
sensors

Article

Automatic Focus Assessment on Dermoscopic Images
Acquired with Smartphones

José Alves , Dinis Moreira , Pedro Alves, Luís Rosado and Maria Vasconcelos *

Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal; jccalves94@gmail.com (J.A.);
dinis.moreira@fraunhofer.pt (D.M.); pedro.alves@fraunhofer.pt (P.A.); luis.rosado@fraunhofer.pt (L.R.)
* Correspondence: maria.vasconcelos@fraunhofer.pt

Received: 30 September 2019; Accepted: 10 November 2019; Published: 14 November 2019
����������
�������

Abstract: Over recent years, there has been an increase in popularity of the acquisition of dermoscopic
skin lesion images using mobile devices, more specifically using the smartphone camera. The demand
for self-care and telemedicine solutions requires suitable methods to guide and evaluate the acquired
images’ quality in order to improve the monitoring of skin lesions. In this work, a system for
automated focus assessment of dermoscopic images was developed using a feature-based machine
learning approach. The system was designed to guide the user throughout the acquisition process by
means of a preview image validation approach that included artifact detection and focus validation,
followed by the image quality assessment of the acquired picture. This paper also introduces two
different datasets, dermoscopic skin lesions and artifacts, which were collected using different mobile
devices to develop and test the system. The best model for automatic preview assessment attained an
overall accuracy of 77.9% while focus assessment of the acquired picture reached a global accuracy of
86.2%. These findings were validated by implementing the proposed methodology within an android
application, demonstrating promising results as well as the viability of the proposed solution in a
real life scenario.

Keywords: mobile dermatology; image acquisition; image quality assessment; feature extraction;
machine learning

1. Introduction

Malignant melanoma is the 19th most common cancer among men and women, with nearly
300,000 new cases in 2018 while non-melanoma skin cancer is the 5th most common cancer, with over
1 million diagnoses worldwide in 2018, a number which is considered to be an underestimation [1,2].
The increasing incidence of melanoma and the potential risk for misdiagnosis make the management
of melanocytic lesions particularly challenging for both dermatologists and primary care physicians [3],
resulting in a considerable economic burden for public health services [2,4]. However, if detected early,
the success rates of successfully treating this type of cancer are very high, therefore the development
of methodologies to aid the monitoring processes and assisting diagnosis are of high importance.

Dermatology is the branch of medicine dealing with the diagnosis, treatment and prevention
of skin diseases. Acquisition of dermoscopic images of skin lesions and melanocytic lesions is a
standard procedure in dermatological practice, which results in a valuable asset for every clinician [5].
By definition, dermoscopy is a non-invasive skin imaging technique which uses a dermatoscope with
optical magnification and polarized lighting to highlight submacroscopical structures, making them
visible to the naked eye [5]. The term melanocytic lesion refers to proliferations of neural crest derived
melanocytic cells (which produce the dark pigment in the skin) ranging from benign freckles and nevi
to malignant melanoma [6].
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The recent advances in mobile health (m-Health), a rising digital health sector that provides
healthcare support, delivery and intervention via mobile technologies such as smartphones, led
to an increase in the number of available self-care and telemedicine solutions related to the skin.
Early detection, surveillance, easier access to health care services, avoiding unnecessary medical
appointments or just documenting specific cases, are some of the reasons behind the creation of such
systems, particularly in the dermatology field [7–11]. However, in order for the specialists to be able to
provide reliable diagnosis, it is essential for them to receive standardized information and guarantee
its quality, especially when dealing with clinical images.

This context motivated the development of a new algorithm for automated focus assessment of
dermoscopic images, more specifically, by correctly identifying structures of interest, that is, skin moles,
while simultaneously assessing the quality of those images. Particularly, an image focus validation
approach was developed to perform real-time image quality control. With this work, we aim to
contribute to the standardization of image acquisition in dermoscopy via mobile devices, by assisting
and guiding the user during the acquisition process of skin lesions, and consequently facilitate both
monitoring and diagnosis procedures.

This paper is structured as follows: Section 1 presents the motivation and objectives of this work;
Section 2 presents the related work; Section 3 provides an overview of the system architecture along
with the datasets description and the methodology used; in Sections 4 and 5 the results and discussion
are presented; Section 6 highlights the main conclusions of this study and points out possible directions
for future work.

2. Related Work

Due to the most recent technological breakthroughs in the area, a new generation of mobile
devices has appeared. These devices, such as smartphones, are typically low cost, light weight,
portable, and have high computational power, thus, constituting one of the most common forms
of image acquisition and processing. Especially in dermatology, where these types of devices are
being used to acquire skin lesion images and exchange information among general practitioners,
dermatologists or patients [12,13]. Acquisition of these images is becoming more and more frequent,
with a large number of images being captured every day for documenting clinical findings, self
reporting or even for educational or research purposes [5].

As can be seen in the recent literature, a wide variety of m-Health solutions are available [12,13].
These solutions can be as simple as an smartphone application for acquiring and transferring skin
lesion images to a dermatologist (SAF) or more complex, as the fully automated solutions in which
a diagnostic is presented after the picture is taken [7–9,14]. However, these solutions generally
produce different diagnosis in comparison to the dermatologists decisions [15], and often do not
provide guidance during the image acquisition process nor do they assess the quality of the final
picture [8–10,12].

Recent studies have studied the influence of several conditions, such as lighting, background
color, field of view, image orientation, focus and depth of field, resolution, scale, color calibration
and image storage may have on the acquired image as being key aspects in dermatology [16,17].
Thus, the image quality assessment (IQA) of newly acquired skin images should be a mandatory
step [12,17–19]. Especially when using smartphones’ built-in cameras, the real-time evaluation of
those images should be addressed, not only to assist or guide the acquisition process, but also to
simultaneously ensure that no additional artifacts, such as motion and defocus blur, will be present in
the final acquired image [18,19]. From the available solutions, only the SkinVision App [7] includes an
algorithm to assess the quality of the picture and states that it reduces the number of blurry photos by
about 52% [20]. Therefore, to the best of the authors’ knowledge, image quality assessment is generally
performed only by suggesting a couple of best practices and/or by reporting the environment and
used camera settings during the acquisition [8,9,11].
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In terms of IQA objective methods, the literature is quite vast and the used methods can be
divided in three different groups—full reference methods, where a reference image is present; reduced
reference methods, where only partial information about the original image is available together with
a set of discriminative features; no reference methods, where no original image is available [21].
For the no-reference image quality metrics, a different types of metrics have been proposed in
recent years—distortion specific (e.g., specific type of blur, uneven illumination, etc.) and learning
based on natural scene statistics metrics are some of the categories these metrics may fall into [22].
Also transform-based, statistics, directional or geometric based features are some metrics that are
widely used to discriminate the quality of an image where no reference image is provided [23].
In Reference [24] the authors have explored a no reference methodology for uneven illumination
assessment of 30 dermoscopic images with different degrees of real uneven illumination. The authors
obtained 0.902 and 0.895 for Pearson linear correlation coefficient (LCC) and Spearman rank-order
correlation coefficient (SROCC) respectively, when comparing predicted results to the subjective
ground truth annotations. Both LCC and SROCC are between 0 and 1, where values close to 1 indicate
a better performance. In a later work [25], the same group of researchers used a similar approach
in order to assess two different types of distortions in an image, the uneven illumination and blur,
reporting 0.841 and 0.859 for LCC and SROCC, respectively, when analyzing 162 images suffering
from real distortions.

3. System Architecture

The proposed system allows the focus assessment of skin moles in dermoscopic images by using a
feature-based machine learning methodology. The system was designed to guide the user throughout
the acquisition process by means of an image focus validation approach, followed by the IQA of the
acquired picture.

The architecture of the developed solution, illustrated in Figure 1, is divided into two main
modules—the Preview Focus Assessment and the Acquired Picture Focus Assessment. For each frame
obtained from the camera preview, the preview focus assessment methodology performs a preliminary
verification for artifact detection, followed by the skin mole focus assessment of the preview image.
This step is particularly important to guarantee that the smartphone is focusing on a skin mole and not
on the artifacts that the lens may contain. Once the preview image passes the first verification module,
the user receives an indication that the preview image is focused and is able to proceed with the image
acquisition. The preview focus assessment process is repeated for each upcoming frame from the
camera preview providing this feedback continuously to the user in real time through the application
interface. Afterwards, in the acquired picture focus assessment module, the dermoscopic image is
evaluated again in terms of quality and presented to the user immediately after an acquisition.

Figure 1. Diagram of the system architecture for the automatic focus assessment on skin lesion
dermoscopic images acquired with smartphones.
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3.1. Datasets

The present work aims to assist the acquisition process of dermoscopic images acquired with
smartphones by providing automatic focus assessment. Some public databases of skin lesions contain
dermoscopic images that were classified by dermatologists for diagnosis purposes, such as ISIC, PH2
or HAM10000 [26]. These databases contain images with sufficient quality for clinical decision making,
since the low quality images are usually discarded. Moreover, for each skin lesion there is only one
image and generally no additional information regarding the device used in the acquisition is provided.
Therefore, to the best of our knowledge, there is no publicly available image quality database that
includes dermoscopic images of skin lesions with a different level of focus, so in the scope of this
work two new datasets were collected. A skin lesion dataset of dermoscopic images, focused and
non-focused, was gathered including both images from the smartphone camera (preview and acquired
pictures). An additional dataset composed by dermoscopic images with lens artifacts and different
backgrounds was collected to design the preview focus assessment algorithm.

For the collection of both datasets, two different dermoscopes were used—Dermlite DL1 (DL1) [27]
and Dermlite DL3 (DL3) [28]. Both of the chosen dermoscopes in this study can be used with a different
range of smartphones and allow standalone usability. The price of the considered devices ranges
between 360 and 850 euros at the time of this study. Table 1 shows the specifications of the devices and
in Reference [29] a more detailed study on their differences in terms of color reproduction, image area
and distortion, illumination, sharpness and differential structures visibility is presented.

Table 1. Specification of Dermlite DL1 and DL3 dermoscopes.

Dermoscope Dermlite DL1 Dermlite DL3

Polarization Polarized & Non Polarized Polarized & Non Polarized
Lighting 4 White LEDs 18 White LEDs

(polarized/non-polarized) (12 polarized, 6 non-polarized)
Optics 15 mm diameter 25 mm diameter

Magnification 10× 10×
Spectrum Control No PigmentBoostTM

10 mm Reticle Yes Yes
Smartphone compatibility Yes Yes

Standalone usability Yes Yes

Regarding the variance between the acquisition devices, 11 different smartphones with different
cameras properties were used during the acquisition. The overall robustness of the proposed solution
across different smartphones was addressed in this approach, by including the highest possible number
of different devices in the study together with the use of two different dermoscopes. A complete list of
the mobile devices used alongside with the major characteristics is available in Table 2.

3.1.1. DermIQA Dataset

In order to address the problem of assessing image quality and focus of skin moles images in
real-time, a dataset of focused and non-focused images was collected, named the Dermoscopic Image
Quality Assessement (DermIQA) dataset. This dataset is composed of a total of 1979 images of skin
moles from 14 different Caucasian subjects. The images were acquired using the aforementioned
dermoscopes together with the 11 different smartphones. The goal of collecting this dataset is to
have at least one blurred and one focused image for each skin mole, smartphone and dermoscope.
For each acquisition both camera preview image and captured image were saved for the following
reasons: (i) in the preview stage the goal is to assess the image in terms of image stabilization and
standardization, where as in the acquired image the goal is to check the quality of the image that will
be saved in the system and used for monitoring or diagnosis purposes; (ii) also, the preview image
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has smaller resolution than the acquired images (720 × 1280 vs. 1080 × 1920 px). A summary of the
number of collected images and their distribution regarding the focus level is provided in Table 3.

Table 2. Detailed list of the smartphones used in this study. Additional camera-related details are also
provided for each smartphone.

Smartphone Camera Resolution Camera Aperture

J5 (2016) 13 MP f/1.9
LG G6 13 MP f/1.8

Huawei Mate 10 Pro 12 MP f/1.6
Motorola G5 13 MP f/2.0

Nexus 5 8 MP f/2.4
Nexus 5X 12.3 MP f/2.0
OnePlus 5 16 MP f/1.7

S5 16 MP f/2.2
S6 16 MP f/1.9
S7 12 MP f/1.7
S8 12 MP f/1.7

For the dataset collection, different aspects where taken into consideration in order to guarantee
the most variability possible within the recruited voluntary participants. Skin lesions were acquired
from subjects with different genders and skin tones, with phototypes varying from I to V. Also, the skin
lesions selected had different colors, sizes and shapes as well as presence/absence of hairs or beard.
The inclusion of this variability in the dataset aimed also to select features that were able to deal with
this variability and therefore more robust and suitable to be used in real life scenario. For a better
characterization of this specific dataset, complementary information about the size, shape, border
type, color and absence or not of hair for each analyzed skin mole is presented in Table 4, whereas in
Figure 2 illustrative examples of skin lesions are depicted.

Table 3. Image type distribution in the DermIQA dataset.

Image Focused Images Non Focused Images Total

Preview image 451 543 994
Acquired picture 440 545 985

Total 891 1088 1979

Table 4. Visual characteristics of the skin moles included in the DermIQA dataset.

Subject Color Hair Size Shape Border

s1 Light Brown Yes Small Circle Regular
s2 Light Brown Yes Big Oval Regular
s3 Brown/Dark Brown No Medium Irregular Irregular
s4 Black No Medium Circle Regular
s5 Light Brown No Big Oval Regular
s6 Brown Few hairs Small Irregular Irregular
s7 Dark Brown Few hairs Medium Circle Regular
s8 Brown Beard Medium Oval Regular
s9 Light Brown Yes Small Oval Regular
s10 Light Brown and Brown No Medium Irregular Regular
s11 Dark Brown/Black Beard Medium Oval Regular
s12 Black No Small Oval Regular
s13 Light Brown No Big Oval Regular
s14 Light Brown Yes Big Oval Regular
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Figure 2. Illustrative examples of skin mole present in the DermIQA dataset.

3.1.2. DermArtifacts Dataset

While conducting preliminary experiments, it was observed that some images with no useful
information and/or with only lenses artifacts were classified as focused images. Therefore, there was
the need to construct a dataset that had both relevant structures as skin moles (with both focused and
unfocused examples) and non-relevant structures like artifacts, which served as a basis for building
the Artifact Detection module referred previously.

The Dermoscopic Lens Artifacts (DermArtifacts) image dataset is composed of a total of 232 camera
preview images—131 skin moles images and 131 images with different backgrounds and/or with
lenses artifacts, representing the negative class of interest. The skin mole images were arbitrarily
chosen from the DermIQA dataset, whereas the 131 images with artifacts were additionally collected.
Some of the smartphones from the ones listed in the Table 2 was used to collect those images with
different backgrounds and lens artifacts, since there is less variability in the images (Samsung J5, S6,
S7, S8, LG G6, Motorola G5, Nexus 5X and OnePlus 5). Representative examples of lens artifact images
are presented in Figure 3.

Figure 3. Illustrative examples of background and artifact images present in the DermArtifacts dataset.
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It should be noted that all images on DermArtifacts and DermIQA datasets were annotated by the
authors, no dermatology specialist was consulted, and are therefore more prone to human error and
subjectivity of the labelling process.

3.2. Image Focus Assessment Pipeline

A feature-based machine learning approach was used in order to develop an image focus
assessment algorithm. The approach followed the usual machine learning pipeline, including feature
extraction, model training and validation, as is described in the following subsection. Additionally,
as the proposed system is intended to run in real-time in a wide range of mobile devices, it is expected
that some models might have limited computational resources. Therefore, this limitation greatly
influenced the design of the machine learning pipeline, particularly in terms of giving major focus
to the usage of lightweight image quality features, as well as selecting a computationally suitable
machine learning classifier.

3.2.1. Feature Extraction

The first step of this pipeline is the extraction of several state-of-the-art image quality related
features. Each image was primarily cropped to a central square with the size of 70% of the original
image, not only due to processing constraints, but also to remove non-interest regions from the original
images (e.g., the black regions near the borders caused by the dermoscopy device). This square region
is used by the algorithm to extract the metrics and make decisions accordingly. The square image is
then converted to the gray scale colorspace IGray, and a new image IBlur is generated by applying a
mean filter to the gray scale image. The kernel size kernelSize used to create IBlur is calculated according
to the following equation:

kernelSize =


min(IWidth

Gray ,IHeight
Gray )

75 , if
min(IWidth

Gray ,IHeight
Gray )

75 = odd
min(IWidth

Gray ,IHeight
Gray )

75 + 1, otherwise
(1)

The generation of IBlur image is important due to the fact that a blurred image usually has soft
edges, less color variation and brightness, meaning that the pixels of the same area of the image will
have, in the grayscale image, similar color values, thus resulting in a smaller variance of the color
values. Therefore, the impact of filtering an already blurred image, which has similar color values
around each pixel, will be significantly smaller than when applied to a non blurred one. Afterwards,
several image features for assessing blur distortion were extracted for both IGray and IBlur images.
The complete set of the considered focus metrics was already reported in a previous study [23], it being
possible to categorize them into five broad groups according to their working principles—Gradient
based, Laplacian based, Statistical based, Discrete Cosine Transform (DCT)/Discrete Fourier Transform
(DFT) based and Other principles (see Table 5 for a detailed summary).

Additionally, it should be noted that the magnitude of the absolute value of IGray and IBlur focus
metrics greatly depends on the specific characteristics of each skin mole (e.g., texture, edges, etc.). So in
order to achieve an adaptive approach that effectively generalizes for different image characteristics,
we added a new subset of features based on relative values, that is, it consists more specifically in the
difference and the quotient between the focus metrics values of IGray and IBlur. It should be noted that
the inclusion of similar relative focus features using artificially blurred images was already explored for
other use cases with very promising results, including microscopic [30] and skin wounds [31] images.
When computing the relative features, its values will be smaller for the blurred images due to the lower
variation of the gray color values between both forced blurred and original images. By merging all the
extracted absolute and relative focus features, we obtained a feature space with a total of 360 metrics.
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Table 5. Summary of the features extracted for focus assessment. * Each metric value was calculated
for IGray, IBlur, difference and division of blur and gray images.

Group Acronym Feature Name Extracted Metrics *

Gradient based
GRAE Energy Image Gradient Sum, mean, std, max
GRAS Squared Gradient Sum, mean, std, max
TENG Tenengrad Sum, mean, std, max, var

Laplacian based

LAPE Energy of Laplacian Sum, mean, std, max
LAPSM Sum Modified Laplacian Sum, mean, std, max
LAPD Diagonal Laplacian Sum, mean, std, max
LAPV Variance of Laplacian Mean, std, max, var
LAPG Laplacian and Gaussian Sum, mean, std, max

Statistical based

GLVA Gray Level Variance Sum, mean, std, min, max
GLVN Norm. Gray L. Variance Normalized variances
HISE Histogram Entropy Sum (R, G, B, gray)
HISR Histogram Range Range (R, G, B, gray)

DCT/DFT DCT DCT Sum, mean, std, min, max
DFT DFT Sum, mean, std, min, max

Other principles

BREN Brenner’s Measure Sum, mean, std
CURV Image Curvature Sum, mean, std, min, max
SPFQ Spatial Freq. Measure Sum, mean, std, max
VOLA Vollath’s autocorrelation Sum, mean, std, max
PRCB Perceptual blur Sum and mean (x and y axis)

3.2.2. Models Training and Optimization

Following the system architecture diagram, the aim of this work was to find accurate and robust
models for three different tasks—(i) artifact detection, (ii) preview focus assessment and iii) acquired
picture focus assessment.

In order to train the different models, two datasets were collected (as explained in the previous
section), which were then subdivided into train and test datasets according to each correspondent
classification task. For the DermArtifact dataset, this division was performed by keeping 70% and 30%
of the data as train and test sets, respectively. As for the DermIQA dataset, this division was performed
by keeping all the images from 9 subjects as the train set and images from 5 subjects as the test set,
with the purpose of having a wide variety of skin moles both in the training and test set. Since with
a random split, the test set could end up with more than two or three similar skin moles, and since
the objective is to validate the algorithm by using moles with the highest variety of characteristics
as possible, these moles should also be represented in the test set in order to ensure a more general
and robust outcome. Also, this division was made for both preview and acquired images separately,
enabling the creation of two different classification models, one for assessing only the preview images
(ii) and another to assess the final acquired images (iii).

Due to the limited computational capabilities of some smartphone models, and in order to
ensure not only real-time computational calculation of focus metrics but also real-time feedback to the
user regarding the focus level on camera preview frames, we opted to use a Decision Tree classifier.
Furthermore, the subset of values for hyper-parameter optimization used for model optimization
during training are further detailed in Table 6. All models were trained on a desktop, based on the
implementation included in the Scikit-learn Python module [32].
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Table 6. Decision Tree tested hyper parameter values used during training for model optimization .

Hyperparameter Search Space Values

Max Depth 1,2,3
Split Criterion Gini, Entropy

Split Strategy At Each Node Best, Random
Minimum Samples To Slip 1/3, 1/2 and 1/1 of the train size

Moreover, and for each aforementioned classification task, the following optimization pipeline
was adopted to train and select the best overall model:

1. Run grid search with the previously defined model hyper-parameters using the stratified cross
validation technique (10-fold cross validation). F1-Score or Informedness/Youden Index metric was
used as the classification metric to optimize when evaluating the DermArtifacts or DermIQA
datasets, respectively;

2. Take the best estimator chosen by the search in (1) and evaluate its performance on the
correspondent test set;

3. Keep best estimator parameters if the chosen metric to optimize for on train set is greater than the
previously saved/stored one and its Recall value on test set is greater than 85%;

4. Repeat the above steps for 5000 iterations.

4. Results

4.1. Artifact Detection Results

The Artifact Detection module in our proposed pipeline was created using the DermArtifacts
dataset. The optimized model found in the training phase, together with its respective best selected
features, was assessed on the correspondent test set data, recurring to classification metrics as Accuracy,
Recall, Precision, Specificity and F1-Score. The best classification results for this task are presented in
Table 7 (first row), and are computed using only two different features, namely the Difference Between
the Sum of Values of the Grey Level Variance of the gray and blurred image (GLVASUM

IGray
− GLVASUM

IBlur
)

and the Sum of the Perceptual blur metric of the blurred image on the y direction (PRCBSUMY
IBlur

). Thus,
as one can infer from these results, an overall accuracy of 97.3% was achieved for the detection of
artifacts and non-interest structures on preview camera images.

Table 7. Classification results for best performer models.

Models Accuracy (%) Recall (%) Precision (%) Specificity (%) F1-Score (%)

(1) Artifact detection 97.3 96.96 100 100 98.5
(2) Focus assessment 83.7 85.4 79.5 82.4 82.4

(1+2) Preview assessment 77.9 80.5 72.8 75.8 76.5
(3) Acquired Focus assessment 86.2 91.1 80.7 82.1 85.6

4.2. Preview Images Focus Assessment Results

Assessment of the images from the camera preview is perhaps the most important step within
the proposed pipeline, since it is on this stage that the most valuable information can be provided
to the user in real-time. Thus, making this feedback important for assisting the process of acquiring
focused images of a skin mole. Classification results of the Focus Assessment module on the test set
of the DermIQA dataset are presented in the Table 7 (second row). The best model obtained consists
in the usage two features, namely the Division between the Sum of the values of the Image Curvature of
blur and gray image (CURVSUM

IBlur
/CURVSUM

IGray
) and the Maximum of the Variance of Laplace of the gray image

(LAPVMAX
IGray

). As it can be seen in the Table 7, an overall accuracy of 83.7% was attained for correctly
identifying if a certain preview image is focused or not.
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As the Preview Focus Assessment module is composed by two blocks, namely Artifact Detection
and Focus Assessment modules, the combined performance also needed to be addressed. Thus,
these two models that first evaluate artifact presence followed by focus of camera preview images were
tested with all the preview images present in the DermIQA dataset, being the results presented in the
Table 7 (third row). As it can be seen from this results, an overall accuracy of 77.9% is achieved, which
is less than those obtained when using the Artifact or Focus Assessment models alone. Despite this
decrease in the overall performance due to this trade-off, relatively accurate results in terms of camera
preview assessment are obtained when only using a total of 4 features—2 features for identifying the
presence of artifacts in these images and another 2 features for assessing its focus.

4.3. Acquired Images Focus Assessment Results

Finally, the acquired images were also evaluated in terms of image focus assessment.
The classification results for the best model is presented in Table 7 (fourth row). Moreover, only
two features were used for this task, namely the Mean of the values of y of the Marziliano Metric of the gray
image (PRCBMEANY

IGray
) and the Difference between the sum of the values of the image curvature of both images

(CURVSUM
IGray

− CURVSUM
IBlur

). As one can infer from these results, an overall classification accuracy of
86.2% was attained for image focus assessment.

4.4. Algorithm Running Times

Being real-time processing of the camera preview images an issue when dealing with a device
with limited capabilities, the proposed pipeline running time for assessing a single image was studied.
A low-end device (Nexus 5) and two high-end devices (Samsung S9 and OnePlus 6T) were selected
for evaluation. Mean running time for preview and acquired image focus assessment is presented in
Table 8.

Table 8. Algorithm running times on different smartphones for preview and acquired images focus
assessment.

Smartphone Preview Image Assessment Speed (ms) Acquired Image Assessment Speed (ms)

Nexus 5 (low end) 625 1203
Samsung S9 (high end) 77 126
OnePlus 6T (high end) 58 123

5. Discussion

Acquiring skin lesion images using a smartphone is undoubtedly becoming more frequent in our
daily lives, not only by professionals but also by patients seeking clinical guidance. By using handheld
and decentralized image acquisition approaches, the time between the identification of a potential
lesion and a diagnosis could be drastically shortened. However, if the quality of the acquired images is
not assessed during or immediately after an acquisition, the number of unsuitable images for a clinical
assessment may dramatically increase. Recent studies point out that professionals do not necessarily
need to be trained photographers to ensure an adequate acquisition of quality images [18]. However,
if some guidelines or even real-time guidance is provided to the user, the number of images with
enough quality may increase significantly, reducing the number of times that an unsuitable picture is
sent for analysis. Thus, image quality assessment solutions for dermoscopic image acquisition should
be provided or adopted, in order to improve current dermatological screening processes.

With this clear goal in mind, the methodology proposed in this work was revealed to be suitable
and robust enough to fulfill this purpose. In particular, accurate results were obtained during this study
for the focus assessment of mobile-acquired skin mole dermoscopic images. Additionally, suitable
results were also obtained for the detection of artifacts on dermoscopic images, as well as for the focus
assessment on camera preview images. Remarkably, only two highly discriminating focus metrics are
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used to achieve the reported results in each classification task, thus making this approach suitable for
real-time usage with mobile devices. Despite these results, when combining this two individual tasks,
the overall performance of the proposed solution suffers a significant decrease, as expected. This loss
in performance may be due to the inherent complexity of each task. Individual limitations for each
type of assessment may be unveiled and more pronounced when looking into these two different tasks
as one. Despite this decrease, the overall performance for focus assessment of preview images in terms
of artifact detection and focus is quite satisfactory.

The proposed pipeline in this study, involving artifact detection, preview and taken image
assessment was already deployed in an Android application running on a smartphone. The application
allows the manual acquisition of dermoscopic images in an easy and intuitive way, providing real-time
feedback about the level of focus of the images being acquired. In Figure 4 it is possible to observe the
feedback provided by Preview Image Assessment module. Moreover, usability tests on the application
interfaces design were already made and reported in Reference [31]. Additionally, the proposed
solution was designed not only to evaluate the image quality of mobile-acquired dermoscopic images,
but also the focus level of each preview frame in real-time, in order to guide the user during the
acquisition process. Given the reported running times on both low-end and high-end devices, we
can also conclude that the proposed approach is computationally suitable for real-time usage on
mobile devices.

Figure 4. Application screenshots of: artifact detection module and real-time preview focus assessment
indicating non-focused and focused image, respectively.

Thus, given the importance of such images for diagnosis purposes, we can consider that the
ultimate goal of this study was fulfilled, since the process of acquiring dermoscopic images of skin
moles can now be simplified and better quality images can be collected for screening and diagnosis
purposes. Particularly, by embedding this image quality assessment methodology in handheld image
acquisition tools, standardized images can be obtained, which may increase the efficiency in the
dermatological clinical flow.

6. Conclusions

Due to the constant increase and demand for telemedicine solutions, more specifically for
dermatological purposes, is clear that standardization of the image acquisition process is a crucial
step. Image quality evaluation of the acquired image is necessary, as well as providing adequate
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guidance to the end-user in the image acquisition process. In this paper, we presented a solution
that acts on these two premises, being able to guide the user in real-time during the acquisition
process, as well as assessing whether a certain mobile-acquired dermoscopic image is properly focused.
Particularly, the proposed solution was designed for assisting the process of collecting a skin mole
image in real-time, by using any smartphone camera with a dermoscope attached.

In terms of the automated analysis of camera preview images, our approach was divided into
two different tasks—real-time artifacts detection and real-time preview images focus assessment,
with obtained accuracies of 97.3% and 83.7%, respectively. An accuracy rate of 77.9% was achieved
for the complete camera preview focus assessment module, which included both previously refferred
tasks. Regarding image quality assessment of the mobile-acquired picture, the results obtained also
demonstrate the adequacy of the proposed methodology, being achieved an accuracy of 86.2% using
an approach that only requires the extraction of two lightweight focus metrics.

To finalize, an embedded Android application with the proposed methodology was also
developed, in order to test the viability of the proposed approach in a real life scenario. Empirically,
the results obtained through the real-time usage of the developed application seem to be in line with
the results obtained through the validation datasets. However, further testing in real clinical settings
are required, in order to properly evaluate the performance and suitability of the proposed approach
for screening and diagnosis purposes.

For future work, it would be valuable to have the dataset annotated by specialists and enhanced
with more images of different subjects and types of skin lesions in order to increase the robustness
of our solution. Regarding the features used, further research should be done in the search and
optimization of features capable of being used in real-time. Finally, testing the pipeline used in a real
live scenario would be of utmost importance in order to provide more concrete indicators of the quality
of the work here described.
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