS sensors.
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2.3.2. Permittivity-Soil Water Content Relationships

To obtain soil-specific relationships between dielectric permittivity and SWC for the Menàrguens
and Mollerussa test sites, we took 16 undisturbed samples using Kopecky rings with a length of 7.7 cm
and a diameter of 5 cm. We took 4 samples at 20 cm depth and 4 samples at 50 cm depth from the
Menàrguens test site and 4 samples at 15 cm and 4 samples at 30 cm depth from the Mollerussa test
site. In the laboratory, we saturated the samples with deionized water and let them evaporate at room
temperature. The volumetric SWC was determined twice a day from the weight of the sample, the
known sample volume and the dry weight of sample determined at the end of the experiment by
oven drying (65 ◦C, 48 h). The apparent dielectric permittivity of each sample was determined from
measurements with a CS 640-L 3-rod TDR probe attached to a TDR-100 device (Campbell Scientific
Inc., Logan, UT, USA). We used the internal TDR-100 algorithm to analyze the TDR measurements.
One sample had to be discarded because shrinkage caused a significant decrease in volume. Therefore,
the final data set consisted of dielectric permittivity and SWC measurements for 15 soil samples with
known bulk density and porosity as provided in Table 3.

Table 3. Properties of the samples for the topsoil and subsurface soil.

Menàrguens Mollerussa

Sample
Name

Depth Bulk
Density Porosity Sample

Name
Depth Bulk

Density Porosity

cm g·cm−3 % cm g·cm−3 %

S1-Men

~20

1.40 47 S1-Moll

~15

1.56 41
S2-Men 1.33 50 S2-Moll 1.41 47
S3-Men 1.37 48 S3-Moll 1.41 47
S4-Men 1.36 49 S4-Moll 1.50 43

S5-Men

~50

1.72 35 S5-Moll

~30

1.57 41
S6-Men 1.60 40 S6-Moll * 1.47 44
S7-Men 1.75 34 S7-Moll 1.46 45
S8-Men 1.70 36 S8-Moll 1.50 43

* Sample was discarded due to shrinkage

It should be noted that there is a difference in operating frequency between the 10HS sensor
(70 MHz) and the effective frequency of TDR (100 to 500 MHz), although the latter is poorly defined and
depends on the measurement set-up and TDR waveform analysis approach [23]. For the low-salinity
and loamy soils investigated here, it is assumed that the operating frequency of 70 MHz for the
capacitance sensors is sufficiently high to avoid effects of low-frequency polarization losses [24].
Therefore, the difference in measured apparent permittivity between the capacitance sensors and
TDR is expected to be low. The alternative approach where 10HS sensors are used for soil-specific
calibration would overcome possible differences in frequency, but has the disadvantage that sensor-
and soil-specific calibration are convoluted. Therefore, we prefer not to use this latter approach.

Five empirical and semi-theoretical model variants were evaluated using the root mean square
error (RMSE) between measured and predicted SWC. The first model was the empirical Topp model [20]:

SWC (vol .%) = (−5 .3 × 10−2 + 2.92 × 10−2
× Ka − 5.5 × 10−4

× K2
a + 4.3 × 10−6

× K3
a) × 100 (3)

In addition, we used four different variants of the complex refractive index model (CRIM) [25]:

SWC (vol .%) = 100 ×
Kβa − (1 − η) × Kβs − ηK

β
air

Kw(T)
β
− Kβair

(4)

where Ka is the measured apparent dielectric sensor permittivity, Ks is the dielectric permittivity of the
solid phase, and η is the porosity. The value of the shape factor β was set to 0.5 [26]. The dielectric
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permittivity of air, Kair, was assumed to be 1 and the temperature dependent dielectric permittivity of
water, Kw, was assumed to be 78.54 at 25 ◦C [27]. In the first variant (CRIM-1), we used the averaged
measured porosity for all samples (η = 43%) and assumed that the dielectric permittivity of the solid
phase, Ks, was 4.4 based on the value for quartz [28]. In the second variant (CRIM-2), we again used
the measured average porosity (η = 43%) but fitted Ks to the data. In the third variant (CRIM-3), we
used the mean porosity per soil and depth (Menàrguens: η = 48% and 36% at 15 cm and 50 cm depth,
respectively; Mollerussa: η = 44% and 43% at 15 cm and 30 cm depth, respectively) and fitted Ks again.
In the fourth and final variant (CRIM-4), we again used the mean porosity per soil and depth and now
fitted the dielectric permittivity of the solid phase for each soil and depth.

2.3.3. Sandbox Experiment

In order to compare the accuracy of the factory calibration provided by the manufacturer with the
two-step calibration developed in this study, a sandbox experiment was performed. The experiment
was carried out in a box (length: 36.8 cm, width: 26.7 cm, height: 17.2 cm) which was filled with 15 kg of
quartz sand, with a grain size diameter between 0.1 and 0.4 mm (F32, Quartzwerke, Frechen, Germany).
To cover soil water contents between 0 and 35 vol. %, we added 0.5 dm3 of demineralized water in
seven steps. Each time, the sand was thoroughly mixed with a blender before refilling into the box to
achieve best possible soil homogeneity. During the refilling process, the soil material was carefully
compacted to achieve similar soil density. The sand height and weight were measured to determine
soil volume and soil density. Three 10HS sensors were installed in the central part of the box (see
Figure 2) ensuring that the measurements were only affected by the sand inside the box. The ProCheck
device (Meter Group Inc., Pullman, WA, USA) was used to determine the raw sensor response and the
soil water content based on the factory calibration. For the two-step calibration, the universal SRP
model determined using the reference media was used to convert the sensor response to permittivity,
and the Topp equation [20] was used to determine SWC from permittivity. Additional corrections
for the effect of electrical conductivity and temperature were not required here because of the use of
demineralized water with low conductivity and the controlled temperature during the experiment.
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ProCheck device.

3. Results and Discussion

3.1. Sensor Response—Permittivity (SRP) Calibration for the 10HS Sensor

The statistical results of the sensor response measurements in the different reference media for
the two immersion variants are summarized in Table 4. It can be seen that mean sensor response
increased with increasing permittivity and that the 10HS sensors showed considerable sensor-to-sensor
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variability as indicated by the average standard deviation and coefficient of variation of 13.8 mV and
1.41 %, respectively. This sensor-to-sensor variability is the consequence of intrinsic factors, such
as subtle variations in the electrical components and probe geometry affecting the electromagnetic
wave propagation characteristics [6]. It can also be seen that the sensor readings are affected by the
immersion depth of the sensor into the reference media. Our experimental results indicate that with
increasing permittivity, the 10HS sensor becomes increasingly affected by the depth of immersion. For
the reference media M1-M3, only minor differences were found. However, significant differences were
found for M4 and M5 with differences in mean sensor response of 0.02 V and 0.05 V, respectively.

Table 4. Statistical result of the sensor response measurements using 10HS sensors in calibration media.

Calibration
Medium

Incompletely Immersed Sensors in
Calibration Medium

Fully Immersed Sensors in Calibration
Medium

Mean
Sensor

Response

Standard
Deviation

Coefficient
of Variation

Mean
Sensor

Response

Standard
Deviation

Coefficient
of Variation

V V % V V %

M1 0.50 0.009 1.84 0.50 0.009 1.84
M2 0.80 0.017 2.10 0.79 0.016 2.08
M3 1.32 0.011 0.86 1.32 0.011 0.86
M4 1.41 0.017 1.23 1.43 0.016 1.12
M5 1.47 0.015 1.01 1.52 0.017 1.10

In order to test how the differences in sensor response of the two immersion variants affect the
sensor calibration, we fitted the SRP model (Equation (2)) to both calibration data sets. The fitted SRP
models are presented in Figure 3 and the fitting parameters and the associated RMSE are provided in
Table 5.
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immersed” and “fully immersed” as well as the corresponding universal Sensor Response–Permittivity
(SRP) models.
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Table 5. Fitting parameters and root mean square error (RMSE) between measured and predicted
dielectric permittivity when the sensors are incompletely immersed and fully immersed in
calibration media.

α β γ RMSE

Equation (2) incompletely immersed −0.200 0.335 −1.227 0.518
Equation (2) fully immersed −0.118 0.220 −2.456 0.412

The difference between the two SRP models is clearly visible in Figure 3. In the case of incomplete
immersion in the reference media, the slope is much steeper in wet soil. This has the following
implications for the measurement accuracy of the 10HS sensor. First, the use of a calibration strategy
based on incomplete immersion will overestimate permittivity in the range between 0.20–0.65 V and
1.35–160 V and will underestimate it in the range between 0.65–1.35 V ranges when the sensor is
completely buried in the soil during the field experiments. Second, the sensor reading is less sensitive
to changes SWC in the range between 1.35–1.60 V due to the steeper slope. In our field experiment, the
10HS sensors were completely buried in the soil. Therefore, we prefer the SRP model obtained from
the fully immersed calibration data to describe sensor response-permittivity relationship of the 10HS
sensors in the following.

3.2. Universal Versus Sensor—Specific Calibration

The 10HS sensor exhibited considerable sensor-to-sensor variability (Figure 3). Therefore, we
tested to which degree the 10HS sensors would benefit from a sensor-specific calibration. The
comparison between universal and sensor-specific calibration of each of 16 sensors is presented in
Figure 4. The RMSE between the reference permittivity (Table 2) and the apparent dielectric permittivity
estimated using the fitted SRP model (fully immersed case) was used to evaluate to what extent a
sensor-specific calibration could improve the accuracy of the permittivity estimates (Table 6). To put the
results into perspective, the permittivity was converted to equivalent SWC using the Topp model [20].

Sensors 2019, 19, x FOR PEER REVIEW 8 of 17 

 

Figure 3. The response of 16 10HS sensors in five reference media for the two cases “incompletely 
immersed” and “fully immersed” as well as the corresponding universal Sensor Response–
Permittivity (SRP) models. 

3.2.  Universal Versus Sensor—Specific Calibration 

The 10HS sensor exhibited considerable sensor-to-sensor variability (Figure 3). Therefore, we 
tested to which degree the 10HS sensors would benefit from a sensor-specific calibration. The 
comparison between universal and sensor-specific calibration of each of 16 sensors is presented in 
Figure 4. The RMSE between the reference permittivity (Table 2) and the apparent dielectric 
permittivity estimated using the fitted SRP model (fully immersed case) was used to evaluate to what 
extent a sensor-specific calibration could improve the accuracy of the permittivity estimates (Table 
6). To put the results into perspective, the permittivity was converted to equivalent SWC using the 
Topp model [20].  

 

Figure 4. Universal Sensor Response–Permittivity (SRP) model fitted to the whole data set of every 
sensor and sensor-specific SRP models fitted to the sensor response measurement of each 10HS 
sensor. 

Table 6. RMSE between apparent dielectric permittivity (Ka) and reference permittivity for sensor-
specific and universal calibration, as well as the corresponding equivalent soil water content (SWC) 
(θeq) RMSE estimated using the Topp empirical permittivity-SWC relationship [20]. 

Calibration Standard 
Sensor-Specific Calibration  Universal Calibration Function 
RMSE Ka RMSE θeq (vol. %)  RMSE Ka RMSE θeq (vol. %)  

M1 0.349 -  0.350 - 
M2 0.398 1.014  0.426 1.083 
M3 0.397 0.528  0.684 0.901 
M4 0.608 0.571  1.424 1.317 
M5 0.207 0.135  2.324 1.471 

Total 0.427 0.642  1.421 1.213 

In case a universal calibration function was used to relate sensor response to permittivity, the 
RMSE between estimated and reference permittivity increased considerably with increasing medium 
permittivity. The overall RMSE for Ka determined using a universal calibration function was 1.421 
(θeq: 1.213 vol. %). Rosenbaum et al. [6] obtained similar RMSE values of 1.5 and 1.2 for the EC-5 and 
5TE sensors (METER Group Inc., Pullman, WA, USA), respectively. Bogena et al. [5] found lower 
errors (RMSE Ka: ~0.87, RMSE (θeq: ~0.95 vol. %) for the low-cost SMT100 sensor (Truebner GmbH, 
Neustadt, Germany).  

0

5

10

15

20

25

30

35

40

45

50

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Pe
rm

itt
iv

ity
 (-

)

Sensor response (V)

Sensor specific calibration

Single calibration

Measurements

Figure 4. Universal Sensor Response–Permittivity (SRP) model fitted to the whole data set of every
sensor and sensor-specific SRP models fitted to the sensor response measurement of each 10HS sensor.



Sensors 2019, 19, 3101 9 of 18

Table 6. RMSE between apparent dielectric permittivity (Ka) and reference permittivity for
sensor-specific and universal calibration, as well as the corresponding equivalent soil water content
(SWC) (θeq) RMSE estimated using the Topp empirical permittivity-SWC relationship [20].

Calibration
Standard

Sensor-Specific Calibration Universal Calibration Function

RMSE Ka RMSE θeq (vol. %) RMSE Ka RMSE θeq (vol. %)

M1 0.349 - 0.350 -
M2 0.398 1.014 0.426 1.083
M3 0.397 0.528 0.684 0.901
M4 0.608 0.571 1.424 1.317
M5 0.207 0.135 2.324 1.471

Total 0.427 0.642 1.421 1.213

In case a universal calibration function was used to relate sensor response to permittivity, the
RMSE between estimated and reference permittivity increased considerably with increasing medium
permittivity. The overall RMSE for Ka determined using a universal calibration function was 1.421
(θeq: 1.213 vol. %). Rosenbaum et al. [6] obtained similar RMSE values of 1.5 and 1.2 for the EC-5
and 5TE sensors (METER Group Inc., Pullman, WA, USA), respectively. Bogena et al. [5] found lower
errors (RMSE Ka: ~0.87, RMSE (θeq: ~0.95 vol. %) for the low-cost SMT100 sensor (Truebner GmbH,
Neustadt, Germany).

The use of sensor-specific calibration decreased the overall RMSE of Ka to 0.427 (θeq: ~0.642 vol.
%). Sakaki et al. [12] obtained a similar accuracy for dry sand (±0.5 vol. %) and a lower accuracy for
saturated sand (±2.8 vol. %) in case of the EC-5 sensor. Rosenbaum et al. [6] also investigated the
EC-5 sensor, and found a lower accuracy for a sensor-specific calibration (~0.8, 1.4 vol. %). Finally,
Qu et al. [22] investigated sensor-specific calibration for the SPADE sensor (Sceme.de, Horn-Bad
Meinberg, Germany), and obtained a higher accuracy of 0.226 (0.4 vol. %). Given the standardized
calibration process that reduced side effects such as variations in glass beads density as well as medium
contamination to a minimum [5], we attribute the observed differences mainly to sensor-to-sensor
variability which has been often observed for this kind of low-cost SWC sensors [6].

3.3. Permittivity–Soil Water Content Relationships

The relationship between the apparent dielectric permittivity and SWC of 15 undisturbed soil
samples from Menàrguens (20 cm and 50 cm depth) and Mollerussa (15 cm and 30 cm depth) is
shown in Figure 5a. It can be observed that the data were slightly different depending on location
and depth. In a first step, the accuracy of the relationship proposed by Topp et al. [20] was evaluated.
This empirical relationship resulted in a RMSE of 2.94 vol.% (Figure 5a, Table 7), which indicates a
reasonably good match considering that the Topp model [20] is a “universal function” derived from
experiments with limited variation in soil properties.

Table 7. RMSE between soil water content measured and predicted by different models.

Model RMSE (vol. %)

Topp 2.94
Complex Refractive Index Model 1 (CRIM-1) 3.54
Complex Refractive Index Model 2 (CRIM-2) 1.90
Complex Refractive Index Model 3 (CRIM-3) 1.43
Complex Refractive Index Model 4 (CRIM-4) 1.37
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Figure 5. Relationship between apparent dielectric permittivity (Ka) and soil water content for (a) all
samples from the Menàrguens (20 cm and 50 cm depth) and (b) Mollerussa (15 cm and 30 cm depth) test
sites and the fit of Topp model [20] and the complex refractive index models (CRIM-1) and (CRIM-2).

The first variant of the CRIM model (CRIM-1) considered the average porosity for all samples
(43%) and a literature value for Ks (4.40 for quartz [28]). The fit to the data is shown in Figure 5b and
the resulting RMSE was 3.54 vol. % (Table 7). This indicates that the use of the CRIM-1 model based
on measured average porosity and literature values for the permittivity of the solid phase resulted
in a somewhat lower accuracy than the Topp model [20]. In the next variant (CRIM-2), Ks was fitted.
This resulted in a Ks value of 6.3 and a better fit to the data (Figure 5) with a RMSE of 1.90 vol. %
(Table 7). The fitted Ks obtained with the CRIM-2 model is higher than that of the CRIM-1 model,
which was based on the permittivity of quartz. Since most clay minerals have a higher permittivity
than quartz [28], this is not surprising considering the relatively high silt and clay fraction of the
Menàrguens and Mollerussa test site (see Table 1).

In the next variant (CRIM-3), the variability in measured porosity was also considered. To this
end, we averaged the porosity measurements per site and depth, resulting in a porosity of 48% and
36% for 20 and 50 cm depth, respectively, for the Menàrguens site and a porosity of 44% and 48% for
15 and 30 cm depth, respectively, for the Mollerussa site. Again, a single value of Ks was fitted to the
data, and this resulted in a Ks value of 6.3. The RMSE further decreased to 1.43 vol.%, indicating that
porosity is an additional control of the apparent dielectric permittivity-soil water content relationship.
Figure 6 shows the fit of the CRIM-3 model to the experimental data. For the Menàrguens site, the
CRIM-3 model was significantly different for 20 and 50 cm depth due to the different porosity. At
50 cm depth, there was a zone of larger compaction due to the transition between the ridge and the
original soil. Therefore, the undisturbed soil samples showed higher bulk density and lower porosity.
For the Mollerussa site, the CRIM-3 model predictions were similar for 15 and 30 cm depth, since the
bulk density and porosity of both depths were similar.
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Figure 6. Apparent dielectric permittivity (Ka)-soil water content for (a) all samples of the Menàrguens
(20 cm and 50 cm depth) and (b) Mollerussa (15 cm and 30 cm depth) test sites and the derived complex
refractive index model (CRIM-3) model.

For the final variant (CRIM-4), both the dielectric permittivity of the solid phase (Ks) and average
porosity varied per depth and site (Figure 7). In this variant, the RMSE further improved to 1.37 vol.%,
although the improvement was only subtle compared to the variant CRIM-3 with only a single value for
Ks. The fitted values for Ks are given in Table 8, and varied in a small range only. In comparison to other
studies, this fit is excellent. For instance, Robinson et al. [15], who evaluated the performance of several
capacitive sensors including the Wet2 (Delta-T Devices), 5TE and 10HS sensors in well-characterized
soils with variable texture, obtained accuracies that varied from 3.4 to 7.3 vol.%. Similar applications
of the CRIM model by Rosenbaum et al. [29] and Qu et al. [30] resulted in RMSE values of 2.9 vol.%
and 2.2–2.8 vol.%, respectively.
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Figure 7. Apparent dielectric permittivity (Ka)-soil water content for (a) all samples of Menàrguens
(20 cm and 50 cm depth) and (b) Mollerussa (15 cm and 30 cm depth) test sites and the derived Ka-θ
complex refractive index (CRIM-4) model.
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Table 8. Parameters of the complex refractive index (CRIM-4) model for Menàrguens and
Mollerussa sites.

Depth Menàrguens Mollerussa

20 cm 50 cm 15 cm 30 cm

Kwater 78.54 78.54 78.54 78.54
Kair 1.00 1.00 1.00 1.00
Ksolid 6.09 6.66 6.16 5.98
η 0.48 0.36 0.44 0.43

3.4. Comparison of Factory and Two-Step Calibration Approach

In order to compare the two-step-calibration approach with the factory calibration, we combined
both calibration steps (SRP and CRIM model) to obtain a sensor response-SWC relationship. In the
following, we consider the calibration approach using the SRP model for a fully immersed sensor
head and the CRIM-4 variant as the “reference” two-step calibration. Figure 8 shows that there was
a substantial difference between factory calibration and the “reference” two-step calibration as well
as the calibration variant using a combination of the SRP model and the Topp equation [20]. For
almost the entire range of relevant sensor response, the SWC predicted by the factory calibration was
considerably higher than the SWC predicted by our two-step calibration. Spelman et al. [7] reported
a similar difference between the factory calibration of the 10HS sensor and soil-specific calibrations
using agricultural soils.Sensors 2019, 19, x FOR PEER REVIEW 12 of 17 

 

 
Figure 8. Comparison of the factory calibration and calibration curves for 10HS sensors obtained 
using the reference two-step calibration for soils samples from the Menàrguens and Mollerussa test 
sites. A calibration using the universal Sensor Response–Permittivity (SRP) model combined with the 
Ka-θ Topp model [20] is also presented. 

To further confirm this strong discrepancy, we conducted a sandbox experiment with three 10HS 
sensors. Figure 9 compares gravimetrically determined volumetric SWC with SWC determined with 
the 10HS sensors using the factory calibration and the universal SRP model combined with the Topp 
equation [20]. The factory calibration resulted in a relatively high RMSE of 5.33 vol. % (R2 = 0.92), 
whereas the two-step calibration achieved a much better agreement (RMSE: 1.03 vol. %, R2 = 0.99). 
Fares et al. [31], who studied the effect of soil organic matter on SWC measurements with 10HS 
sensors, obtained a similar RMSE using the factory calibration (RMSE ranged between 5.3–7.2 vol. 
%), but they obtained a somewhat lower accuracy for their soil-specific calibrations (RMSE ranged 
between 1.3–1.9 vol. %). Matula et al. [32] found similar results for various ECH2O sensors (5TE, EC-
5, EC-10, and EC-20) using two soil media with different bulk density (average RMSE of the factory 
calibration was 3.3 vol. %, while average of RMSE of the soil specific calibration was 1.3 vol. %). These 
results confirm the accuracy of the two-step calibration approach, and highlight the limited accuracy 
of the factory calibration provided with the 10HS sensor. 

 
(a) (b) 

Figure 9. Comparison of the gravimetric soil water content with those measured with three 10HS 
sensors using either (a) the factory calibration or the (b) universal Sensor Response–Permittivity (SRP) 
model combined with the model of Topp et al. [20]. 

0

10

20

30

40

50

600 800 1000 1200 1400

θ
(v

ol
. %

)

Sensor response (mV)

Menàrguens 20cm (SRP - CRIM-4 model)
Menàrguens 50cm (SRP - CRIM-4 model)
Mollerussa 15cm (SRP - CRIM-4 model)
Mollerussa 30cm (SRP - CRIM-4 model)
SRP - Topp model
Factory Calibration

0

5

10

15

20

25

30

35

0 10 20 30

G
ra

vi
m

et
ri

c 
θ

(v
ol

. %
)

θ (vol.%)

10HS - 1
10HS - 2
10HS - 3
1 : 1 line

0

5

10

15

20

25

30

35

0 10 20 30

G
ra

vi
m

et
ri

c 
θ

(v
ol

. %
)

θ (vol. %)

10HS - 1
10HS - 2
10HS - 3
1 : 1 line

Figure 8. Comparison of the factory calibration and calibration curves for 10HS sensors obtained using
the reference two-step calibration for soils samples from the Menàrguens and Mollerussa test sites. A
calibration using the universal Sensor Response–Permittivity (SRP) model combined with the Ka-θ
Topp model [20] is also presented.

To further confirm this strong discrepancy, we conducted a sandbox experiment with three 10HS
sensors. Figure 9 compares gravimetrically determined volumetric SWC with SWC determined with
the 10HS sensors using the factory calibration and the universal SRP model combined with the Topp
equation [20]. The factory calibration resulted in a relatively high RMSE of 5.33 vol. % (R2 = 0.92),
whereas the two-step calibration achieved a much better agreement (RMSE: 1.03 vol. %, R2 = 0.99).
Fares et al. [31], who studied the effect of soil organic matter on SWC measurements with 10HS sensors,
obtained a similar RMSE using the factory calibration (RMSE ranged between 5.3–7.2 vol. %), but they
obtained a somewhat lower accuracy for their soil-specific calibrations (RMSE ranged between 1.3–1.9
vol. %). Matula et al. [32] found similar results for various ECH2O sensors (5TE, EC-5, EC-10, and
EC-20) using two soil media with different bulk density (average RMSE of the factory calibration was
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3.3 vol. %, while average of RMSE of the soil specific calibration was 1.3 vol. %). These results confirm
the accuracy of the two-step calibration approach, and highlight the limited accuracy of the factory
calibration provided with the 10HS sensor.
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Figure 9. Comparison of the gravimetric soil water content with those measured with three 10HS
sensors using either (a) the factory calibration or the (b) universal Sensor Response–Permittivity (SRP)
model combined with the model of Topp et al. [20].

3.5. Analysis of Field Measurements

In a final step, we applied the factory calibration and different variants of the two-step calibration
to the experimental field data used for irrigation scheduling in a period of intensive irrigation in July
2017 for both the Menàrguens and Mollerussa sites and the two measurements depths (Figure 10). The
different SWC prediction variants based on the two-step calibration approach that were considered are:
(i) sensor-specific SRP models combined with the CRIM-4 model, (ii) a universal SRP model combined
with the CRIM-4 model, (iii) a universal SRP model obtained with incompletely immersed sensor head
combined with the CRIM-4 model, (iv) and a universal SRP model combined with the Topp model [20].
It should be noted that corrections for temperature and electrical conductivity were not yet considered
here, and we only focus on differences in SWC predictions using different calibration strategies.

In the following, the sensor-specific SRP models combined with the CRIM-4 model were
used as a reference because this combination provided the best results for the two-step calibration
approach (RMSE: 1.37 vol.%). To quantify the differences in terms of SWC predictions made with the
sensor-specific SRP and the CRIM-4 model and other variants, the root mean square error (RMSE) and
the mean difference were calculated (Tables 9 and 10, respectively). The results show that the use of a
universal instead of a sensor-specific SRP model in combination with the CRIM-4 model resulted in a
small difference in SWC predictions with an RMSE of 0.25 vol.% and a mean difference of 0.24 vol.%.
When the universal SRP model derived from calibration measurements with incompletely immersed
sensor heads was used, the RMSE and the mean difference increased substantially to 1.53 vol.% and
1.31 vol.%, respectively. This increase in RMSE suggests that the effect of immersion depth is important
for this particular case study. However, this is likely not generally the case, since the differences
between the two immersion variants varied considerably for different sensor response ranges (see
Figure 3). When the CRIM-4 model was replaced with the Topp model [20], the differences in SWC
predictions resulted in a RMSE of 1.51 vol.% and a mean difference of 1.49 vol.%. Therefore, it can be
concluded that the consideration of the correct immersion variant of the sensor response calibration
and an accurate soil-specific calibration are more important than the use of a sensor-specific SRP model.
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Finally, the SWC predictions based on the factory calibration resulted in even larger differences with
an RMSE of 5.18 vol.% and a mean difference of 5.16 vol.%.
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Table 9. Accuracy of the different calibration variants with respect to the reference calibration
(sensor-specific Sensor Response–Permittivity (SRP) models combined with the complex refractive
index (CRIM-4) model).

Calibration Variant

Menàrguens Mollerussa
Mean RMSE

(vol.%)20 cm 50 cm 15 cm 30 cm

RMSE (vol.%)

Universal SRP with CRIM-4 model 0.17 0.32 0.50 0.02 0.25
Universal SRP (incomplete
immersion) with CRIM-4 model 1.84 2.79 0.79 0.70 1.53

Universal SRP with Topp model 0.30 3.57 1.54 0.65 1.51
Factory calibration 4.09 8.23 4.90 3.51 5.18

Table 10. Mean difference (vol. %) between reference calibration (sensor-specific Sensor
Response–Permittivity (SRP) models combined with the complex refractive index (CRIM-4) model)
and different calibration variants.

Calibration Variant
Menàrguens Mollerussa Absolute

Mean
Difference

(vol.%)

20 cm 50 cm 15 cm 30 cm

Mean Difference (vol. %)

Universal SRP with CRIM-4 model −0.17 −0.32 0.50 −0.01 0.25
Universal SRP (incomplete
immersion) with CRIM-4 model −1.80 −2.73 −0.31 0.39 1.31

Universal SRP with Topp model 0.28 3.57 1.52 0.61 1.49
Factory calibration 4.07 8.21 4.87 3.49 5.16

The results obtained in this study can be used to improve irrigation scheduling. At the Menàrguens
and Mollerussa test sites, the SWC predictions obtained by the two-step calibration approach were
always below the predictions based on the factory calibration. Therefore, the factory calibration would
have resulted in an underestimation of irrigation amounts for both the Menàrguens and Mollerussa
sites. Although two-step calibration requires more time, it was worthwhile in this particular study,
since it increased the accuracy of the SWC measurements and thus allows for a proper application of
irrigation that matches the crop needs.

4. Conclusions

In this paper, we evaluated the sensor response of low-cost 10HS soil water content sensors using a
two-step calibration procedure. First, we calibrated the sensor response of 10HS sensors to permittivity
using a standard procedure based on five reference media with known dielectric permittivity. Here,
the effect of immersion depth on the calibration results was also considered. Second, a site-specific
relationship between permittivity and soil water content with soil samples from different sites and
depths was established. It was found that the results of the calibration in reference media depended
on the immersion depth of the sensor. Therefore, the calibration protocol should be adapted to the
type of application of the 10HS sensor. For example, the sensor head is typically inserted into the
soil in field applications. Therefore, the sensor should be calibrated with a fully immersed sensor
head for this type of application. In addition, we compared the accuracy of the use of a universal
calibration relationship between sensor response and permittivity with the accuracy of a sensor-specific
calibration. Our results showed that the RMSE of the dielectric permittivity estimated decreased from
1.421 to 0.427 when a sensor-specific calibration was considered.

In a next step, undisturbed soil samples and time domain reflectometry (TDR) were used to
establish a site-specific relationship between permittivity and soil water content. Five different model
variants were used that relied on available data on porosity and fitting of the permittivity of the solid
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phase to a different extent. The model that considered both variations in porosity and solid-phase
permittivity between sites and depths resulted in the highest accuracy (RMSE: 1.37 vol.%). However, a
simplified model that considered a universal fitted value for the solid-phase permittivity and spatially
variable porosity provided almost equal accuracy. Based on the two-step calibration, relationships
between sensor response and soil water content were obtained that were compared to the factory
calibration using measurements on sand with known water content. It was found that the relationship
obtained using the two-step calibration approach provided much more accurate SWC predictions than
the factory calibration provided with the 10HS sensor (RMSE: 5.33 vol.% versus 1.03 vol.%).

Finally, we applied the factory calibration and different variants of the two-step calibration
approach to field measurements made with 10HS sensors during a period of irrigation in almond and
apple orchards in Menàrguens and Mollerussa, respectively. The results showed that the time-average
absolute difference was 5.16 vol.% and the RMSE was 5.18 vol.% when the factory calibration was used
instead of the most advanced model obtained with the two-step calibration approach. The use of a
universal instead of a sensor-specific sensor response model only resulted in a small difference and
RMSE, thus indicating that the use of a universal sensor response model would have been possible
in this particular case study. The use of the empirical equation of Topp et al. (1980) instead of a
soil-specific calibration resulted in a moderate increase in the mean difference and RMSE. Since the
factory calibration significantly overestimated SWC, it is recommended to improve the accuracy of
SWC measurements of the 10HS sensors using sensor- and soil-specific calibration in applications
where accuracy is important.
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