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Abstract: Most cultivated upland areas of northeast Thailand are characterized by sandy and infertile
soils, which are difficult to improve agriculturally. Information about the clay (%) and cation exchange
capacity (CEC—cmol(+)/kg) are required. Because it is expensive to analyse these soil properties,
electromagnetic (EM) induction instruments are increasingly being used. This is because the measured
apparent soil electrical conductivity (ECa—mS/m), can often be correlated directly with measured
topsoil (0–0.3 m), subsurface (0.3–0.6 m) and subsoil (0.6–0.9 m) clay and CEC. In this study, we explore
the potential to use this approach and considering a linear regression (LR) between EM38 acquired
ECa in horizontal (ECah) and vertical (ECav) modes of operation and the soil properties at each of these
depths. We compare this approach with a universal LR relationship developed between calculated
true electrical conductivity (σ—mS/m) and laboratory measured clay and CEC at various depths.
We estimate σ by inverting ECah and ECav data, using a quasi-3D inversion algorithm (EM4Soil).
The best LR between ECa and soil properties was between ECah and subsoil clay (R2 = 0.43) and
subsoil CEC (R2 = 0.56). We concluded these LR were unsatisfactory to predict clay or CEC at any
of the three depths, however. In comparison, we found that a universal LR could be established
between σ with clay (R2 = 0.65) and CEC (R2 = 0.68). The LR model validation was tested using a
leave-one-out-cross-validation. The results indicated that the universal LR between σ and clay at
any depth was precise (RMSE = 2.17), unbiased (ME = 0.27) with good concordance (Lin’s = 0.78).
Similarly, satisfactory results were obtained by the LR between σ and CEC (Lin’s = 0.80). We conclude
that in a field where a direct LR relationship between clay or CEC and ECa cannot be established,
can still potentially be mapped by developing a LR between estimates of σwith clay or CEC if they
all vary with depth.

Keywords: Three-dimensional mapping; quasi-3D inversion algorithm; cation exchange capacity;
clay content; sandy infertile soil

1. Introduction

Most cultivated upland areas of northeast Thailand are being used for cash crops (e.g.,
sugarcane) [1]. However, the soil is sandy and infertile, and they are difficult to improve agriculturally
without information about clay and cation exchange capacity (CEC—cmol(+)/kg). In terms of clay,
knowledge is important because it is an indication of the capacity of soil to hold moisture and potential
to store exchangeable cations [2,3]. Knowledge of the CEC is also necessary because it is a measure
of nutrient availability and how well soil pH is buffered against acidification [4] as well as an index
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of the shrink–swell potential of soil [5]. Therefore, information about the spatial distribution of
clay and CEC are required. This is particularly the case in Khon Kaen Province, where poor water
holding capacity leads to deep drainage and in some cases rising water tables and soil salinization.
In addition, clay (Table 1) and CEC (Table 2) data provides a farmer with information from which
fertilizer recommendations can be made.

However, the conventional ways of measuring these soil properties are costly and time-consuming
owing to the soil sampling and laboratory analysis. Nevertheless, much research has shown that
if many soil samples can be collected, clay and CEC can be mapped using classical geostatistical
methods [6,7]. Among the first to map topsoil (0–0.3m) clay and CEC in this way where [8], who
used punctual kriging of soil sample locations at the field scale. More recently, [9] predicted topsoil
(0–0.15 m) and subsurface (0.3–0.5 m) CEC using various types of kriging (i.e., ordinary) across a large
area of North Dakota, USA. Similarly, [10] used additive and modified log-ratio transformation of soil
particle size fraction (psf) using ordinary kriging. They then compared this to the untransformed psf
data using various kriging techniques (i.e., compositional ordinary- and ordinary-kriging) to predict
the topsoil (0–0.1 m) clay, across a very large area in south-eastern Australia. However, a major
disadvantage of such geostatistical approaches is that many samples (>100) are required, which need
to be spatially correlated and variable [11,12] to yield good results.

To add value to the limited soil data, pedotransfer functions can be used to predict one soil
property from another [13,14]. However, to account for short scale variation, easier to acquire ancillary
data, which are directly related to clay or CEC are increasingly being used. One of the most widespread
are electromagnetic (EM) instruments (i.e., EM38 and EM34), because they measure apparent electrical
conductivity (ECa—mS/m). [15] were among the first to identify a linear regression (LR) between
EM34 ECa and average (0–15 m) clay (R2 = 0.73). [16] developed a LR between EM38 ECa and average
(0–1.5 m) clay (R2 = 0.77) to map clay across a cotton field (244 ha). [17] similarly found a good LR
(R2 = 0.76) and mapped clay across different fields. In their comprehensive review, [18] demonstrated
many other LR of variable strength (R2 = 0.01–0.94). In terms of CEC, [19] found a LR between
topsoil (0–0.2 m) CEC and ECa, while [20] found a strong LR (R2 = 0.74) between an EM38 and topsoil
(0–0.3 m) CEC across various fields. [21] showed how a LR between an EM38 and average (0–0.2 m)
CEC (R2 = 0.81) could then be used to map CEC, while [12] established a separate LR to map different
topsoil (0–0.075, 0.075–0.15 and 0.15–0.3 m) CEC across a field in Missouri, USA. Again, [18] provided
another example of LR between ECa and CEC (0.50–0.76 m).

Given the sandy and infertile nature of soil in northeast Thailand, chemical and compost fertiliser
application guidelines [22,23] have been developed. For example, if clay (%) is known and is small
(<15%), the chemical fertiliser rates for nitrogen (N), phosphorus (P2O5) and potassium (K2O) would
be 113, 38 and 113 kg/ha, respectively. Alternatively, a compost fertiliser rate of 25 t/ha is suggested.
This is similarly the case for CEC. In this research our interest is seeing if we can assist farmers
with applying these guidelines by developing digital soil maps (DSM). The first aim is to see if we
can develop a LR relationship between EM38 ECa directly with either topsoil (0–0.3 m), subsurface
(0.3–0.6 m) or subsoil (0.6–0.9 m) clay and CEC. We compare this approach with a universal LR we
develop between the calculated true electrical conductivity (σ—mS/m) and laboratory measured clay
and CEC at various depths, because of recent success in mapping salinity [24] and moisture [25] by
inverting ECa data. While a similar approach was used to map CEC in 3-dimensions by [26], they used
a Veris-3100 instrument. Herein, we validate the universal LR using a leave-one-out-cross-validation,
considering accuracy, bias and Lin’s concordance.

2. Materials and Methods

2.1. Study Area

The study site (Lat 16◦11′40.79” N and Lon 102◦43′54.46” E) is located in the Ban Haet district,
Khon Kaen (Thailand). It is situated a short distance to the west of Ban Haet village and located
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approximately 40 km south of Khon Kaen. The area is approximately 6 ha (150 m × 400 m), with
the dominant soil type being an acid sandy loam to sandy Alfisols, described by Land Development
Department of Thailand (scale of 1:25,000). The current land use is rain-fed sugarcane farming [1].
The topography across the site is flat to relatively flat with a slope of 0–1%.

Table 1. Chemical and compost fertilizer application guidelines based on clay content for sugarcane in
Thailand [22,23].

Clay (%)
Chemical Fertilizer Rates (kg/ha) Compost Fertilizer Rates (t/ha)

N P2O5 K2O

<15 113 38 113 25
15–18 113 38 75 19
18–35 75 19 75 18
>35 72 38 38 18

The climate is tropical savanna [27]. The mean annual precipitation is around 1,100 mm with the
average minimum and maximum temperatures of 18.7 and 35.2 ◦C, respectively [28]. However, the
area has three distinct seasons. The dry-season occurs between mid-February to mid-May with the
hottest temperatures in April (43.9 ◦C) with some rainfall (224.4 mm). Conversely, the rainy season
is between May to October with average temperatures typified by July (24.4 ◦C) which also has the
most rainfall (1104 mm). The winter season is between mid-October to mid-February, with maximum
temperatures in December (24.2 ◦C) with limited rainfall (76.3 mm) [28].

Table 2. Liming application guidelines for sugarcane in Thailand when pH less than 5.0 [29].

CEC (cmol(+)/kg) Lime Application (t/ha)

<4 1.25
4–8 2.5

8–16 4
>16 5

2.2. Data Collection and Interpolation

The instrument used to collect ECa data was an EM38 [30]. The instrument consists of a transmitter
and receiver coil located at either end and spaced 1.0 m apart. The depth of exploration depends on
coil configuration. In the horizontal mode, the EM38 measures ECah and within a theoretical depth of
0–0.75 m. In the vertical mode, the EM38 measures ECav and within a theoretical depth of 0–1.5 m.

In terms of collecting EM38 ECa data in these two modes, 17 parallel transects were defined
and spaced approximately 10 m apart in essentially an east–west orientation. Figure 1b shows the
spatial distribution of these transects, which were of unequal length. The survey was conducted
on 17 January 2018. In all, 467 measurement sites were visited to measure the EM38 ECah and ECav.
All ECa measurements were georeferenced using a Garmin Etrex Legend G [31] submeter GPS.

2.3. Soil Sampling and Laboratory Analysis

To determine if a direct linear relationship LR between ECa or σ could be developed with topsoil
(0–0.3 m), subsurface (0.3–0.6 m) and subsoil (0.6–0.9 m) clay or CEC, 46 soil sampling locations were
selected. The sampling points were selected according to two criteria, as suggested by [21]. Firstly,
locations with small, intermediate and large ECa were selected; and secondly, samples were spaced
evenly across the field. The samples were collected on the 25 January 2018. Figure 1c shows the
location of the 46 sampling locations.

The soil samples were air-dried, ground and passed through a 2-mm sieve. Laboratory analysis
involved determination of soil particle size fractions (e.g., clay—%) based on Hydrometer method [32].
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The cation exchange capacity (CEC—cmol(+)/kg) was also determined based on ammonium saturation
method. Regarding this, soil samples were saturated by NH4OAc pH 7.0 and rinsed with NH4

+ using
NaCl (Na+). Distillation apparatus and titrate method was used to determine CEC [33].Sensors 2019, 19, x FOR PEER REVIEW 4 of 19 

 

 

Figure 1. (a) Air-photo of study site; (b) EM38 survey transects (i.e., 17) and, (c) calibration locations 

(46) where topsoil (0–0.3 m), subsurface (0.3–0.6 m) and subsoil (0.6–0.9 m) samples. 

2.4. Quasi-3D Inversion of EM38  

The EM4Soil (v304) inversion software package [34] was used to invert EM38 ECah and ECav to 

calculate true electrical conductivity (—mS/m) and develop electromagnetic conductivity images 

(EMCI). The quasi-3D inversion algorithm was used in this study. In brief, quasi-3D is a 1-

dimensional spatial constrained technique and a forward modelling approach. It assumes that below 

each ECa measurement location, an estimate of the 1-dimensional variation of  is constrained 

because the EM4Soil software considers neighboring locations where the EM38 ECa was measured 

[35].  

Figure 1. (a) Air-photo of study site; (b) EM38 survey transects (i.e., 17) and, (c) calibration locations
(46) where topsoil (0–0.3 m), subsurface (0.3–0.6 m) and subsoil (0.6–0.9 m) samples.

2.4. Quasi-3D Inversion of EM38

The EM4Soil (v304) inversion software package [34] was used to invert EM38 ECah and ECav to
calculate true electrical conductivity (σ—mS/m) and develop electromagnetic conductivity images
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(EMCI). The quasi-3D inversion algorithm was used in this study. In brief, quasi-3D is a 1-dimensional
spatial constrained technique and a forward modelling approach. It assumes that below each ECa

measurement location, an estimate of the 1-dimensional variation of σ is constrained because the
EM4Soil software considers neighboring locations where the EM38 ECa was measured [35].

The raw ECa data was first gridded using a nearest neighbor technique onto a grid spacing of
10 × 10 m using the gridding tool available in EM4Soil. The initial model of σwas set equal to 10 mS/m
with the maximum number of iterations equal to 10. A homogeneous five-layer initial model was also
considered with depths to the top of each layer being 0, 0.3, 0.6, 0.9 and 1.05 m. The same depths
would be used by the EM4Soil software to estimate true σ at these depths and for 3D prediction.

To identify the best possible LR between σ and measured clay and/or CEC, there are a number of
other parameters which need to be considered, including selection of a forward model (S1, S2), inversion
algorithm (cumulative function (CF) and full solution (FS)), and damping factor (λ). With respect to
the inversion algorithm there are two variations (S1 and S2) of Occam’s regularization [36]. The S2
algorithm constrains the model response (of σ) to be around a reference model. It produces therefore
smoother results than that of S1.

Theoretically, the CF model is based on the ECa cumulative response and is used to convert depth
profile conductivity to σ [37] considering the condition of low induction numbers. The FS model
is based on the Maxwell equations [38] and is not limited to the small induction number condition.
Therefore, the FS can improve models calculated from ECa data acquired over highly conductive soils
(i.e., >100 mS/m). The damping factor (λ) was progressively increased with smaller increments initially
and in large increments thereafter. The λ values used in this study were 0.07, 0.3, 0.6 and 0.9 to balance
between rough and smooth EMCIs.

2.5. Validation and Comparison with LR

We use a simple linear regression (LR) model which is in the form of:

Y = a + bX + ε (1)

where Y is vector of the target property (i.e., clay and CEC) and X is a vector of a predictor while ε is
the model’s residual.

Figure 2 shows the flow chart of the two different approaches we undertook. First, we looked
to see if six independent MLR models that can be developed between the ECa (i.e., ECah and ECav)
data and clay and CEC in either the topsoil (0–0.3 m), subsurface (0.3–0.6 m) and subsoil (0.6–0.9 m).
Secondly, we look to see if a satisfactory LR model can be developed between true electrical conductivity
(σ—mS/m) as inverted from EM38 ECah and ECav, and clay (%) and CEC (cmol(+)/kg) at all depths
using a universal LR, which is applicable at any depth.

To determine the robustness of the calibration and the prediction of either clay and CEC, we tested
the final DSM using a leave-one-out-cross-validation procedure. This was carried out 46 times and
involved the removal of each of the 46 soil sample locations one at a time and from all three increment
depths, including topsoil, subsurface and the subsoil.

The accuracy assessment of prediction was examined using root mean square error (RMSE),
whereby the closer the RMSE to zero the more accurate the prediction. The prediction bias was
estimated by calculating mean error (ME). Again, the closer to zero then the less biased the prediction.
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Figure 2. Flow chart of two different approaches to establish a linear regression (LR), between
(i) EM38 ECa (mS/m) in horizontal (ECah) or vertical (ECav) and three different depths of clay (%)
or CEC (cmol(+)/kg) data (i.e., topsoil (0–0.3 m), subsurface (0.3–0.6 m) and subsoil (0.6–0.9m), and
(ii) true electrical conductivity (σ—mS/m) inverted from EM38 ECah and ECav with clay (%) or CEC
(cmol(+)/kg) using universal LR at any depth.

The Lin’s concordance correlation coefficient (ρc) was also calculated to assess how close the LR
model is to the 1:1 relationship overall. This is because Lin’s concordance correlation coefficient [39]
measures degree of agreement between two variables. The Lin’s concordance correlation coefficient is
determined from a sample as follows:

ρc =
2SXY

S2
X + S2

Y +
(
X−Y

)2 (2)

where X and Y are means for the two variables (which in our case are the measured and predicted clay
or CEC in the topsoil, subsurface or subsoil and S2

X and S2
Y are the corresponding variances and

SXY =
1
n

n∑
i−1

(
Xi −X

)(
Yi −Y

)
(3)

2.6. Prediction Interval (PI)

To evaluate the uncertainty, the 95% prediction interval (PI) was used to compute the data between
the measured and predicted clay and CEC across the study field and in the topsoil, subsurface and
subsoil. The PI represents the frequency of possible confidence intervals that contain the true value of
the prediction. A broad PI suggests a larger confidence in prediction [40].

3. Results and Discussion

3.1. Preliminary ECah and ECav Data Analysis

Table 3 shows the summary statistics of the 467 ECa measured sites during the EM38 survey.
The mean ECah (0–0.75 m) was 23.1 mS/m with a minimum of 14 mS/m and maximum of 35 mS/m.
The median (23) was close to the mean, with the ECah slightly positively skewed (0.2) with a coefficient
of variation (CV) of 19.4%. In comparison, the ECav (0–1.5 m) had a larger mean (28.8 mS/m) with
a minimum of 18 mS/m and maximum of 45 mS/m. The median ECav was again slightly larger
(29.0 mS/m) than the mean with the skewness positive again (0.3) and CV slightly smaller (20.5%).
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Table 3. Summary statistics of apparent electrical conductivity (ECa mS/m) measured by an EM38
instrument for the entire survey area and at the 46 calibration points.

ECa (mS/m)

Data Source n Min Mean Median Max Skewness CV (%)

Survey data
ECah 467 14 23.1 23 35 0.2 19.4
ECav 467 18 28.8 29 45 0.3 20.5
Calibration
data
ECah 46 15 22.3 22 33 0.4 19.5
ECav 46 19 27.5 27.5 42 0.67 19.5

Similarly, the simple statistics of the ECa data at the 46 calibration locations were relatively close
to the surveyed data. The mean ECah was 22.3 mS/m with a minimum of 15 mS/m and maximum of
33 mS/m. The median was close to the mean (22), with the ECah slightly positively skewed (0.4) and
with a coefficient of variation (CV) of 19.5%. In comparison, the ECav had a larger mean (27.5 mS/m)
with a minimum of 19 mS/m and maximum of 42 mS/m. The median ECav was the same value
(27.5 mS/m) to mean with the skewness positive again (0.67) and CV slightly smaller (19.5%).

Figure 3a shows the interpolated digital elevation model (DEM). The highest elevation was in
the east end of study field (169 m). The elevation gradually decreased toward the south end of the
study field where it was lowest (161 m). Figure 3b shows the interpolated contour plot of measured
ECah. The study field was characterized by intermediate-small (15–25 mS/m) ECah in the northern half.
Whereas, intermediate-small to intermediate ECah (25–35 mS/m) defines the southern.
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Figure 3c shows the contour plot of measured ECav. Again, the study field was characterized by
intermediate-small ECav in the northern half which started from the east through the north west corner
and intermediate-large ECav (35–45 mS/m) in the west. From Figure 3b,c and Table 3, we surmise that
the subsurface and subsoil were likely to be more conductive than the topsoil.

3.2. Preliminary Clay and CEC Data Analysis

Table 4 shows the summary statistics of measured clay (%) at the 46 sample locations. The mean
topsoil (0–0.3 m) clay was 11.9% with a minimum of 9.4% and maximum of 16.8%. The median
was similar (12%) and the skewness and CV were 0.80 and 12.2, respectively. In the subsurface
(0.3–0.6 m), the mean, minimum and maximum were all slightly larger (15.6%, 10.6% and 20.6%,
respectively). The median was again similar (15.3%) to the mean, with the clay being positively skewed
(0.1). In comparison, the subsoil (0.6–0.9 m) mean of 19.1%, minimum (14.1%) and a maximum (23.4%)
was larger again. The median was 19% with a positive skewness (0.1).

Table 4 also shows the summary statistics of measured CEC (cmol(+)/kg) at the sample locations.
The mean CEC in the topsoil was 3.3 cmol(+)/kg with a minimum of 2.3 cmol(+)/kg and maximum of
5 cmol(+)/kg. The median was slightly smaller (3.2 cmol(+)/kg) than mean and the skewness and CV
were 1.3 and 14.8, respectively. The subsurface mean CEC was larger (4.1 cmol(+)/kg) than the topsoil,
with the minimum (2.5 cmol(+)/kg) and maximum (6.3 cmol(+)/kg) also larger. Again, the median
was 4 cmol(+)/kg with the skewness and CV were being 0.6 and 18.5. As with the subsoil clay, subsoil
CEC had a larger mean (4.9 cmol(+)/kg) minimum (3.5 cmol(+)/kg) and maximum (6.7 cmol(+)/kg).
The median was smaller (4.7 cmol(+)/kg) than mean with a skewness and CV of 0.7 and 15.1 respectively.

Table 4. Summary statistics of measured clay (%) and CEC (cmol(+)/kg) at the 46 calibration locations.

Property/Depth n Min Mean Median Max Skewness CV (%)

clay (%)
topsoil (0–0.3 m) 46 9.4 11.9 12 16.8 0.8 12.2
subsurface (0.3–0.6 m) 46 10.6 15.6 15.3 20.6 0.1 17
subsoil (0.6–0.9 m) 46 14.1 19.1 19 23.4 0.1 11.2
CEC (cmol(+)/kg)
topsoil (0–0.3 m) 46 2.3 3.3 3.2 5 1.3 14.8
subsurface (0.3–0.6 m) 46 2.5 4.1 4 6.3 0.6 18.5
subsoil (0.6–0.9 m) 46 3.5 4.9 4.7 6.7 0.7 15.1

3.3. Spatial Distribution of Clay and CEC Data

Figure 4 shows the contour plot of measured clay (%) and CEC (cmol(+)/kg). Figure 4a shows
measured clay in the topsoil (0–0.3 m), which was characterised by small clay (< 15%) across the field.
Figure 4b shows measured clay in the subsurface (0.3–0.6 m), which was characterised by a slightly
larger clay varying between intermediate-small (15–18%) in the middle of the field and intermediate
(18–21%) clay along the southern margin and in the west.

Figure 4c shows measured clay of the subsoil (0.6–0.9 m). It was characterised in the northern
half predominantly by intermediate-small clay. In the west and along the southern margin, clay was
intermediate to intermediate-large (21–24%). Clearly, clay increases with depth on average.

Figure 4d shows measured CEC (cmol(+)/kg) from the topsoil. Most of the field was characterised
by small (<3.8 cmol(+)/kg) to intermediate-small CEC (3.8–4.5 cmol(+)/kg), except the small area in the
west where it was intermediate-large (5.3–6 cmol(+)/kg).

Figure 4e shows measured CEC in the subsurface, which was generally larger and in accord
with the areas where clay was also large. Figure 4f shows measured CEC in the subsoil. As with
the clay, as shown in Table 5, the CEC increased with depth on average. For the most part, larger
clay and CEC were in accord with the increasing ECah and ECav from north to south as shown in
Figure 3b,c, respectively.
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Figure 4. Contour plots of measured (a) topsoil (0–0.3 m), (b) subsurface (0.3–0.6 m) and (c) subsoil
(0.6–0.9 m) clay (%) and (d) topsoil, (e) subsurface and (f) subsoil cation exchange capacity
(CEC—cmol(+)/kg).

3.4. Linear Regression of Clay and CEC of Individual Depth Increment and ECa

Figure 5 shows the LR between measured clay and CEC versus ECa. Figure 5a shows ECah and
topsoil (0–0.3 m) clay was small (R2 = 0.21). Slightly better correlations were achieved between ECah

and subsurface (0.3–0.6 m) and subsoil (0.6–0.9 m) clay (R2 = 0.33 and 0.43, respectively). Figure 5b
shows ECav and topsoil clay was also small (0.19), with similarly poor correlations achieved between
ECav and subsurface (R2 = 0.3) and subsoil (R2 = 0.42). Figure 5c shows that equivalent results
were achieved between ECah and CEC, however the correlations were larger in the topsoil (0.50),
subsurface (R2 = 0.47) and subsoil clay (R2 = 0.56) as compared to clay. Figure 5d shows again the
same trend of correlation, with the linear regression between ECav and measured CEC equivalent to
topsoil (R2 = 0.51), subsurface (R2 = 0.47) and subsoil (R2 = 0.56) CEC. We conclude that there was no
satisfactory correlation between the measured soil properties and ECah and ECav and with increasing
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depths and therefore no valid LR calibrations to predict these soil properties across our study field. We
attribute this to the small CV and subtle differences in clay and CEC across the field.
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Figure 5. Plots of linear regression (LR) between apparent electrical conductivity (ECa—mS/m)
measured in (a) horizontal (ECah; 0–0.75 m) and (b) vertical (ECav; 0–1.5 m) modes of EM38 and
measured clay (%) in the topsoil (0–0.3 m), subsurface (0.3–0.6 m) and subsoil (0.6–0.9) and plots of
LR between (c) ECah and (d) ECav and measured cation exchange capacity (CEC—cmol(+)/kg) in the
topsoil, subsurface and subsoil.

3.5. Linear Regression of Clay for All Depth Increment and σ

To determine if a better coefficient of determination (R2) could be obtained between clay and
σ, we inverted the EM38 ECah and ECav using EM4Soil. Table 5 shows the R2 between estimated σ
(mS/m) obtained from EM4Soil (quasi-3D) and measured clay at all depths (i.e., topsoil, subsurface and
subsoil). Table 5 shows that with increase in the damping factor (i.e., λ), the correlation between σ and
clay decreases, regardless of algorithm (S1 or S2) or forward model (CF or FS). The best coefficient of
determination (R2 = 0.65) was when S1 algorithm and FS forward model were used with a λ value
of 0.07. The σ values calculated using these parameters were selected to establish a linear regression
(LR) between σ and clay. This R2 was a little smaller to that achieved by [38] who developed a LR
(R2 = 0.74) between σ and clay along a single transect in a large irrigated area. We attribute this to the
fact that we predicted σ using a quasi-3D inversion, compared to the quasi-2D used along the transect.
The effect was greater smoothing herein, as a larger number of neighbours were used to estimate σ.
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Table 5. Coefficient of determination (R2) achieved between the measured clay and CEC with the
estimated true electrical conductivity (σ) generated by inverting EM38 apparent electrical conductivity
(ECa—mS/m) using the EM4Soil quasi-3D model, cumulative function (CF) or full solution (FS),
algorithms S1 or S2, and various damping factors (λ).

Clay λ S1, CF S1, FS S2, CF S2, FS

0.07 0.631 0.648 0.596 0.616
0.3 0.625 0.643 0.537 0.559
0.6 0.622 0.643 0.465 0.487
0.9 0.619 0.637 0.409 0.430

CEC

0.07 0.666 0.674 0.656 0.666
0.3 0.666 0.674 0.641 0.655
0.6 0.667 0.672 0.599 0.617
0.9 0.668 0.676 0.559 0.577

Figure 6a shows the LR between σ (S1, FS, and λ = 0.07) and measured clay (%). The LR was
made using the bivariate fit tool [41] and include fitted lines, associated fitted confidence intervals
(confidence limits for the mean value) and individual confidence intervals (confidence limits for
individual predicted values). The LR developed was of the form: clay = 6.04 + 0.50σ.

Table 6 shows the summary statistics, which indicates the LR was statistically significant (<0.0001*).
We note that in Figure 6a topsoil (0–0.3 m) σwas smallest (8–22 mS/m), however, subsurface (0.3–0.6 m)
σwas intermediate (11–25 mS/m) with subsoil (0.6–0.9 m) σ largest (17–37 mS/m). The increasing σ
was a function of ECav being larger than ECah, as shown in Figure 3b,c, respectively. The reason for the
increasing σwas due to increasing clay with depth.

Table 6. Summary statistics of the linear regression (LR) model established between the calculated true
electrical conductivity (σ) and measured clay (%) and CEC (cmol(+)/kg). The σwas estimated using
the full solution (FS), S1 algorithm and a damping factor (λ) of 0.07 and 0.9 respectively.

Clay Parameter Estimate SE t-ratio Prob > |t| R2

Intercept 6.04 0.63 9.62 <0.0001* 0.65
0.07, S1, FS 0.50 0.03 15.84 <0.0001*

CEC

Intercept 1.46 0.16 9.09 <0.0001* 0.68
0.9, S1, FS 0.13 0.01 16.85 <0.0001*

Figure 6b shows the leave-one-out cross-validation applied for clay by removing each of the
46 sampling locations one at a time. Specifically, the topsoil, subsurface and subsoil samples of one
of the sample locations. It was apparent that predicted agreed with measured clay. The prediction
precision was good as indicated by a small RMSE (1.78%). The bias of prediction was also good since
the ME was close to zero (0.25%). The large Lin's concordance (0.78) between measured and predicted
clay signifies good agreement, with the coefficient of determination strong (R2 = 0.64).

3.6. Linear Regression of CEC for All Depth Increments and σ

Using the same approach, we used for clay, we wanted to determine if a satisfactory LR could be
established between CEC and σ estimated from the inversion of ECah and ECav EM38 data and using
EM4Soil. Table 5 also shows the coefficient of determination (R2) between estimated σ (mS/m) and
CEC at all depths (i.e., topsoil, subsurface and subsoil). As was the case for clay, when λ increased the
coefficient between σ and CEC decreased, regardless of algorithm (S1 or S2) or forward model (CF or
FS). However, this was the not the case for S1, where the best R2 (0.68) overall was achieved when
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the FS forward model was used with a λ value of 0.9. While this coefficient was equivalent to that
achieved for clay, [39] managed to develop a LR (R2 = 0.89) between σ and CEC in a small field in
Spain. We attribute their success to the fact the ECa data, while collected on 12 m transect spacings,
was collected continuously (Veris-3100) and gridded onto a 5 × 5 m grid. In addition, the range in CEC
(i.e. range) was much larger in Spain (1–23 cmol(+)/kg) than in this field (2.3–6.7 cmol(+)/kg).
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Figure 6. Plots of measured (a) clay (%) and (c) cation exchange capacity (CEC—cmol(+)/kg) versus
true conductivity (σ—mS/m) using λ of 0.07 and 0.9 and S1 inversion algorithm with full solution,
respectively; and, plots of measured versus predicted (b) clay and (d) CEC using leave-one-out
cross-validation, for topsoil (0–0.3 m), subsurface (0.3–0.6 m) and subsoil (0.6–0.9 m).

Figure 6c shows the LR between σ and measured CEC (cmol(+)/kg) using these parameters,
including the fitted lines, confidence curves and individual confidence curves. The LR was
CEC = 1.46 + 0.13σ, with the summary statistics (Table 6) indicating it was significant (<0.0001*).
We note that topsoil (0–0.3 m) σ was small (1.80–4.25 mS/m), with subsurface (0.3–0.6 m) intermediate
σ (2.2–5.0 mS/m) and subsoil (0.6–0.9 m) σ largest (3.8–7.5 mS/m). Again, increasing σwas a function of
the ECav (Figure 3c) being larger than ECah (Figure 3b). As would therefore be expected, the estimates
of subsoil σwere larger than topsoil σ.

Figure 6d shows the leave-one-out cross-validation applied by removing each of the 46 sampling
locations one at a time. Again, the topsoil, subsurface and subsoil samples of one of the sample locations
was removed and this process was repeated once for each sample location. Predicted CEC was in good
concordance (Lin’s = 0.80) with measured CEC, with prediction precision (RMSE = 0.53 cmol(+)/kg)
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and bias (ME = 0.07 cmol(+)/kg), being small and close to zero, respectively. The coefficient of
determination was also strong (R2 = 0.66).

3.7. Digital Soil Maps of Clay and CEC

Figure 7 shows predicted clay and CEC across the study area as 3D models. Figure 7a was
generated after applying the LR (clay = 6.04 + 0.50σ) developed between σ and clay shown in
Figure 6a. The predictions were then made using the quasi-3D model generated estimates of σ
estimated from passing the gridded ECa data collected from the EM38 ECa across the rest of the area
and through EM4Soil and the quasi-3D algorithm. Figure 7b was generated after applying the LR
(CEC = 1.46 + 0.13σ) developed between σ and CEC shown in Figure 6b, with predictions applied to
the quasi-3D modelled EM38 ECa data as described above for clay.
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Figure 7. Predicted (a) clay (%) and (b) CEC (cmol(+)/kg) generated from inversion of EM38 apparent
electrical conductivity (ECa—mS/m) using EM4Soil and S1 inversion algorithm, full-solution (FS) with
damping factor (λ) = 0.07 (clay) and 0.9 (CEC). Note: Calculated true electrical conductivity (σ—mS/m)
used to predict clay and CEC from linear regression in Figure 6a,b, respectively.

Figure 8 shows the Digital Soil Mapping (DSM) of predicted clay and CEC at the three sampled
depths generated from the LR developed between σ (mS/m) and clay and or CEC. Figure 8a shows
predicted topsoil (0–0.3 m) clay. The DSM was like the contour plot generated from the 46 sampling
points (Figure 4a) alone. Figure 8b shows the DSM for the subsurface (0.3–0.6 m). The northern half
was characterised by small (<15%) clay, while the southern half by intermediate-small (15–18%) clay.
These predictions appear less consistent with measured subsurface clay (Figure 4b). Figure 8c shows
predicted clay for the subsoil (0.6–0.9 m).



Sensors 2019, 19, 3936 14 of 19

Figure 8d shows the DSM of predicted topsoil (0–0.3 m) CEC. The predicted CEC was consistent
with measured CEC, which was small (<3.8 cmol(+)/kg) across most of the field. However, the
same could not be said about the small parcel of land along the western margin. Here, there was a
band of measured CEC, which was intermediate-small (3.8–4.5 cmol(+)/kg) and intermediate (4.5–5.3
cmol(+)/kg). Predicted CEC was small, however, as was predicted across the entire field.

There were similar inconsistencies in the subsurface (0.3–0.6 m) predicted CEC as shown in
Figure 8e. Here the field was divided into the northern half, which was characterised by predicted
CEC which was small, whereas in the southern half it was intermediate-small, with small pockets of
intermediate CEC. This was not the case for measured CEC (Figure 4e). These results were consistent
with the difference between measured and predicted CEC. Similar results were evident for subsoil
(0.6–0.9 m) CEC (Figure 8f) and measured CEC (Figure 4f).
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Figure 8. Spatial distribution of predicted clay (%) at depths of (a) topsoil (0–0.3 m), (b) subsurface
(0.3–0.6 m) and (c) subsoil (0.6–0.9 m) generated using linear regression (LR) model (Figure 5a), and
cation exchange capacity (CEC—cmol(+)/kg) in (d) topsoil, (e) subsurface and (f) subsoil.
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3.8. Mapping the Prediction Interval (PI) of Predicted Clay and CEC

To better understand the uncertainty in the predicted DSM of clay and CEC, we mapped the
prediction interval (PI). Figure 9a shows the PI for predicted topsoil (0–0.3 m) clay. It indicates that in
the southern half, the PI was small (1.0%), whereas the northern half was intermediate-small (1.0–1.5%).
Figure 9b shows PI calculated for the subsurface (0.3–0.6 m) clay. Here, PI was generally small across
the whole field. Of most interest was the wider PI (>1.5%) in the subsoil (0.6–0.9 m) clay shown in
Figure 9c. This was particularly the case for the southern half of the field and in the west.
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Figure 9. Contour plots of the prediction interval (PI) of the predictions made for clay (%) at different
depths including (a) topsoil (0–0.3 m), (b) subsurface (0.3–0.6 m) and (c) subsoil (0.6–0.9 m); and cation
exchange capacity (CEC—cmol(+)/kg) in the (d) topsoil, (e) subsurface and (f) subsoil.

Figure 9d shows the PI for predicted topsoil (0–0.3 m) CEC. It showed equivalent patterns to clay.
However, there were more classes of PI, with more uncertainty evident in the southern half, where
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PI was small and intermediate-small (0.2–0.3 cmol(+)/kg). Figure 9e shows the PI calculated for the
subsurface (0.3–0.6 m) CEC. Here the PI was generally small (<0.2 cmol(+)/kg) in the southern half. Of
most interest was the much wider PI (>0.5 cmol(+)/kg) values for subsoil (0.6–0.9 m) CEC shown in
Figure 9f. This was particularly the case for the southern half and in the western margin.

We attribute these PI differences to various factors. Generally, the larger PI were associated with
predicted clay and CEC in the subsoil, with the next largest PI associated with the topsoil. With respect
to the topsoil, we attribute the larger PI for being a function of ECah and ECav having a much larger
theoretical depth of measurement of 0–0.75 and 0–1.5 m, respectively, compared with estimating σ to a
depth of 0–0.3 m. Our ability to resolve topsoil σ, and hence predict clay or CEC, was therefore poor.
To improve the estimation of σ and perhaps reduce the PI, we could collect ECa at various heights.
This was the approach of [42], who showed that in combination with EM31 ECah and ECav, EM38 ECah

and ECav at a height of 0.6 m was optimal to make a LR between σ and CEC to predict CEC at 0.3 m
increments and to a depth of 2.0 m along a single transect.

Herein, short scale variation was also problematic, owing to the fact that we collected EM38
ECa data on an approximate 10 × 10 m grid. To better account for some of the short scale variation,
and reduce the PI, the approach of [26] would be appropriate. This is because they collected ECa

from a DUALEM-21 instrument which was mobilized and coupled with a GPS and data logging
capabilities. This will allow more detailed and closely spaced ECa data to be collected. We believe a
similar approach here, instead of the grid (10 × 10 m) we used, will reduce smoothing and improve
prediction accuracy.

3.9. Soil Improvement Guidelines Based on Clay and CEC Maps

In spite of the uncertainty, the topsoil (0–0.3 m) and subsurface (0.3–0.6 m) clay DSM
(Figure 8a and b, respectively) are valuable in terms of practical soil improvement. In the areas
where clay was small (<15%), that is in the topsoil and the subsurface in northern half of the area,
chemical and compost fertiliser application rates can be suggested according to the guidelines given
by [22] and [23], respectively. Specifically, as shown in Table 1, for the areas with small (<15%) clay,
chemical fertiliser rate for nitrogen (N), phosphorus (P2O5) and potassium (K2O) can be recommended
at 113 (kg/ha), 38 (kg/ha) and 113 (kg/ha), respectively. Alternatively, compost fertiliser at the rate of 25
t/Ha can be suggested. In the southern half of the study area, the rate could be reduced, owing to the
slightly larger subsurface clay (15–18%) and specifically for chemical fertiliser for N (113 kg/ha), P2O5

(38 kg/ha) and K2O (75 kg/ha), while a compost fertiliser (19 t/ha) could also be considered.
With respect to the topsoil CEC map (Figure 8d) the small (<3.8 cmol(+)/kg) CEC are equally

informative. Overall, the small (<10 cmol(+)/kg) CEC indicates very poor soil fertility and practically no
shrink–swell potential [19]. In situations like this, the subsoil is sometimes more resilient than the topsoil
and consideration can be given to invert the profile using a moldboard plough. However, here this
was not the case, because even though the subsoil (0.6–0.9 m) CEC was larger (i.e., intermediate-small;
<4.5 cmol(+)/kg) it was still below this threshold.

On the other hand, the topsoil map does provide information which could be useful in assisting
with the rate of lime application for the purpose of fertilisation. Specifically, and given this part of
Northeast Thailand is a sugarcane growing area, the lime application guidelines indicated in Table 2
could be used. This is despite the fact that the guidelines were developed for application in similarly
sandy soil and in tropical climates of North Queensland [29]. Given these guidelines and based on the
small (<3.8 cmol(+)/kg) topsoil CEC, a rate of 1.25 t/h of lime should be applied across the entire area.

4. Conclusions and Discussion

We were unable to develop any satisfactory linear regression (LR) between ECah and ECav with
measured topsoil (0–0.3 m), subsurface (0.3–0.6 m) and subsoil (0.6–0.9 m) clay (%) or CEC (cmol(+)/kg).
We attribute this to the small variation in ECa as well as clay and CEC across the study field and at these
three depths. However, the estimates of true electrical conductivity (σ—mS/m) generated by inverting
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ECah and ECav and using a quasi-3D algorithm (EM4Soil), enabled the development of a universal LR
calibration for both clay and CEC and which included the capability to predict both soil properties in
the topsoil, subsurface and subsoil. For clay we found the S1 inversion algorithm with full-solution
(FS) and using a damping factor (λ) = 0.07 was optimal (R2 = 0.65) with the LR expressed as follows:
clay (%) = 6.04 + 0.50σ. For CEC the S1 inversion algorithm, full-solution (FS) and a damping factor
(λ) = 0.9 was optimal (R2 = 0.68) and could be estimated as follows: CEC (cmol(+)/kg) = 1.46 + 0.13σ.

We were able to predict and subsequently map the spatial distribution of clay and CEC in the
topsoil, subsurface, and subsoil. Subsequently, the uncertainty of these maps was assessed using the
prediction interval (PI). We attribute the larger PI in the topsoil to be a function of ECah and ECav

having a theoretical depth of measurement of 0–0.75 and 0–1.5 m, respectively. Given that we were
estimating σ to a depth of a topsoil, our ability to do this was not completely satisfactory. This was
similarly the case for the larger PI associated with the subsoil depth.

The solution to these problems would be to collect additional ECa data to better estimate σ. Using
our existing EM38, we could collect additional ECa at various heights or by collecting additional data
with an EM31. This was the approach carried out by [43], who showed that in combination with ECah

or ECav of EM31, and ECah or ECav of EM38 at a height of 0.6 m was optimal to make a LR with CEC
at 0.3 m increments and to a depth of 2.0 m along a single transect. Alternatively, ECa data could be
collected using a multiple-coil EM instrument such as a DUALEM-421 as shown by [44–46].
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