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Abstract: Sewers represent a very important infrastructure of cities whose state should be monitored
periodically. However, the length of such infrastructure prevents sensor networks from being
applicable. In this paper, we present a mobile platform (SIAR) designed to inspect the sewer network.
It is capable of sensing gas concentrations and detecting failures in the network such as cracks and
holes in the floor and walls or zones were the water is not flowing. These alarms should be precisely
geo-localized to allow the operators performing the required correcting measures. To this end, this
paper presents a robust localization system for global pose estimation on sewers. It makes use of prior
information of the sewer network, including its topology, the different cross sections traversed and
the position of some elements such as manholes. The system is based on a Monte Carlo Localization
system that fuses wheel and RGB-D odometry for the prediction stage. The update step takes into
account the sewer network topology for discarding wrong hypotheses. Additionally, the localization
is further refined with novel updating steps proposed in this paper which are activated whenever
a discrete element in the sewer network is detected or the relative orientation of the robot over the
sewer gallery could be estimated. Each part of the system has been validated with real data obtained
from the sewers of Barcelona. The whole system is able to obtain median localization errors in the
order of one meter in all cases. Finally, the paper also includes comparisons with state-of-the-art
Simultaneous Localization and Mapping (SLAM) systems that demonstrate the convenience of the
approach.

Keywords: localization; sewer network; field robotics; Monte Carlo Localization; GPS-denied;
underground robotics; global pose estimation

1. Introduction

Many modern cities would not be as we know them without their sewer networks, which are vital
for ensuring a healthy environment. However, the state of this infrastructure has to be continuously
assessed in many different ways to ensure that it works properly, and to determine whether there are
health risks in it or not. This is a harsh task in which robotics and automation could provide many
benefits. For instance, consider the sewer network of the city of Barcelona in Spain, in which the
experiments of this paper are carried out. The network has a total length of approximately 1532 km, in
which more than 50% should be directly visited by operators. For them, sewers are unhealthy places
that also present risky elements such as slippery floors, obstacles or biological hazard from the potential
contact with waste water. Therefore, it would be very convenient to deploy a mobile sensing unit
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into the sewer network that can raise alarms if damages, blockages and other environmental hazards
are discovered, as is proposed in the Echord++ PDTI for Urban Robotics Challenge [1]. According to
operators of sewer inspection, these alarms need to be localized in global geographical coordinates,
and with an accuracy of tens of centimeters. This is necessary in order to make the operators able to
identify the places in which maintenance work should be carried out.

In this paper, we consider a mobile robot for this task. Note that a mobile robot unit is preferable
to a sensor network because the length of the sewer network makes the latter unpractical. Developing
an autonomous sewer inspection robot presents a wide variety of challenges: the environment is very
aggressive with a high level of humidity and toxic gases; the robot should move in very narrow spaces
with almost no place for maneuvering; communications are very restricted due to lack of direct line of
sight; and there is no coverage of global localization systems, like GPS, to allow the robot to know its
position. In addition, the robot needs to carry a wide range of sensors not only for self-localization
and navigation, but also to perform the inspections tasks: cameras for visual imaging with artificial
illumination, or 3D scanning sensors for metric environment reconstruction to facilitate impairment
detection or devices for air/waste sampling. These sensors increase the weight of the system and also
drain the power of the robot with the corresponding impact in battery life and autonomy, which is
specially noticeable when using aerial robots. The system considered in the paper is a mobile ground
robot (see Figure 1) equipped with several RGB-D cameras that make the robot able to identify and
localize defects within the sewer network.

Figure 1. These pictures show the SIAR platform used in real experimentation. It is a six-wheeled
ground robot. Left: being introduced through a manhole. Center and right: the typical environment
considered.

The paper focuses on the problem of robot global localization in sewers; that is, the problem of
localizing in geographical coordinates a robot navigating through the sewer network. This problem
is specially complex not only due to the lack of coverage of any Global Navigation Satellite System
(GNSS) signals, but also due to the inherent symmetry of such places, which prevents constraining
the position of the robot along the tunnel axis, the frequent slippage of wheels which render wheel
odometry very uncertain, and the lack of features in certain cases, which also makes difficult to apply
LIDAR and/or visual-based odometry.

The paper presents a novel system for global position tracking of a ground mobile robot in a
sewer network. The system combines visual odometry (VO) and wheel odometry for estimating the
motion of the robotic platform in a robust way. To correct for accumulating odometry errors and
achieve global localization, the system employs a topological map with certain metric information
from the Global Information System (GIS) used by the sewer operators, and a machine learning based
manhole detector able to recognize the manholes using depth images. Geometric features from the
sewer network are also used to further correct the estimation.

This paper is based on our previous work [2], which is largely extended in several important
aspects, which can be summarized in the following points:
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• The complete final system envisaged for the localization of a ground vehicle navigating in a sewer
network is presented, which considers the following new elements:

– We have implemented a method for fusing visual and wheel odometry that increases the
robustness of the localization system.

– We have introduced a new method for estimating the relative orientation of the robot w.r.t.
the sewer gallery.

– The Convolutional Neural Network(CNN)-based manhole detector has been improved and
trained with data acquired from different places.

• The experimental validation of the method has been greatly extended. We tested it in experiments
carried out in different parts of Barcelona.

• We include comparison with different state of the art SLAM techniques.

The paper is organized as follows. Next section summarizes related work on localization, focusing
in localization in confined spaces such as sewers and mines, to name a few. Section 3 overviews the
main components of the robotic system used for sewer inspection. Section 4 describes the use of GIS
in this paper, while Section 5 describes the localization method. Section 6 describes the odometry
approach used, which fuses information from two sources. Sections 7 and 8 describe the machine
learning method for manhole detection and the relative orientation estimator of the sewer galleries,
respectively. Then, Section 9 discusses the experimental results obtained in real sewers. Finally,
Section 10 summarizes the main conclusions of this paper.

2. Related Work

The localization of a robot in a sewer system has a number of issues to be considered. First of
all, most systems rely on odometry information from wheel encoders and inertial units. However,
humidity, water and waste significantly decrease the wheels’ grip, distorting the computed linear and
angular velocities based on wheel encoders. Besides, the robot has often to negotiate steps in order to
cross wastewater channels, and in this process the robot can lose grip, further distorting the wheel
odometry to a great extent. Even though some devices can improve the odometry reliability [3], these
errors cannot be ignored in the long term.

One of the first localization systems, for the KURT inspection robot [4], already recognizes the
main problems for odometry, like wheel slippage. Topological localization is done by recognizing
junctions from data and matching them to a map. Wheel odometry is considered in [5], where
also junctions are classified using readings from wheels and used to compensate the errors. Only
simulations are considered.

LIDAR-based systems are also considered for motion estimation in tunnel-like environments [6].
The problem in this case is the lack of features and the symmetry of the environment, which makes
it difficult to estimate certain degrees of freedom. Tethered robots can use also the tether to estimate
the motion of the robot [7]. However, the use of tethers in the system presented in this paper was not
an option because of the requirements of the local authorities. The same paper considers also VO for
robot motion estimation. The visual odometer is based on the known geometry of a cylindrical sewer.
In contrast, we consider a model-free VO approach, as the sections of the sewer are not uniform and
their geometry is not always precisely known in advance. Also, in [8] the fading period of RF signals in
tunnels (assimilated as waveguides) are used to obtain an odometry-like measurement for localization.

Besides odometry estimation, many inspection applications in sewers require global localization.
Some systems are based on the communication of extra-low frequency signal with an external mobile
system [9] to estimate the position of the robot. However, this requires additional infrastructure and
cannot be applied to all types of sewers. A localization system is also presented in [7], based on
matching the same visual features used for VO stored in a map. However, results are obtained in a
small sewer testbed. Also the work in [10] proposes a similar localization system for 3D localization in
sewer systems. Preliminary experimental results are shown, but also in small sections of the sewer
system. In addition, 3D localization is not required in our application.
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More recently, a localization system used for robots inspecting mines has been developed in [11].
Similar to ours, this work reduces the localization problem from the naive problem of determining the
sequence of 6D poses of the platform to a reduced representation of 2D poses due to the topology of the
scenario (see Section 5). The results seem promising as the proposed system is able to localize the robot
with errors of less than 10 m. However, the performance attained does not meet our requirements.
Moreover, the system should be supervised by an operator to be able to reach the aforementioned
performance. This work has been significantly improved in [12], where the movement of the robot
in 2D is estimated with a camera pointing to the ceiling, obtaining real-time localization in mines of
few hundreds of meters long with a mean accuracy of 1.2 m. However, the environment should be
mapped with precision and the images need to be labeled beforehand to use the proposed method,
preventing its application in unmapped regions. This limits the applicability of the method in the
sewer network of Barcelona, due to its length.

Reference [13] presents another interesting localization method for aerial platforms in GPS-denied
spaces where radiation sources should be identified and their position should be estimated. They use
the visual inertial odometry system proposed in [14] to localize the platform in 3D and to generate a
local 3D map. This localization system has acceptable results given the limited flight endurance of
the platform and estimates the position of the radiation sources by trilaterating radiation measures
and actively searching for them. However, the localization method cannot be used in sewer networks
because the length of the missions in the case of our platform, up to four hours, would make the
odometry estimation diverge. To improve the long-term performance of the VO, some methods
generate key-frames that are then related by a graph. Then, loop-closure detection can be used for
generating congruent graphs and thus reducing the divergence of VO, as in [15,16]. Ref [17] extends
the work of [15] by proposing a centralized structure of collaborative 3D map building in a team of
multiple aerial vehicles. Nevertheless, online 3D map generation is not necessary in our system and
the problem can be reduced to estimating the 2D pose of the platform in our environment. Moreover,
we need a method that is able to estimate the global position of the robot.

Therefore, in order to make the system able to localize while inspecting more than 1 km per
operation and make the system ready to be deployed in any location of the more than 800 km of
visitable sewers in Barcelona [1], we make use of a graph obtained from GIS. This graph contains the
global positions of elements of the sewer network, like manholes and forks. We thus propose the
use of a Monte Carlo localization method in which odometry errors are compensated by recognizing
those elements and by estimating the relative orientation between the robot and the current sewer
section. To perform the aforementioned recognition, we employ machine learning techniques that
have been proven very efficient to perform a great variety of complex tasks including speech [18], text
[19], emotion [20] and activity recognition [21]; and traffic sign segmentation and identification [22].

3. Robotic System for Sewer Inspection

A new ground robot, the SIAR platform [23], has been developed to tackle the requirements of
the sewer inspection application. It is a ground robot able to navigate through the sewage system with
minimal human intervention and with the possibility of manually controlling the vehicle or the sensor
payload whenever required. Figure 1 shows the robotic platform.

The robotic frame is made with sprayed water-proof encapsulations in order to accommodate
for the hardest environmental conditions during sewer inspection. The robot has six wheels with
independent traction on each wheel. It is able to navigate over a wide range of floors and small
obstacles, including steps of over 20 cm. Interestingly, this platform is able to change its morphology
thanks to a linear motor located at the bottom. This allows it to not only to navigate inside sewer
galleries with different sections by changing its width but also to change the position of its center of
gravity, increasing its maneuverability when negotiating steps and forks. This configuration is very
flexible and adapts very well to the different scenarios the robot can find during routine inspections
(see Figure 1).
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The robot is equipped with a set of navigation, localization and environmental perception sensors.
The main element of the sensor payload is a set of seven Orbbec Astra RGB-D cameras [24] that
provides visual and depth information. There are three RGB-D cameras looking forward, three
backwards and one upwards. For each direction, the robot has a camera parallel to the ground and
two cameras facing downwards and sideways to visualize closer range obstacles. The upward-facing
camera is placed over the center of the robot. This camera is used for detecting flaws in the tunnel
dome and for identifying sewer elements such as manholes.

The robot also uses encoders to control the velocity of the traction motors and an encoder plus a
potentiometer to control the position of its width actuator. The robot is also equipped with an inertial
sensor. For more details on the SIAR robotic platform, the reader is referred to [25].

4. Using GIS Information

As specified in [1], the robot platform should be capable of navigate through 800 km of visitable
sewers in Barcelona. It is not possible to map beforehand the whole sewer network with the robot. Thus,
it is needed to use the GIS employed by the local sewer agencies, extracting the relevant information
for localization. This information includes precise absolute (GPS) localization of the sewer galleries,
the forks that should be traversed and the position of the manholes with errors that are usually of tens
of centimeters. Moreover, there is usually information about the shape of the sewer gallery. All of this
information is used by our localization system in the following ways:

1. The localization of the robot should be confined to an area close enough to the sewer graph.
2. Whenever a manhole is detected, the localization of the robot should be close enough to one of

them.
3. We add constraints to the orientation of the platform whenever the relative angle of the platform

w.r.t. the current sewer gallery is estimated.

To automatically use the available information, we developed a utility that reads a DXF (Autocad)
file provided by the local authorities in this case and generates a local graph in a desired area. Figure 2
represents an example of DXF input file and its associated sewer graph.

(a) (b)
Figure 2. (a) The complete GIS information as given by the local authority. (b) The extracted graph
used by the proposed localization system.

Figure 3 represents a detail of the graph used in our localization method. We can distinguish
three main elements of the graph:

• Sewer galleries. The edges of the graph, in white, represent a sewer gallery that can be crossed
by our platform.
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• Manholes. The vertices of the graph that are represented in green squares represent a manhole in
the sewer network. They are used to reduce the uncertainty of the localization of the platform.

• Forks. The edges of the graph marked in red squares represent a part of the network were two
galleries that go in different directions meet. These vertices are called forks.

Figure 3. Detail of a sewer graph as used by our proposed localization method. The sewer galleries are
marked in white lines. The manholes and forks are marked in green and red squares, respectively.

5. Monte Carlo Localization

The problem of localizing an object in the space consists of determining the 3D pose of the object
with respect to some fixed reference frame. This pose can be represented with the following state vector,
where the orientation is represented with Euler angles: x = [x y z γ ψ θ]T , where x is the state vector
of the robot, x y and z are the 3D position of the robot in cartesian coordinates and the orientation is
given in Roll-Pitch-Yaw standard, which are represented by γ, ψ and θ, respectively.

However, in this paper we assume that the roll and pitch angles are directly observable thanks
to an onboard IMU. Moreover, the altitude of the robot can be estimated from the GIS information
if x and y are known, in a similar fashion to the altitude estimation proposed in [26]. Thus, in this
paper we should solve the problem of 2D global localization of the SIAR platform inside the sewers
from local odometry and a simplified description of the sewer network. In this particular case the state
vector to be estimated is:

l =

x
y
θ

 (1)

The proposed approach is based on Monte Carlo Localization [27], which is a Markov Localization
system that makes use of a particle filter to represent the robot localization belief. Hence, we define the
distribution Bel(l) that expresses the robot’s belief for being at position l. To estimate this distribution,
we use a set of particles where each one represents a hypothesis li, where i is the number of the particle.

There are three main stages in any Markov Localization system: initialization, prediction and
update. We detail the particularities of each phase below.

5.1. Initialization

In the initialization, we set the initial Believe following a Normal distribution in the surroundings
of the manhole in which the robot was deployed, setting the orientation of each particle according to
the direction of exploration. In some cases, the position of the robot was not exactly below a manhole
at the start of a mission. In these cases, we raised the variance of the normal distribution to take into
account the uncertainty in the starting positions.
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5.2. Prediction

In the prediction stage, the pose of each particle is updated taking into account the odometry
measurements (see Section 6). We estimate the movement of each particle by using the following
formulas:

xi
n+1 = xi

n + (∆r + ψ) cos
(

θi
n

)
(2)

yi
n+1 = yi

n + (∆r + ψ) sin
(

θi
n

)
(3)

θi
n+1 = θi

n + ∆θ + ξ (4)

where ∆r and ∆θ are the translational and angular displacements of the platform from the previous
update state as measured by the odometry module, respectively; ψ ∼ N

(
0, σψ

√
∆x2 + ∆y2

)
is the

odometry noise in the translation and ξ ∼ N
(
0, σθ∆θ + σmin

θ

)
is the odometry noise in the orientation.

Note that we added a minimum variance to the latter distribution for taking into account cases in
which ∆θ is close to zero, which happened when navigating in long straight corridors. Our system can
be fed with different odometry sources, including wheel odometry, VO and a more robust odometry
that fuses the information from both sources, please refer to Section 6.

5.3. Update

The filter needs a method to validate that particles are in a consistent position taking into account
the perception measurements. In this paper, we introduce three different validation processes that
weight the particles in different ways depending on the information available from the sensors.
This weight is used for calculating the mean position of the particle set. For example, whenever the
manhole detector gives us a positive detection we rank the particles taking into account the distance to
the closest manhole.

Next we detail the different ways of ranking the particles used in this paper.

5.3.1. Edge Weighting: Measuring Lateral Errors

In the most common update case of the proposed method, the particles are ranked according to
their distance to the closest edge of the graph extracted from GIS data. Particularly, we use Equation (5)
to calculate the weight of each particle:

wedge =
1

σe
√

2π
e
− d2

e
σ2

e (5)

where de is the distance from the particle to the closest edge and σe is related to the width of the sewer.
It is worth to mention that the map could not be as accurate as desired and thus it could be a

good idea to overestimate the edge deviation. This is more evident in the surroundings of forks and
turns. Therefore, in this paper we use two different values of the standard deviation depending on the
proximity of a fork. Whenever a fork is nearby (closer than a given distance) it is set to 0.6 m, otherwise
is set to 0.3 m.

5.3.2. Manhole Weighting: Determining the Longitudinal Position

In the case of navigating in long sewer corridors, which is very common in practice, it is difficult
to obtain references in the advancing direction of the corridor. While with the previous weighting
method we were able to force particles follow the network topology, and thus we can easily estimate
which corridor are we traversing, it is not able in general to decrease the uncertainty of the localization
estimation in the direction of the corridor (longitudinal uncertainty).
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For this reason we make use of a manhole detector that let us known if we have reached this
determinate point in the corridor. This way we can reduce the longitudinal uncertainty.

Therefore, we use Equation (6) to rank the particles of the filter whenever a manhole is detected
by the manhole detection module.

wmanhole =
1

σm
√

2π
e
− d2

m
σ2

m + wmin
manhole (6)

where dm is the distance from the particle to the closest manhole in the graph and σm is the considered
standard deviation surrounding the manhole, which is related to the size of the area where they can
be detected. The additional term wmin

manhole term has been added to the weight in order to mitigate the
effects of a false detection in places far away of manholes. We make its value follow Equation (7) for
the particles in the filter:

wmin
manhole >>

1
σm
√

2π
e
− d2

m
σ2

m (7)

Therefore, all particles are uniformly weighted in this case. On the other hand, in the surroundings
of the manhole the most important term should be due to the normal distribution:

wmin
manhole <<

1
σm
√

2π
e
− d2

m
σ2

e (8)

This equation must hold if dm < ddetect, where ddetect is the maximum distance in which we can
detect a manhole.

5.3.3. Angular Weighting

The last way to rank the set of particles takes into account an estimation of the relative angle
between the robot and the gallery it is going through, which is estimated by the relative angular
detector (see Section 8). Let θr be the orientation of the robot, θg the orientation of the gallery, as given
by the GIS, and ∆θ the measure of the relative orientation of the robot with respect to the gallery.
We use Equation (9) to rank the particles.

wedge =
1

σa
√

2π
e
− (θr−θg−∆θ)2

σ2
a (9)

where σe is a term that reflects the uncertainties of both the measure and the GIS.
It is worth to mention that we do not apply this kind of weighting any time that a measure is

available. Instead, when the detector is giving measures, we alternate the angular and edge weighting
because we should also verify that the hypotheses follow the graph topology. Moreover, we do not use
the angular measurements when an hypothesis is close to a fork. In these cases, the use of this update
can distort the shape of the set of particles as the nearest edge related to each particle can vary and
thus two particles that are close in distance could have very different relative angles.

5.4. Resampling

Whenever the dispersion of the particle set exceeds a threshold, or the number of maximum
number of updates is reached, the set of particles is restructured through importance resampling.
A new set of particles is obtained by randomly sampling the old set with a sampling distribution
proportional to the weights of the particles. We make use of the low variance sampler described in [28].
By periodically resampling the particles according to the weights proposed in the previous sections,
we ensure that most of the particles are located according to the prior GIS information.
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6. Robust Odometry

Robot odometry is one of the main elements into the localization architecture. The more robust
and accurate the odometry is, the better is the robot localization in general. Figure 4 represents the
different methods and steps used in this paper for obtaining odometry estimations. These sources
include VO using the RGB-D onboard cameras, wheel odometry fused with IMU information, and a
fused odometry from both sources.

Figure 4. Different odometry sources, including the proposed fused odometry system.

6.1. Wheel Odometry

Ground robots use to rely on wheel encoders and inertial units to estimate its odometry, as this is
a good sensor combination with proven good results in many scenarios. Assuming no slippage, we
can easily estimate the translation in the direction where the platform is facing by multiplying the
mean angular displacement of the wheels times its radius.

We could also use wheel encoders for estimating the rotation of the platform. However, in this
case we take advantage of the onboard IMU, which gives us a better estimation of the rotation of the
platform in the three axes. Nevertheless, magnetometers are not reliable enough in sewers due to the
presence of ferromagnetic materials, so it cannot be used for BIAS compensation in Yaw angle. Instead,
an Extended Kalman Filter (EKF) is used to fuse wheel encoders and gyroscope measurements in order
to estimate the yaw BIAS.

However, the environmental conditions of the sewers like humidity, water and waste significantly
decrease the wheel grip can distort the computed linear and angular velocities based on wheel encoders.
It forces us to include more sensing modalities in order to have an accurate robot odometry. Moreover,
the grip can be partially lost for short periods of time when executing complex maneuvers such as
managing forks.

6.2. Visual Odometry

The visual odometry system proposed in this paper estimates the relative movement of the
platform based on information from the onboard RGB-D cameras. The system also makes use of
the onboard IMU for stabilizing the robot roll and pitch, as they are fully observable from the IMU
accelerometer. The visual odometer used in this paper is an adaptation of previous author work
presented in [29] and extended to RGB-D cameras (our RGB-D visual odometer is is available at [30]).
Next paragraphs summarize the different stages in the VO computation.



Sensors 2019, 19, 4946 10 of 28

6.2.1. Image Feature Detection

With every camera frame, a set of interest points is found in the color image. These interest points
are visual features extracted using the Features from Accelerated Segment Test (FAST) algorithm
[31], which is a method for corner detection with a strong computational efficiency. The identified
interest points contain local information that ideally make them repeatable across consecutive frames.
We impose a minimum and maximum number of features to be extracted from equally divided
regions of the images, commonly known as buckets. This allows us to distribute the features as most
homogeneously as possible over the whole image, enhancing the numerical stability of the odometry.
For each point, its 3D position is estimated thanks to the depth field of the RGB-D camera.

6.2.2. Image Feature Description and Matching

The next step involves finding correspondences between the current image and previous one. A
feature point description is needed in order to compare and find similarities between each pair, and
for that the general-purpose Binary Robust Independent Elementary Features (BRIEF) descriptor [32]
is used. This descriptor is very efficient since it is based on simple intensity difference tests, and the
similarity evaluation is done using the Hamming distance. Together with the computational efficiency,
BRIEF descriptors are especially interesting for feature tracking under small visual perturbations, a
very usual situation in VO.

6.2.3. PnP-based Relative Pose Estimation

Once a set of enough robust common features has been found between consecutive frames, this
set of matches is used to solve a Perspective-n-Point problem (PnP), i.e. the pose estimation from
n 3D-to-2D point correspondences (please recall that for each point we have its 3D position). This
allows to estimate the camera rotation and translation that minimizes the re-projection error of the 3D
points of previous frame into the points of the current frame. This is a non-linear optimization that can
estimate the camera transform very accurately at a reasonable computational cost. In particular, we
use the EPnP algorithm [33], which provides an efficient implementation of the pose change estimation
between both images.

6.2.4. Key-Framing

Finally, a key-framing approach has been adopted in order to partially mitigate the effect
cumulative errors in odometry. Thus, new key-frames are produced only when the feature tracking
flow exceeds a given threshold. At that moment, the current image descriptors, their 3D estimated
position and the robot position/orientation are stored. We compare the descriptors of the subsequent
frames with respect to ones of the last key-frame (and their pose), instead of the immediately preceding
image. In this way, the errors are only accumulated with the introduction of new key-frames.

6.3. Fusing Odometry

Each odometry system proposed in this paper has its advantages and drawbacks. On the one
hand, wheel odometry is usually the most reliable to estimate the advance of the platform, provided
that no significant amount of slippage exists and that the robot does not lose the traction. On the other
hand, RGB-D VO can obtain a full 3D robust estimation with accuracy that can be used for obtaining
local 3D maps in a determinate region. However, it can underestimate the translation displacement
when there is a lack of matches between a frame and the previous key-frame. Thus, if the number of
matches is below a threshold the results are discarded. Furthermore, the results are also discarded
if the odometry estimate returns translational or rotational movements that exceed given thresholds.
This is done because these circumstances usually reflect that there were too many mismatches. This is
usually referred as a odometry jump.
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For this reason, as a last step, we fuse the different odometry inputs: the estimation obtained
by VO is compared to the one provided by the wheel encoders. We check that the relative difference
between angular or translation displacements estimated by both methods does not go beyond a
threshold during a determinate time window (in our experiments we set it to 75%). If the check fails,
we suppose that the robot lost the grip and the system falls back to VO, provided that the VO did not
fail during that time window (due to lack of matches or a odometry jump). Otherwise, we use the
estimation from wheel odometry.

7. Manhole Detection

The high symmetry of the sewer gallery makes localization a very complex problem. Commonly
used tools for localization as visual place recognition algorithms usually suffer from low accuracy
when targeting repetitive visual structures [34]. This problem is accentuated by the poor illumination
conditions and high symmetry of the environment. On the other hand, detailed 3D/2D maps [35,36]
of the sewer network are frequently unavailable due to its vast size.

Manholes offer a good opportunity for localization. First, there exists a regulation of the maximum
distance between two consecutive manholes for safety reasons. Second, their particular shape, their
diameter (70 cm) and the fact that they break with the uniformity of the gallery ceiling enables their
detection with an acceptable success rate (see Figure 5). Third, their positions are labeled in the Global
Information System (GIS) provided by the local agencies. This information can be used to reset the
localization errors if the robot is able to identify the manhole on top of it.

(a) (b)
Figure 5. View of the sewer gallery from the depth camera pointing towards the ceiling. (a) Regular
gallery ceiling. (b) Manhole.

Thus, our objective is to automatically detect if the robot is lying under a manhole. We use the
depth images provided by a camera placed on top of the robot, pointing toward the ceiling. Our
approach makes use of machine learning approaches to train a classifier able to split the depth camera
view between regular ceiling and manhole.

Considering the significance of these detections for the localization system, we impose the
following two hard constraints: the accuracy must be very high to avoid false positive or false negative
detections that might impact in the localization results, and second, the manhole detection must be
light-weight from the computational point of view to not compromise the rest of the navigation task.

With all the previous constraints in mind, CNNs emerge as a convenient technique as they have
been extensively used for image classification purposes in last years with great success. Their ability to
extract hight level features from the images and to easily reduce the dimensionality of the problem
are key factors for their success. In addition, this dimensionality reduction helps to decrease the
computational requirements of the classifier.
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This paper extends and improves the manhole detection system presented in [2]. The number of
filters per convolutional layer have been significantly increased, also adding a new fully convoluational
layer in the output. These modifications, together with a wider dataset, allows us to improve the
detection accuracy from 96% to 98%. Next paragraphs provide details on the network and the
evaluation.

7.1. Convolutional Neural Network Architecture

The CNN architecture presented in this paper extends and improved the architecture presented
by the authors in [2], which is based in the AlexNet architecture [37]. This artificial neural network
architecture efficiently extracts low and high level features from the input images. These features
are specially interesting for classification tasks, as pointed out in [38] and more recently in [39].
Thus, this architecture has been successfully exploited to build accurate image classifiers, as in
[40]. However, these good detection capabilities come with the drawback of high computational
requirements. Many different approaches have been proposed in the state of the art to decrease the
computational requirements by means of input dimensional reduction [41,42]. The proposed approach
follows these main guidelines, but it makes use of a low dimensonality input (80× 60 pixels) to avoid
high computational requirements. It is based on the combination of convolutional neural layers that
sequentially process the information provided by the previous layer. The use of max-pooling allows to
select the strongest features estimated in each layer. The final fully connected layers implements the
detection function based on the high level features extracted at the end of the convolutional section.

The CNN architecture adopted is presented in Figure 6. Notice how this approach differs from the
one presented in [2] in the number of filters per convolutional layer, and also in the size and structure
of the fully connected layers. Thus, the first step consist in down-sampling the depth image to a
smaller scale, 80× 60 particularly. The network is composed by four convolutional layers followed by
ReLU activations and MaxPooling, except for the last one. The output of the fourth convolution layer
is fed into a fully-connected layers of 150 and 50 neurons, with ReLU activations. Finally, the output
layer is composed by a single fully-connected neuron with sigmoid activation functions. The result is a
binary value that is true whenever a manhole is detected and false otherwise.

Figure 6. Proposed Convolutional Neural Network for automatic manhole detection.

The original CNN architecture proposed in [2] was composed by 8000 parameters approximately.
The one proposed in this paper is larger, but as point out in Section 7.4, it improves the results with a
minor impact in the computational time. The size of the convolutional layers in the proposed approach
is still small, and also the number of layers. This design is on purpose, so the number of parameters
is around the 110,000. We can see how the number of parameters is multiplied by a factor of 13
approximately, but the network can be applied over an image in less than one millisecond by using a
regular CPU, as can be seen in Section 9.5.

7.2. Dataset for Training

The real datasets captured by the SIAR platform in the sewer system of Barcelona were used for
training and validation of the proposed artificial neural network. The data of four experiments were
selected to extract positive and negative examples to train and validate the manhole detector.
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In both datasets, training and validation, a manual labeling of the depth images with manholes is
done. The positive set of the training dataset is expanded by introducing horizontal and vertical flips,
and small translations and rotations.

As a whole, the dataset is composed by 150,000 depth images samples with a resolution of 80× 60.
Each sample integrates a label that indicates whether the image contains a manhole or not. From these
samples, we use 45,000 to validate the CNN that are not included into training process.

7.3. Training

We implemented the proposed network using Python and the Keras library [43]. The learning
algorithm used to train the networks is the Adaptive Moment Estimation (Adam), an algorithm for
first-order gradient-based optimization. Reference [44] showed that Adam is more effective when
compared to other stochastic first-order methods on MLP and CNN.

Each learning process takes 40 epochs with a batch size of 100 samples. We include a 20% dropout
layer [45] after every convolutional or fully connected layer (except for the output) to prevent the
computed neural networks from overfitting.

7.4. Validation

After the training process, we validate the model with a set of 45,000 samples not used in the
training (test set). The obtained accuracy results show a 98.36% in the validation set. These results are
very satisfactory, taking into account that different types of galleries visited in both datasets and that
there were opened and closed manholes.

Table 1 summarizes the confusion matrix of the proposed CNN-based detector. For the sake of
clarity, we also include the detection capabilities obtained with previous authors work [2] in Table
2. It can be seen that the detection capabilities have been significantly improved with respect to the
previous approach. The true positive rate have been improved from 90% to the current 95%, while the
false positive rate has also been improved accordingly from a 10% to a 5%. The negative (true and
false) detection rates have been also slightly improved w.r.t. our previous implementation.

Table 1. Confusion matrix using the proposed approach.

Predicted

Positive Negative

Actual Positive 0.95 0.05

Negative 0.01 0.99

Table 2. Confusion matrix using the approach presented in [2].

Predicted

Positive Negative

Actual Positive 0.90 0.1

Negative 0.02 0.98

8. Estimation of the Relative Orientation to the Sewer

Figure 7 represents the most common cross sections of the visitable sewers in Barcelona [1]. As
represented, the vast majority of them have two lateral walls that can be easily detected with the depth
information of the front camera onboard the robot. In this paper, we use the information of the planes
in order to estimate the orientation of the robot w.r.t. the sewer gallery. This is done by calculating the
relative angle between the robot and each wall plane.
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(a) (b)

Figure 7. Two typical cross sections of visitable sewers in Barcelona. (a) Section of type T130. (b)
Section of type T111.

8.1. Fast Plane Detection

As stated before, we are interested in searching for planar regions in the space to detect the lateral
walls of the sewer gallery. A plane in the space can be modeled as:

n · r = d (10)

where n is its normal vector, r is a point in the plane and d is the distance from the origin to the plane.
We use the region-growing based plane detector first introduced in [46] in order to detect them.

Let ρi be a measure of a captured point cloud by the sensing device in the direction mi. We assume
that the ρi ∼ N (ρ̂i, σi), where ρ̂i is the true range and σi is an upper bound of the standard deviation
of the measure. ri = ρimi is the position of the measure in the optical frame of the device.

Under these assumptions, given a set of points p ≡
{

pj : j ∈ 1 . . . N
}

, we can estimate the normal
of the best fit plane as the eigenvector associated with the minimum eigenvalue of matrix M:

M =
N

∑
i=1

(ri − rG) (ri − rG)
T (11)

where rG = 1
N ∑N

i=1 ri is the gravity center of the set of points. Then, the distance of the plane can be
retrieved from:

d∗ = n · rG (12)

Finally, we can estimate the covariance matrix of the parameters of the plane with the equations:

Σ = (H)+ (13)

H =
1
σ2

N

∑
i=1

[
rirT

i −ri
−ri 1

]
(14)

where the operator + refers to the Moore-Penrose pseudoinverse, as the Hessian is not of maximum
rank: it has a zero eigenvalue with associated eigenvector n (see [46] for more details).

8.2. Orientation Estimation from Vertical Planes

The proposed method looks first for large and vertical planar patches in the depth image (see
Figure 8) of the front camera of the robot by using the method proposed in the previous section.
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Figure 8. Left: Typical section inside the sewers. Right: Detected wall planes marked in green.

Whenever two large vertical planes are found, they are used in order to estimate the relative angle
of the walls with respect to the robot. This relative angle is used to rank the hypotheses according to
the available GIS information.

Let P ≡ {n · r = d} be one of the wall planes. The direction of the gallery can be estimated by
intersecting the plane with a ground plane, which is represented as G ≡ {k · r = 0} in a gyro-stabilized
frame centered in the base of the robot, where k is the unit vector along the z axis. The intersection
of these planes is a line pointing in the direction of the sewer gallery. A vector l in this direction is
perpendicular to the normals of the two planes. Therefore:

l = n× k (15)

θ = arctan
(

ly
lx

)
(16)

where θ is the relative angle of the gallery with respect to the robot.
We can evaluate the goodness of the orientation estimation by using the covariance of the planes

obtained in Section 8.1. In particular, the variance of θ can be estimated by the following formula.

σ2
θ = JTΣxyz J (17)

where JT is the Jacobian of Equation (16) with respect to lx, ly and lz that can be obtained by applying
Equation (18); and Cxyz is the covariance of the normal vector, which can be obtained from the
covariance matrix Σ as expressed in Equation (20). These matrices can be obtained by using the
following formulas.

J =


− 1

y
(

x2
y2 +1

)
x

x2+y2

0

 (18)

Σxyz = −
(

Hn̂n̂ − Hn̂dH−1
dd HT

n̂d

)+
(19)

H =

[
Hn̂n̂ Hn̂d
HT

n̂d Hdd

]
(20)

where we use a block decomposition of the Hessian H calculated in Equation (13). For a proof of
Equation (20) please refer to [47], Appendix B.
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8.3. Experimental Validation

To test the goodness of the detector, we performed a set of experiments in a corridor at the
University Pablo de Olavide facilities with an Orbbec Astra depth sensor. In the tests, we use our
proposed wall detector (our implementation of the wall detector is available at [48]) for estimating the
orientation of the camera w.r.t. the corridor. Each experiment starts with the sensor pointing towards
the direction of the corridor. Then, we rotate it an approximate number of degrees with respect to the
corridor in each direction.

Figure 9 represents the estimated angle of the camera w.r.t. the corridor. It also shows the reference
angle were the sensor was placed for convenience. Please note that the sensor was placed manually to
a discrete set of angles for testing purposes. Therefore, we have to wait for the angular measure to be
stable before comparing it to the reference value.
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Figure 9. Experimental tests for the relative orientation estimator. The plots represent the estimated
orientation in blue and the reference value in orange. (a–d) The camera is moved to 10, 15, 20 and 30
degrees in each direction, respectively.

These results show that the the detector is able to precisely detect the rotation with an relative
error of less than 10% in all the studied cases, which range from 10 to 30 degrees. Therefore, the
localization estimation can be used to increase the robustness of the localization algorithm. Moreover,
the estimation error is below of 0.03 rad in all cases, which can be used as a conservative standard
deviation of the estimation. However, in the experimental results presented in this paper, we raised the
standard deviation to 0.06 rad in order to take into account possible errors in the GIS data regarding to
the direction of the gallery.
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9. Experiments

We tested the proposed localization system in a wide variety of scenarios with real field data.
The platform was operated in semi-autonomous mode without the need of operators nearby, with
the exception of the deploy and recover procedures and a manual recovery in the experiments of
October 17th. In this section, we detail the results obtained in three different real sewer scenarios. The
scenarios were all placed in Barcelona (Spain), at the locations of Mercat del Born, Creu de Pedralbes
and Passeig Garcia-Faria, in order of appearance. Readers are encouraged to reproduce the results,
as the code of the proposed localization system can be openly accessed on [48], where instructions to
run the simulations can be found. The data gathered from the experiments of the Echord++ project
is available at [49]. All the code has been developed under the Robotic Operating System (ROS) [50],
it is distributed under the MIT license and it has been tested in its Indigo, Kinetic and Melodic ROS
distributions.

In the following, we evaluate different aspects of the system, and perform comparisons with other
approaches. It is difficult to verify the accuracy of the trajectory obtained because the sewers are a
GPS-denied area. To obtain a partial ground truth, we labeled the frames of the upper camera when it
was just below a manhole. In this way, we can compare the output of the localization system with the
actual manhole position as it appears in the provided GIS.

Due to the stochastic nature of the presented localization algorithm, unless otherwise stated, the
distribution of the error over 35 runs is represented in each case. In the following, to represent the
distribution of the localization errors, we use the convenient box plot representation.

9.1. Effect of the Angle Detector

First, we analyze the the effect of including the estimation of the relative orientation of the robot
w.r.t. to the sewer galleries. The results have been obtained from the data gathered in an experiment
on October 11th, 2017, which had been carried out at the Mercat del Born area. Figure 10 represents
the scenario with an example of localization results obtained by the proposed system.

Figure 10. Localization results in the Mercat del Born Scenario overlaid on a satellite view in the
experiments of 2017 October, 11th.
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Figure 11 shows the localization errors of the proposed method whenever the robot passed below
a manhole with and without incorporating the orientation estimation. In comparison, the proposed
method is able to reduce the median error in almost all cases. Moreover, the distribution of errors
presents lower dispersion when using the estimation of the relative orientation within the sewer. In
particular, there are no cases in which the localization error goes beyond 2 m in this scenario.
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Figure 11. Distribution of errors when passing below the manholes in the localization experiments for
testing the impact of the orientation estimation. In each manhole (denoted by the street name and a
number) we present two results: the leftmost (in red) is obtained without using the estimations, while
the rightmost (in black) uses them.

9.2. Different Odometry Comparison

We performed another field experiment in Mercat del Born scenario on October 17th, 2017. Please
refer to Figure 12 to see an example of the localization results obtained in the experiment. In this
section, we use the data gathered in these experiments to compare the localization results when using
RGB-D VO, wheel odometry and the fused odometry system proposed in this paper. We made 35
runs of the algorithms in the same conditions, considering the error characteristics of each odometry
estimation, in order to compare the behavior of the localization system when being fed with different
odometry sources.
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Figure 12. Localization results in the Mercat del Born Scenario overlaid on a satellite view in the
experiments of 2017 October, 17th.

Figure 13 summarizes the results obtained by our localization module when the platform passes
below the fourteen starting manholes and using the three different methods for odometry estimation.
In this case, the results obtained when using VO start quite well in the first five manholes, but then its
performance begins to degrade. In fact, from manhole Passeig 4 the localization loses the track of the
platform due to bad odometry measures (see Figure 14). The reason is that in some parts of the sewer,
the RBG-D odometry module does not detect enough features in the image and thus it cannot estimate
the movement. Therefore, our localization module underestimates the displacements of the platform,
leading to a complete lose of the track of the platform, which is produced when the platform passes
below manhole Passeig 3.

On the contrary, wheel odometry tends to overestimate the displacements of the platform. This is
produced when the platform loses the grip in several parts of the experiment. It is more evident
when passing below manhole Fusina 3 for the second time (see the bottom plot of Figure 13). The
reason is simple: just before passing below that manhole the platform fell to the gutter and had to be
recovered manually, and thus the grip was lost during large periods of time when trying to recover the
platform in teleoperation. This resulted in a increase of error when the platform passes below manhole
Fusina 3, whose distribution has a median of over 3 m. However, this effect is not enough to make our
localization module lose the track in this case.

Figure 15 depicts the distribution of the localization error when the platform passes below the
thirteen remaining manholes. In comparison, the version with fused odometry obtains the better
median error in the majority of the cases, with the exception of manholes Comercial 2 and 5 and
Passatge 3, in which the results are very similar.
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Figure 13. Distribution of errors when passing below the starting fourteen manholes in the localization
experiments for odometry comparison. For each manhole we present three measures obtained by
using different odometry estimations: VO (leftmost, red), wheel odometry (middle, blue) and fused
odometry (rightmost, black).
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Figure 14. Distribution of errors when passing the remaining thirteen manholes with VO. In this case,
the localization system lost the track of the robot.
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Figure 15. Distribution of errors when passing the remaining thirteen manholes with wheel odometry
(leftmost measures in blue) and fused odometry (rightmost measures in black).

9.3. Comparison with SLAM Approaches

We also compare the performance of our proposed localization method with two popular state of
the art SLAM approaches: gmapping [51] and ORBSLAM-2 [15]. In the case of the gmapping method,
we used the front and rear cameras to generate two emulated lasers to feed it. In the case of the
ORBSLAM-2 method, it was fed with the RGB-D images generated by the rear camera, as the platform
moved backwards at first.

We made the comparison in a new scenario, as the previous experiments had a track length
of more than 1 km and there are no loops in the trajectory that allow the methods to perform loop
closures. In this case, we use experiments that were carried out in the Creu de Pedralbes Square, also
in Barcelona. The experiments were carried out on the 12th of June, 2018, lasting forty-five minutes,
approximately, and the platform traversed a two way track of roughly 200 m. Figure 16 represents the
satellite view of the experiments at surface level overlaid by the localization results of each method.

Figure 16. Three examples of localization results are plotted as obtained by our method, gmapping
and ORBSLAM-2 in red, blue and purple, respectively. The output map generated by the gmapping
method is also represented. The manholes labeled A and B are the ones visited during the experiment.

As expected, the results of other methods diverge in the long-term, as not any external references
are given to them. The main purpose of this section is to illustrate the difficulties of employing these
methods in these kinds of environments.

In the case of the gmapping (blue trajectory in Figure 16), the generated map is also represented
and, while it follows the shape of the real sewer, errors in the orientation of the gallery generate
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divergence in the results between the real gallery and the estimated by the module. Moreover, the
algorithm usually duplicates some galleries as it does not estimate the displacement in the direction of
the corridor with enough accuracy. In these cases, gmapping could not reconstruct the sewer topology
faithfully.

Obtaining results from ORBSLAM-2 (purple trajectory in Figure 16) was more difficult as it lost
the track several times during the experiment. Unfortunately, the original ORBSLAM library would
not continue mapping until it regained the track. To overcome it, we made the algorithm ignore the
lose of track and generate a new keyframe by supposing that no movement was produced. In this
way, we ensure that the algorithm continues doing SLAM at the expense of introducing inaccuracies in
the model. With this subtle modification we acquired a 3D map of the sewer in all the executions. In
contrast to the gmapping results, we did not detect any duplication of galleries as this algorithm uses
the RGB features and is able to track them back when going backwards.

Figure 17 represents the errors obtained by each method whenever the SIAR platform reached the
manholes A or B (see Figure 16). The mean and standard deviation of ten executions of each method
are represented. These results indicate that the gmapping is able to get more precise trajectories when
compared with the ORBSLAM-2 method. However, our localization method clearly outperforms
them.
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Figure 17. Localization errors obtained by the three methods in Creu de Pedralbes scenario. The
results of gmapping, ORBSLAM 2 and the proposed method are plotted in blue, orange and green bars,
respectively.

9.4. Experiments in Passeig Garcia Faria: Determining Errors in GIS Data

Last, we describe the localization results of the final experiments carried out in the Passeig Garcia
Faria. In this case, the robot followed a straight line gallery with a total distance of more roughly 400 m.
Figure 18 represents a view of the Scenario in this experiment, as well as the output of our localization
system. Figure 19a shows that the distribution of the localization errors whenever the robot passed
below a manhole is always centered somewhere close to 1 m. However, there is one anomaly in this
distribution: whenever the platform reached MH109, a systematic error in the localization which has a
median of over 10 m was found. This fact suggests that the provided GIS data has a noticeable error
with regards to MH109. Figure 19b represents the position of the Manhole as stated in the GIS and as
estimated by our localization method.
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Figure 18. Localization results of the robot’s position in the experiments of Passeig Garcia Faria, on
December, 13th.

0

2

4

6

8

10

12

14

Lo
ca

liz
at

io
n 

er
ro

r 
(m

)

MH 102 MH 104 MH 109 MH 110 MH 109 MH 104 MH 102

(a)
(b)

Figure 19. (a) Distribution of the localization errors whenever the robot passed below a Manhole in
Passeig Garcia Faria. (b) Actual location of MH 109, as estimated by our localization system.

9.5. Computation Time Analysis

In this section, we study the computation time of the main parts of the proposed localization
system. As stated before, the code is implemented under ROS, which is designed to distribute the
computation requirements of each module into different processes. This division is convenient, as
it allows us to easily parallelize the execution of the different modules in the system. The results
presented in this section have been obtained in a Intel© Core™ i7-7700HQ CPU running at 2.80 GHz
with 16 GB of RAM under Ubuntu 18.04 and ROS Melodic.

The main modules to be analyzed are the following:

• Monte Carlo localization. In this case, we measure the time spent in calculating the prediction
and update stages of the filter, which are called whenever a threshold in rotation or translation
with respect to the previous update is reached.

• Orientation estimation. Whenever a depth image from the front camera is received, the wall
planes are detected and the orientation of the robot with respect to the gallery is calculated as
seen in Section 8. We include the time spent in performing such estimation.

• Manhole detector. Whenever an image from the camera pointing to the ceiling is captured, we
process it through the CNN described in Section 7 in order to determine whether the robot is
under a manhole or not. We measure the time spent to process the image.

• RGB-D Odometry. Whenever an image from the front camera is captured, the RGB-D odometry
module described in Section 6 estimates the displacement w.r.t. the previous image. This is the
most time-consuming part of the fused odometry system proposed in this paper. We measure the
time spent in the RGB-D odometry estimation.

Figure 20 represents the distribution of the execution time of the aforementioned processes
gathered during the execution of the experiment described in Section 9.2. It shows that the least
demanding process is the CNN query, which only needs an averaged time of 0.26 ms (see Table 3)
to run. The remaining three processes have a similar mean execution time which ranges from few
hundredths of a second to one tenth. This result allows us to use the RGB-D odometry and the
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orientation estimation modules at a frequency of 10 Hz. Table 3 also has information about the number
of times each process is called during the experiment and its total execution time. Note that, even
though the update of the particle filter has the highest unitary execution time, it is less time consuming
in total because it is called roughly twenty times fewer when compared to RGB-D Odometry and to
the orientation estimator. Finally, the proposed localization system as a whole used less than one CPU
core during the whole experiment.

Table 3. Execution time of the main processes of our proposed system.

Monte Carlo Orientation Manhole Det. RGB-D Odom.

Unit Execution time (ms) 113 ± 27.4 57.5 ± 20.0 0.226 ± 0.042 37.8± 16.3

Times called 1223 24,649 24,723 49,915

Global execution time (s) 138.4 1417.9 11.13 930.0
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Figure 20. Distribution of the execution times of each process of the proposed localization system.

10. Conclusions

This paper has presented a system for ground robot localization in sewer networks. The system
employs a robust odometry and GIS information in the form of manhole locations and to maintain a
global localization of the robot in geographical coordinates. Using this, the inspection results obtained
by the robot can be located and used by the operators to plan the required interventions.

The system has been intensively tested in real sewers, showing that it can be used to in operational
scenarios, and bringing the required accuracy for day-to-day inspection operations. This is relevant to
enhance the working conditions of operators in such environments.

One of the main conclusions of the study is the importance of a reliable odometry for good
localization in such environments, characterized by frequent wheel slippage and often lack of visual
features. A combination of wheel and RGB-D odometry is used here to overcome the drawbacks of
both approaches.

The paper also shows how the metric information from the GIS, such as the position of sewer
galleries, manholes and forks, can be used to successfully localize the robot, without requiring a full
3D detailed map of the environment. The current system employs a manhole detector for reducing the
longitudinal uncertainty of the pose estimate. But other elements included in the GIS can be used to
refine the localization, like inlets. The detector can be trained with different examples of such classes,
and the system can be easily extended to consider them.
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Future work includes, as mentioned, the consideration of additional elements in the localization
process. Furthermore, the system can be extended to update and correct the information stored in
the GIS, as it can sometimes have erroneous information. Devising ways to automatically detect such
potential errors is a potential venue for future work. The ideas of the system can be also considered in
other tunnel-like underground environments, which still remain a challenging scenario for robotics.
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