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Abstract: Underwater gliders are energy-efficient vehicles that rely on changes in buoyancy in order
to convert up and down movement into forward displacement. These vehicles are conceived as
multi-sensor platforms, and can be used to collect ocean data for long periods in wide range areas.
This endurance is achieved at the cost of low speed, which requires extensive planning to ensure
vehicle safety and mission success, particularly when dealing with strong ocean currents. As gliders
are often involved on missions that pursue multiple objectives (track events, reach a target point, avoid
obstacles, sample specified areas, save energy), path planning requires a way to deal with several
constraints at the same time; this makes glider path planning a multi-objective (MO) optimization
problem. In this work, we analyse the usage of the non-dominated sorting genetic algorithm II
(NSGA-II) to tackle a MO glider path planning application on a complex environment integrating 3D
and time varying ocean currents. Multiple experiments using a glider kinematic simulator coupled
with NSGA-II, combining different control parameters were carried out, to find the best parameter
configuration that provided suitable paths for the desired mission. Ultimately, the system described
in this work was able to optimize multi-objective trajectories, providing non dominated solutions.
Such a planning tool could be of great interest in real mission planning, to assist glider pilots in
selecting the most convenient paths for the vehicle, taking into account ocean forecasts and particular
characteristics of the deployment location.

Keywords: multi-objective optimization; underwater glider; path planning; genetic algorithm; NSGA-II

1. Introduction

Underwater gliders constitute autonomous robots designed to perform multi-sensor
oceanographic sampling, for long periods in large regions. They represent a valid alternative to
expensive research vessels campaigns for a wide range of applications, including water quality
monitoring, detection of algae bloom hazards, ocean structure characterization, pollution source
identification or sea-floor mapping, to name just a few [1,2]. However, their operation nowadays
still require human supervision, both for short- and long-term missions. This scheme can be suitable
for simple applications, but when dealing with more complex multi-objective missions, automatic
path planning tools are required; this is the main motivation of our work, contributing to the
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development of underwater gliders with higher autonomy and better operational capabilities for
multi-objective applications.

In this work, the usage of the non-dominated sorting genetic algorithm II (NSGA-II) algorithm [3]
is analysed to tackle a multi-objective (MO) glider path planning application on a complex and
changing environment. The problem includes the simulation of 3D vehicle trajectories inside a
dynamic depth and time varying ocean currents field.

The paper first introduces, in Sections 1.1 and 1.2, the concepts of the main areas our work aims
to contribute to, which are underwater glider path planning and multi-objective optimization; then
Section 1.3 presents the literature review regarding multi-objective path planning. The proposal is
presented in Section 2, including the problem definition, in Section 2.1, and methodology, in Section 2.2,
applied to address the problem of glider path planning using multi-objective optimization. Section 3
describes the simulator, test scenarios, and algorithm configurations. Section 4 presents the experiments
carried out and the results obtained, which are discussed in Section 5. Finally, the conclusions and
some future work are outlined in Section 6.

1.1. Underwater Glider Path Planning

Ocean gliders are torpedo-shaped vehicles that make use of a highly energy efficient propulsion
system: They modify their buoyancy and pitch angle by means of an artificial swim bladder operation
combined with internal batteries displacement. The induced descend–ascend movement is transformed
into effective horizontal displacement by the interaction between the water column and the vehicle
hydrodynamics, resulting in a saw-tooth like trajectory profile similar to the one shown in Figure 1.
Typically, the vehicle performs two or three down-up cycles, called yo-yo’s, between pre-defined max-
and min-depths before returning to surface to start a new sequence or stint each 6–8 h. As energy
consumption is mainly associated with the activation of the electric pump, which is responsible for the
buoyancy control at inflection points, extremely long-term missions are possible with these vehicles.

Figure 1. Example of a 3D generic saw–tooth glider trajectory (10 stints).

During a glider mission, the control centre relies on satellite communication to upload commands
to the glider when at the surface, including target waypoints or depth limits, for example. The surfacing
period has to be kept as short as possible to avoid collisions with surface vessels, reduce biofouling,
and decrease vehicle’s drift. After the surfacing, the glider submerges again to perform another set
of stints. Although major deviations from expected trajectories occur generally at surface (due to
strong currents), when the glider dives, its location can only be estimated using its on-board sensors,
producing errors that grow with time. In order to reduce this uncertainty, as the ocean is a very
dynamic and unknown environment, researchers have developed different strategies. Woithe et al. [4],
for example, use a doppler velocity log with promising results on predicting glider position underwater;
Wang et al. [5] propose a dynamic model-aided localization scheme that proved to be able to improve
significantly the precision in the estimation of the vehicle position.

The main drawback of (passive) ocean gliders is that they can only reach low horizontal speeds
(around 0.25 m/s). To optimize their operation, factors such as bathymetry, marine traffic or,
remarkably, ocean currents, have to be anticipated, so that suitable paths are well planned in advance.
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As this constitutes a 4D problem (latitude, longitude, depth, and time), with variable environment
conditions, the process is not so trivial.

From the traditional path planning, the strategies to achieve the best path for gliders kept evolving.
An A* search procedure was done by Garau et al. [6], in areas with different length scale eddies and
currents with varying intensities. However, the authors considered the usage of constant thrust power
to navigate the vehicle. They also tested different start and end points across the simulation area,
to find the best paths and best locations to achieve their objectives.

The usage of Lagrangian coherent structures carried out by [7] showed how those can be
used to find near optimal trajectories in dynamic environments, considering a 2D glider kinematic
model. They used ocean current velocities collected with an HF radar system to calculate the optimal
trajectories for the vehicle.

A fast marching based approach (called FM*) was used by Petres et al. [8] in order to extract a
continuous path from a discrete representation of the environment. The authors considered underwater
currents, with the vehicle turning radius being added as a constraint.

The backward study of a particle tracking equation provided an optimal path in [9], with the
authors stating that the system can easily handle forbidden regions (such as strong currents areas) and
real obstacles that affect the ocean flow and consequently the vehicle pathway.

Further strategies to address underwater glider path planning (UGPP) under complex scenarios
(static and dynamic obstacles) are discussed in [10], as the classical path planning might not be
adequate. Those strategies include pointing the vehicle to the destination and make small adjustments
during the mission or in adverse zones position the vehicle across the current, in order to reach a place
with weaker and/or more favourable currents. The same work suggests some metrics to evaluate
performance, in order to determine how well defined the path-planning arrays are, considering the
mission objectives.

The work presented by [11] concluded that adequate path planning contributes to a substantial
energy saving set of solutions compared to straight line trajectories, in cases when ocean currents and
vehicle’s speed are comparable. The authors also point out that a straight line trajectory from start to
end can only be an optimum path when the currents’ velocity does not exceed half of the vehicle’s
velocity. Energy and time saved with path planned missions can be used to either increase the distance
travelled and/or add more sensors.

A stochastic optimization methodology was carried out by Subramani et al. [12], focused on
obtaining the best paths from the viewpoint of energy-optimal missions. They also concluded that
vehicles that can change their displacement speeds can reach the programmable locations by using
favourable currents, saving energy for crossing areas with unfavourable conditions.

UGPP challenge has also been tackled using evolutionary techniques, like in Zamuda et al.
works [13,14], including eddy sampling applications [15].

1.2. Multi-Objective Optimization

In early days, due to the lack of methodologies, multi-objective optimization problems (MOOP)
in general were solved by casting all objectives in one and solving it as a single objective problem [16].
Currently, MOOP are solved differently by optimizing a group of two or more fitness functions (usually
in conflict [17]), without prejudice among them, until no more improvements to the current solution set
could be achieved. MOOP results are (usually) a set of optimal solutions that minimize all the objective
functions at the same time, or either maximize all the functions or a combination of maximization
and minimization of different functions [16,18]. The set of optimal solutions is designated as Pareto
front, on which a point x ∈ X is called Pareto optimal IFF there does not exist another point, x∗ ∈ X,
such that F(x) ≤ F(x∗), and Fi(x) < Fi(x∗) for at least one fitness function [19]. Also, on the Pareto
front, all the solutions yield the same optimal value [20].

One way to tackle MOOP and obtain solutions that converge to a Pareto front is through the
usage of evolutionary algorithms (EA), very popular among researchers because of its flexibility
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and easy adaptation to different problems. Also, as EA are population-based algorithms, they are
well suited to be used to solve MOOP in form of multi-objective evolutionary algorithms (MOEA).
Currently, the usage of MOEA can be found on multiple areas [21], integrating diverse selection and
estimation mechanisms.

A recent review of evolutionary multi-objective methods can be found in [22], including some
that became standards when dealing with MOOP, such as the NSGA-II algorithm. The work considers
three types of MOEA: Pareto-based (such as NSGA-II [23]), indicator-based (such as SMS-EMOA [24]),
and decomposition-based (such as MOEA/D [25]), exposing their advantages and disadvantages.
Also, choosing the right method depends on the dimension of the objective space, how many solutions
should be generated, the distribution of solutions, and an a priori knowledge about the location and
shape of the Pareto front.

Considering real problems of engineering, EA are currently being used for energy, electrical,
structural and civil engineering, scheduling, transport, combinatorial optimization, and more,
as described by Greiner et al. in [26]. However, these are just some examples, as many other problems
that need to do multi-objective optimizations are using EA.

1.3. Multi-Objective Path Planning

One area in which multi-objective optimization is important is in path planning. Multi-objective
path planning (MOPP) problems will be introduced here, including different techniques and
applications discussed in the scientific literature.

MOPP is the way of finding a feasible path for a vehicle that requires travelling from a staring
point A to a final point B, and accomplishes all the objectives planned for the mission. Considering
the most common objective—reaching a target—other objectives for the mission might include (but
are not limited to), verifying several path properties, limiting battery consumption, and crossing or
avoiding specified areas [10]. Previous studies solved MOPP in different ways, for diverse types of
vehicles and different environments. In [27,28], the authors used genetic algorithms (GA) to optimize
both length and difficulty of the path, adding a basic path repair mechanism to make non-valid paths
usable, on a 2D realm.

The genetic algorithm NSGA-II was used by Mittal and Deb [29] to perform offline path planning
for an unmanned aerial vehicle, with the fitness functions being avoid collisions, no abrupt changes
to the path, and not flying above a specified altitude. Also, Lee et al. [30], worked on path planning
optimization for unmanned aerial vehicles, using NSGA-II combined with Nash-equilibrium to
decrease the time for searching one global solution, showing that a hybridization with game theory is
a valid choice to solve MOPP.

The usage of particle swarm optimization (PSO) to solve a MOPP was proposed in [31], to find
smooth and shorter paths, with parameter tuning, using a 2D map. Another work using PSO
was carried out by Gong et al. [32] to solve path planning on a 2D environment, incorporating
previously known danger locations, and similarly in [33], where path planning in a 2D uncertain
environment, with danger sources and obstacles were concurrently being considered also using PSO.
A spline approach is discussed in [34], to perform MOPP with fitness functions being “path length
and potential”, “obstacle hindrance”, and “visibility” of the robot. Davoodi et al. [17] described
a MOPP accounting for length and clearance of the path, using path refiner operators based on
geometry parameters.

Later, Bopardikar et al. [20] tried to find a path that minimizes a primary cost function subject
to a bound on a secondary cost function, handling collision avoidance in all the vertexes along the
path. The same work described planning in belief space, with collision probability and multi-objective,
proposing one algorithm that is more accurate but with higher computation costs and another that
sacrifices accuracy but is more efficient. Using the Mars Rover scenario (3D), Ref [35] developed a
MOPP using A* search with real objectives (minimize difficulty, danger, elevation, and length). Usage
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of the Pareto front and the Pareto optimal in every step of A* was proposed by [36,37] using memetic
algorithms in order to optimize both path length and smoothness.

A survey of 2016 [38], about applying nature inspired algorithms to solve MOPP, analysed the
usage of particle swarm optimization, ant colony optimization, and artificial bee colony. In addition,
Hidalgo et al. [39] presented a firefly-based approach to pursue MOPP considering path safety, length,
and smoothness, pointing to the path planning as one of the most researched topics in robotics.

One year later, in 2017 another publication [40] reviews robot path planning techniques, with soft
computing and heuristic approaches (artificial neural networks, fuzzy logic, wavelets, and genetic
algorithms) replacing the classical methods (potential fields, roadmap, and cell decomposition).
In same year, another work [41] addressed the path planning for the problem of an aircraft climbing
using PSO and a two-level optimization scheme, in order to improve search performance, with results
showing 15% faster climbs saving 20% more fuel.

Later, in 2018, and also using PSO, Ref. [42] compared their improved PSO algorithm against
other evolutionary algorithms, showing better results finding collision free and feasible paths along
with minimum length and terrain roughness for a car-like mobile robot. Using an adapted version
of NSGA-II, Ref. [43] was able to optimize three objectives and study the influence of the input
parameters, when applying it to mobile robots on a 2D plane, obtaining fast optimization speeds and a
good convergence of solutions. Also applied to mobile robotics, Ref. [44] proposed a multi-objective
evolutionary algorithm, tested using five scenarios and quality metrics.

Using a combination of ant colony and PSO on different optimization levels was studied by [45],
to find the best energy-efficient path for underwater vehicles on an eddy field, using uncertainty levels.
An algorithm to do multi-objective path planning using PSO was proposed by [46] applied to mobile
sink in wireless sensor networks, employing the concept of Pareto front to select the global and local
best solutions, outperforming other algorithms in several performance metrics.

Considering aerial vehicles, Ref. [47] used a genetic algorithm to do collision-free shortest path
planning, testing their proposal with and without restrictions to the path of aerial vehicles, stating that
their solution can be applied to 3D environments. Another solution for multi-objective path planning
for aerial vehicles was proposed by [48], combining a genetic algorithm with ant colony and using
maps of height, risk, quantity, and value of sensing information. Authors used small population
sizes and generations and were able to obtain dynamic environmental adaptability and high utility
paths. Ref. [49] used an improved genetic algorithm to do multi-objective path planning, applied to a
free-form surface milling, with three fitness functions (efficiency, energy, and carbon footprint) being
converted to one single fitness function and replicating the travelling salesman problem. Another
approach to multi-objective path planning using a genetic algorithm was done by [50], by using both
dynamic and static 2D environments and concluding that their matrix-binary codes approach is more
efficient and robust than random search algorithms.

The usage of hybrid algorithms, was detailed later in [51], applying hybrid particle-swarm
optimization–modified frequency bat optimization algorithm to tackle 2D path planning. The fitness
functions were collision-free path, path-smoothness, and shortest-distance, assuming some
simplifications to ease the process, such as no kinematic constraints, circular obstacles, and the
addition of the robot size to the obstacle size.

More recently, in 2019, Ref. [52] combined the concepts of robust optimization and the integration
of multiple scenarios as a multi-objective function, in order to investigate the relation between
dominance and robustness.

Using a parallel genetic approach, Ref. [53] tackled optimal path planning for single and multiple
underwater vehicles, avoiding upstream currents in multi-objective optimizations by developing a
new crossover operator in order to raise the diversity of the solution. Authors state two aspects when
dealing with underwater vehicles: the importance of path planning tools and the usage of simulations
to validate solutions before real tests.
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The usage of a multi-objective firefly algorithm was proposed by [54], which saves elite particles
obtained on each generation to ensure a higher ability to escape local optima results, increases the
convergence speed and precision of the solution, being suitable for high-complexity multi-objective
optimization problems.

2. Multi-Objective Optimization Applied to Underwater Glider Path-Planning

With this work, authors want to address the problem of multi-objective glider path planning
using the evolutionary algorithm NSGA-II. This algorithm has been widely used for MOOP since
its creation [3], becoming a standard. This algorithm is still considered a competitive candidate in
many optimization challenges, and has never been used for the kind of glider path planning problems
proposed in this paper.

Some basic preliminary results were obtained in the conference paper [55], as an initial
exploratory proof of concept. Here the idea is extended, formally defined, and the experimental
design fully developed in order to get insight into the algorithm behaviour, and obtain statistically
significant conclusions.

This application problem is of special interest from the optimization point of view, due to the
special vehicle operation characteristics and the complex environment uncertainties. On the other
hand, the results could have many practical applications, in the form of decision support tool for
multi-objective glider missions, since they are always defined as multi-purpose.

Regarding the related work previously presented, the closer approaches are [43,53]. The first
one also analyses NSGA-II parameters influence in a MOPP problem, but the robot behaviour (it is
not a glider) is much simpler there, and the scenario is 2D and does not include temporal variation,
so building a path is not conditioned by the environment like in our case. The second work, similarly
considers the use of gliders, but no simulation details are provided, and the navigation problem seems
to be simplified, discarding temporal and 3D factors; additionally, the use of intermediate and target
waypoints, instead of headings, introduce side effects depending on the precision ratio defined.

The main contribution of this work is two-fold: on one side, provide results in a new application
problem for the NSGA-II algorithm; on the other side, contribute to the building of navigation
assistance systems for glider pilots, or even autonomous navigation system, in complex missions.

2.1. Problem Definition

For this work, the problem of a glider that needs to navigate from a starting point to a final
destination was tackled; along the path, several obstacles need to be avoided. The goal is to propose
the most convenient planning taking into account the vehicle characteristics, the 3D ocean currents
forecasts and the bathymetric and operational restrictions. Since ocean models produce predictions
generally up to 3 days, the planning horizon has been fixed for that period too.

Two objective functions of interest have been defined, to be optimized by NSGA-II algorithm:

f (1) = Distance(Target, LastPoint)
f (2) = DistanceToObstacle(Trajectory)

f (1) function is computed as the geodesic distance between the latitude–longitude coordinates
of the desired target point (Target) and the final point of the glider trajectory (LastPoint). It is a
minimization objective.

f (2) function is computed as the minimal geodesic distance between the latitude–longitude
coordinates of any point of the glider trajectory (Trajectory) and any of the defined obstacles. It is a
maximization objective.

2.2. Methodology

The validation of the hypothesis was based on a series of experiments executing different variants
of the optimization algorithm (through changes of the input parameters, as described on Section 3.3)
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over a set of selected scenarios. A significant number of independent runs were carried out to obtain
statistically robust results and to give support to the conclusions.

A glider simulator took the inputs from the problem definition and environmental conditions,
to produce the required outputs to be connected to the NSGA-II optimizer variants. After pre-defined
stopping criteria, each algorithm returned the best individuals and the objective functions values.

The different outputs were evaluated and compared, generating different groups of results,
to decide what algorithm parametrization yields better performance.

3. Experimental Setup

This section describes the different elements that configure the design of experimental setup: the
glider simulator (used to obtain the trajectories according to the input parameters: headings, ocean
forecasts, and glider displacement velocities), the scenarios (eight different scenarios in order to obtain
significant data) and the algorithm variants (through a combination of parameters). Each of these
elements are detailed next.

3.1. The Glider Simulator

A 4D (latitude, longitude, depth, and time) C-Language glider kinematic simulator was
implemented, trying to reproduce, as close as possible, the real vehicle behaviour, but without
introducing unnecessary computational cost that could lead to unacceptable optimization times.
The simulator takes as inputs the glider displacement velocities, data about the trajectory profile,
and mission parameters (start and target points, maximum and minimum depths, and number of
yo-yo’s per stint, to mention some), a list of control headings to be sequentially selected after every
surfacing, and the forecasted ocean currents.

This simulator has been adapted from a Matlab version that was used in previous works [13–15].
It has been redesigned to be able to respond to the much higher computational demands the present
work requires; however, exhaustive testing has been performed in order to guarantee that both
simulators produce the same results under the same input conditions.

The glider control configuration was set to include 10 stints composed by two yo-yo’s each,
defining the inflection range of a maximum depth of 1060 m and a minimum of 10 m. The vehicle
was commanded to stay at the surface for 20 min before the next dive. The nominal velocities were
configured to model the performance of the Slocum G2 glider, also incorporating some manoeuvrability
restrictions. Figure 1 shows an example of 3D glider trajectory, illustrating the vehicle inflections,
surface drifting, and tidal-current effects.

3.2. Simulation Scenarios

The Canary Islands sea area was selected for the simulation, due to the special characteristics
found in this zone, with the presence of a great variety of oceanographic structures of interest (eddies,
upwelling cells, fronts, etc.). The area covered from −12 to −19◦ East and 26 to 30◦ North, between 16
and 18 May 2013, a period showing highly dynamic ocean currents, as can be observed in Figure 2.

Ocean circulation forecasting maps (U and V variables) for the glider path simulator are read
from MERCATOR-IBI [56], with a spatial resolution of 1/12◦ and daily outputs, with 3D data from
surface down to 5000 m depth. Other ocean forecasts can also be used, but the decision of using this
particular product is because its spatial resolution (approximately 2 km).

To test this system and its robustness, a set of eight scenarios was defined around the islands.
Each scenario, as shown in Figure 3, consist in a start location (green), two obstacles with a safety ratio
(red), and a target location (purple). The factors considered were the ocean currents average direction
(favourable/against) and variability (stable/unstable), obstacle configuration (overlapping/separated),
and bathymetric restrictions.
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Figure 2. Surface currents of the area of simulation (Canary Islands, NE Atlantic).

Figure 3. Scenario elements example: start point, target, and obstacle’s locations.

Four scenarios with different trajectory directions (North–South, South–North, East–West,
and West–East), are configured according to Table 1 for overlapping obstacles and Table 2 for same
trajectories’ direction but with separated obstacles. In all cases, the obstacle safety radius has been
fixed to 12 km. The distance between the starting point and the target has been selected so it’s not
reachable in the 3 days planning horizon.

Images in Figure 4 show the location of the different elements integrating the corresponding
overlapping and separated scenarios in the map.

Table 1. Scenarios coordinates (◦ N; ◦ E) of the start point, target, and overlapping obstacles for the
four directions.

Scen.Id. Direction Start (◦ N; ◦ E) Target (◦ N; ◦ E) Obstacle 1 (◦ N; ◦ E) Obstacle 2 (◦ N; ◦ E)

1 (NSo) North-South 29.60; −18.34 28.60; −18.00 29.40; −18.25 29.20; −18.25
2 (SNo) South-North 28.60; −17.00 29.60; −17.30 28.80; −17.10 29.00; −17.10
3 (EWo) East-West 28.82; −15.22 29.10; −16.38 28.90; −15.43 28.91; −15.65
4 (WEo) West-East 29.70; −16.40 29.40; −15.20 29.60; −16.20 29.60; −15.98

Table 2. Scenarios coordinates (◦ N; ◦ E) of the start point, target, and separated obstacles for the
four directions.

Scen.Id. Direction Start (◦ N; ◦ E) Target (◦ N; ◦ E) Obstacle 1 (◦ N; ◦ E) Obstacle 2 (◦ N; ◦ E)

5 (NSs) North-South 29.60; −18.34 28.60; −18.00 29.37; −18.32 29.37: −17.96
6 (SNs) South-North 28.60; −16.80 29.60; −17.15 28.90; −16.80 28.90; −17.15
7 (EWs) East-West 28.80; −15.20 29.10; −16.40 29.10; −15.50 28.82; −15.50
8 (WEs) West-East 29.70; −16.40 29.40; −15.20 29.70; −16.10 29.42; −16.10
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Figure 4. Areas of simulation for overlapping (left) and separated (right) obstacles, with surface ocean
current directions.

Regarding the average direction of the 3D ocean currents, scenarios 1, 3, 5, and 7 correspond
to favourable currents, while scenarios 2, 4, 6, and 8 represent against currents. With respect to the
variability factor, the scenarios 2, 3, 6, and 7 exhibit lower stability in the currents temporal evolution,
compared to scenarios 1, 4, 5, and 8, that are more stable.

3.3. NSGA-II Configuration

As previously commented, NSGA-II algorithm is considered a standard for solving MOOP. Briefly,
NSGA-II starts by initializing a population, which is evaluated and ranked based on non-dominated
sorting and the crowding distance operator. After, it runs a main loop composed by selection, crossover,
and mutation operators, to generate an offspring which is evaluated through the fitness functions.
Next, it combines and evaluates the parent and the newly obtained offspring and selects some
individuals by their rank. This loop runs until a stopping criterion is met, and the final population is
reported. A more detailed explanation and the respective pseudo-code is presented in the detailed
description of the algorithm [3,23].

The chromosome is constituted by a total of 10 real variables, representing different headings to the
glider at every surfacing, and set to be kept by the vehicle along each underwater stint. Without loss
of generality, an incremental heading change codification is chosen instead of absolute waypoint
coordinates to avoid undesirable target hit conditions and waypoint transition effects. Minimum and
maximum values of all the genes are −180 and +180 sexagesimal degrees, respectively.

The objective of these experiments is to find the best parameter combination through the execution
of multiple optimizations, analyse and present the best results according to statistical tests, and interpret
those results in the context of glider path planning.

A total of 27 different configurations were considered for the NSGA-II, combining three values
of mutation probability (0.05, 0.1, 0.15) around the 1

n rule [57], with n = 10 in our case, and crossover
probability (1, 0.9, 0.8), with population size (40, 100, and 160) for 500, 200, and 125 generations,
respectively. To guarantee a fair comparison, the same total number of 20,000 fitness evaluations (FES)
was set as stopping criterion. All parameter value combinations are presented in Table 3.

The glider simulator was coupled with NSGA-II, that was configured combining values of
multiple parameters (Table 3). Every configuration of each case is repeated for 51 independent random
executions in order to obtain statistically significant results for the evaluation of the performance of
the meta-heuristic optimization. The coupled system output for every run is a list composed by the
vehicle position on a 4D representation (Latitude, Longitude, and Depth over time), according to the
provided headings and ocean circulation data.
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Table 3. Configurations tested in the experiments, varying in population size (PS), number of
generations (NG), crossover probability (CP), and mutation probability (MP).

N PS NG CP MP

1 40 500 1.0 0.05
2 40 500 0.9 0.05
3 40 500 0.8 0.05
4 40 500 1.0 0.10
5 40 500 0.9 0.10
6 40 500 0.8 0.10
7 40 500 1.0 0.15
8 40 500 0.9 0.15
9 40 500 0.8 0.15
10 100 200 1.0 0.05
11 100 200 0.9 0.05
12 100 200 0.8 0.05
13 100 200 1.0 0.10
14 100 200 0.9 0.10
15 100 200 0.8 0.10
16 100 200 1.0 0.15
17 100 200 0.9 0.15
18 100 200 0.8 0.15
19 160 125 1.0 0.05
20 160 125 0.9 0.05
21 160 125 0.8 0.05
22 160 125 1.0 0.10
23 160 125 0.9 0.10
24 160 125 0.8 0.10
25 160 125 1.0 0.15
26 160 125 0.9 0.15
27 160 125 0.8 0.15

With the configurations presented, and using a regular laptop (i7 6700HQ, 16 GB RAM,
running Linux Ubuntu 18.04) executing 4 optimizations simultaneously, each one of the 8 cases
(27 configurations × 51 random seed values, each) was performed in about one hour.

As the version of NSGA-II used and the simulator are written in the C-Language, the requirements
to run these experiments are, essentially, a computer with a C compiler and the netCDF libraries
(in order to read the ocean forecast data). The amount of time needed to optimize will depend on the
hardware specifications of the machine used.

4. Results

Departing from the configurations and scenarios described in the previous section, a complete set
of experiments were carried out. The respective results are presented next, and discussed in Section 5.

The hypervolume (HV) indicator [58] will be used to evaluate the results as indicator
of multi-objective relative quality, measuring the n-dimensional volume with respect to a
pre-defined reference point [59]. The HV values are used to rank solutions and assess global
optimization convergence.

Figures 5 and 6 show the evolution of the Hypervolume for the median execution of every
27 configurations, for overlapping and separated obstacles scenarios, respectively. The reference points
used for HV computation were 10 km and 90 km (80 km for scenarios 6 and 8).
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(a) (b)

(c) (d)

Figure 5. Hypervolume (HV) median convergence for scenarios 1–4 after 20,000 executions fitness
evaluations (FES): (a) Scenario 1 (N–S); (b) Scenario 2 (S–N); (c) Scenario 3 (E–W); (d) Scenario 4 (W–E).

Hypervolume evolution graphs show that the optimization process has reached a stable value, so
no significant improvement is expected by increasing the number of generations.

4.1. Individual Scenario Analysis

This subsection will present results obtained for every scenario individually, using the final HV
value as a comparison measure.

First, a Friedman statistical analysis is performed to test the null hypothesis that all parameter
combinations produce similar results. In all cases, the computed p-value for the statistic (chi-square
distribution with 26 degrees of freedom) is small, so the null hypothesis can be rejected. Table 4
compiles the Friedman test results.

Table 4. Friedman test results for every scenario (1–4: overlapping obstacles; 5–8 separated obstacles).

Scenario 1 2 3 4 5 6 7 8

p-value 2.67046 × 10−84 6.47715 × 10−48 8.68828 × 10−69 7.36995 × 10−63 7.7676 × 10−16 5.1261 × 10−48 1.01802 × 10−58 7.9773 × 10−24
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(a) (b)

(c) (d)

Figure 6. HV median convergence for scenarios 5–8 after 20,000 executions FES: (a) Scenario 5 (N–S);
(b) Scenario 6 (S–N); (c) Scenario 7 (E–W); (d) Scenario 8 (W–E).

The average rankings of every configuration and scenario are compiled in Table 5.

Table 5. Average ranking for every scenario.

C_1 AvR_1 C_2 AvR_2 C_3 AvR_3 C_4 AvR_4 C_5 AvR_5 C_6 AvR_6 C_7 AvR_7 C_8 AvR_8

17 7.31 17 7.78 13 6.41 16 6.84 22 9.73 16 6.96 16 7.67 13 9.43
16 7.88 14 8.45 16 8.00 17 8.47 25 10.06 17 8.43 13 8.29 16 9.84
13 8.12 18 8.90 17 8.37 22 8.88 13 11.75 13 9.69 17 8.63 26 10.39
18 8.35 16 8.92 14 8.69 18 9.02 16 11.80 18 9.96 18 9.00 18 10.84
15 8.65 13 9.31 22 9.61 13 9.04 26 11.82 26 10.22 22 9.98 17 10.88
14 9.10 15 9.35 18 9.78 25 10.49 17 12.04 14 10.35 14 10.02 7 11.02
19 10.04 27 11.94 23 10.96 23 11.35 27 12.10 25 10.80 26 11.06 4 11.78
22 10.25 25 12.29 24 11.65 14 11.37 7 12.63 22 11.04 25 11.12 8 11.94
25 10.57 22 12.90 25 11.73 26 11.51 19 12.69 15 11.57 27 11.55 22 12.02
26 11.20 26 13.04 15 11.96 10 11.63 23 12.80 23 11.90 15 11.78 9 12.37
23 11.31 10 13.10 27 12.53 27 12.04 4 13.00 27 12.73 24 12.06 25 13.25
24 11.92 7 13.51 19 13.06 19 12.16 24 13.20 7 14.12 23 13.06 23 13.41
10 12.31 8 13.57 10 13.41 15 12.27 18 13.55 8 14.14 11 13.12 6 13.67
27 12.33 23 14.00 26 13.45 24 12.94 5 13.73 9 14.51 10 13.24 14 13.69
20 13.35 19 14.71 11 14.18 7 14.57 9 13.86 19 14.63 7 14.16 5 14.24
11 14.88 24 14.82 7 14.24 8 15.25 14 13.96 10 14.71 19 14.75 19 14.24
12 16.49 9 15.39 8 14.55 20 15.35 15 13.96 24 14.71 20 14.84 27 14.24
21 17.18 5 15.47 20 15.49 12 16.02 20 14.35 4 14.75 4 15.43 24 14.78
7 17.88 4 15.49 4 15.69 9 16.37 8 14.43 20 15.04 8 16.06 10 15.27
9 17.98 12 15.71 12 16.22 11 16.82 10 15.04 11 16.29 9 16.37 15 15.33
4 18.45 20 16.08 9 16.92 5 16.96 11 15.57 5 16.61 12 17.43 11 15.94
5 19.25 21 16.22 21 17.69 6 17.82 6 15.69 21 16.80 5 17.88 1 17.29
8 19.55 6 16.59 5 17.96 21 17.84 21 17.08 6 17.12 6 18.22 2 17.63
6 19.80 11 16.65 6 18.96 4 17.88 1 17.39 1 19.14 21 18.31 12 17.94
1 20.39 1 20.80 1 20.96 2 21.37 12 17.39 12 19.27 1 19.80 20 18.55
2 21.27 2 21.22 2 21.90 3 21.76 2 17.65 2 20.41 3 21.57 21 18.96
3 22.16 3 21.78 3 23.65 1 21.94 3 20.75 3 22.12 2 22.61 3 19.04
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Then, a mult-compare test is performed to identify, more specifically, the differences among
configurations. Figures 7 and 8 present the results graphically for overlapped and separated scenarios,
respectively. In every figure, the best configuration is marked in blue, the ones that produce
significantly worse results are marked in red, and the ones that do not perform significantly worse are
marked in grey. Critical values are based on Tukey–Kramer method.

Figure 7. Mult–compare test of (Tukey–Kramer) results for scenarios 1–4.

Figure 8. Mult–compare test of (Tukey–Kramer) results for scenarios 5–8.
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The corresponding box plot representations for the final HV values (51 executions × 27
configurations) can be observed in Figures 9 and 10 for every scenario. In order to get a better
view, the axis have been zoomed around the upper and lower adjacent values, so distant outliers are
not shown.

Figure 9. Box plots for scenarios 1–4 (overlapping obstacles.)

Figure 10. Box plots for scenarios 5–8 (separated obstacles.)
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Before going into more detailed analysis, a global perspective of the optimization results is
presented in the images depicted in Figure 11, showing some selected glider trajectories resulting
from the multi-objective optimization process. Although the trajectories are represented here as 2D,
as previously stated, they are in fact 4D as the vehicle evolves in time across X (Longitude), Y (Latitude),
and Z (Depth) coordinates during the three-day mission, from start towards the target point (pattern
on Figure 1).

Figure 11. Examples of optimized trajectories for overlapping (left) and separated (right)
obstacles scenarios.

In general, all comparatives follow a similar structure. Scenarios 1 and 8 will be selected as an
example to have a closer look to the optimization process.

4.1.1. Scenario 1 (NS Overlapped)

Configuration 17, corresponding to PS 100, CP 0.9, and MP 0.15, produces the best result in this
scenario, according to Figure 7.

From a post-hoc procedure [60], Table 6 gives the Bergmann–Hommel test adjusted p-values
compared to case 17. Considering a critical value of α = 0.05, the first 21 configurations perform
significantly worse than case 17.

The more conservative Bonferroni test produces the adjusted p-values presented in Table 7.
According to the critical value α = 0.05/27, the first 12 configurations perform significantly worse
than case 17.

Figure 12 shows the evolution of the median run hypervolume for configuration 17 and also for
configurations 9 and 26, that have same probability values for population sizes 40 and 100.

Figure 12. Hypervolume evolution for configurations 17, 9, and 26 (median run) in scenario 1.
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Figure 13 presents the non dominated front for median run for the same 17, 9, and 26 cases.
The horizontal axis presents the objective function distance to target ( f (1)) and the vertical axis
presents the distance to obstacle safety radius ( f (2)− sa f Rad); negative values indicate that the glider
trajectory crossed the safety radius of the obstacles.

Table 6. Adjusted p-values Bergmann–Hommel procedure for scenario 1 (ref. c17).

Rank Case P Bergmann–Hommel

1 C3 9.38 × 10−20

2 C2 1.64 × 10−17

3 C1 2.10 × 10−15

4 C6 4.41 × 10−14

5 C8 1.54 × 10−13

6 C5 6.36 × 10−13

7 C4 2.76 × 10−11

8 C9 2.07 × 10−10

9 C7 3.18 × 10−10

10 C21 5.95 × 10−09

11 C12 8.44 × 10−08

12 C11 2.20 × 10−05

13 C20 1.70 × 10−03

14 C27 1.68 × 10−02

15 C10 1.76 × 10−02

16 C24 3.71 × 10−02

17 C23 9.83 × 10−02

18 C26 1.21 × 10−02

19 C25 2.68 × 10−02

20 C22 3.67 × 10−02

21 C19 4.97 × 10−02

22 C13 7.17 × 10−02

22 C14 7.17 × 10−02

22 C15 7.17 × 10−02

22 C16 7.17 × 10−02

22 C18 7.17 × 10−02

Figure 13. Non dominated fronts for configurations 17, 9, and 26 (median run) in scenario 1.
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Table 7. Adjusted p–values Bonferroni procedure for α = 0.05/27 (scenario 1)—best case C17.

Rank Case P Bonferroni

1 C3 1.267427 × 10−18

2 C2 2.305458 × 10−16

3 C1 3.071510 × 10−14

4 C6 6.740886 × 10−13

5 C8 2.462380 × 10−12

6 C5 1.063101 × 10−11

7 C4 4.858586 × 10−10

8 C9 4.040082 × 10−09

9 C7 6.211904 × 10−09

10 C21 1.229053 × 10−07

11 C12 1.852669 × 10−06

12 C11 5.160795 × 10−04

13 C20 4.279908 × 10−02

14 C27 4.933295 × 10−01

15 C10 5.150743 × 10−01

16 C13 1.000000 × 10−00

16 C14 1.000000 × 10−00

16 C15 1.000000 × 10−00

16 C16 1.000000 × 10−00

16 C18 1.000000 × 10−00

16 C19 1.000000 × 10−00

16 C22 1.000000 × 10−00

16 C23 1.000000 × 10−00

16 C24 1.000000 × 10−00

16 C25 1.000000 × 10−00

16 C26 1.000000 × 10−00

The results of the multi-objective optimization are illustrated in Figure 14, where three trajectories
corresponding to selected individuals from the final accumulated non dominated front optimization
are shown (see Figure 15). Trajectories 1 and 3 correspond to extreme unpractical solutions, and are
shown just to represent one sided optimization for distance (trajectory 1) and for safety (trajectory 3).
Trajectory 2 represents a more reasonable solution, in this case, selected as the first one that verifies the
safety radius.

Figure 14. Selected trajectories for scenario 1 (1: best distance to end; 2: best distance to end and
obstacle; 3: best distance to obstacle.)
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Figure 15. Selected individuals for scenario 1.

Table 8 details the optimized variable values (incremental headings) for the individuals and
trajectories previously illustrated for scenario 1.

Table 8. Optimized glider headings for scenario 1.

Headings 1 2 3 4 5 6 7 8 9 10

Indiv-1 138.017 6.661 −0.024 6.078 1.297 −0.529 0.009 6.938 1.176 1.638
Indiv-2 111.295 5.978 2.600 6.146 27.866 4.893 1.092 9.610 −1.959 −2.604
Indiv-3 62.607 19.845 7.893 10.632 16.704 19.213 29.566 5.705 3.118 −0.876

4.1.2. Scenario 8 (WE Separated)

In this case, the best configuration according to Figure 5 is 13, corresponding to PS 100, CP 1.0,
and MP 0.10.

The Bergmann–Hommel test adjusted p-values compared to case 13 are shown in Table 9 gives.
The first 18 configurations perform significantly worse than case 13, for the remaining 8, the null
hypothesis (critical value of α = 0.05) of having similar performance.

Bonferroni test produces the adjusted p-values presented in Table 10. According to the critical
value α = 0.05/27, the first six configurations perform significantly worse than case 13.

Figure 16 shows the evolution of the median run HV for configuration 13 and also for
configurations 4 and 22, sharing the same probability values for population sizes 40 and 160.

Figure 16. Hypervolume evolution for configurations 13, 4, and 22 (median run) in scenario 8.
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Table 9. Adjusted p–values Bergmann–Hommel procedure for scenario 8 (ref. C13).

Rank Case P Bergmann–Hommel

1 C3 2.45 × 10−08

2 C21 3.34 × 10−08

3 C20 1.58 × 10−07

4 C12 1.41 × 10−06

5 C2 4.05 × 10−06

6 C1 1.18 × 10−05

7 C11 6.89 × 10−04

8 C15 3.12 × 10−03

9 C10 3.62 × 10−03

10 C24 1.05 × 10−02

11 C5 3.13 × 10−02

11 C19 3.13 × 10−02

11 C27 3.13 × 10−02

12 C14 7.46 × 10−02

13 C6 7.75 × 10−02

14 C23 1.13 × 10−01

15 C25 1.49 × 10−01

16 C9 4.29 × 10−01

17 C8 5.53 × 10−01

17 C22 5.53 × 10−01

18 C4 6.15 × 10−01

19 C7 7.93 × 10−01

19 C16 7.93 × 10−01

19 C17 7.93 × 10−01

19 C18 7.93 × 10−01

19 C26 7.93 × 10−01

Figure 17 presents the non dominated front for median run for the same configurations
(13, 4, and 22).

Figure 17. Non dominated fronts for configurations 13, 4, and 22 (median run) in scenario 8.
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Table 10. Adjusted p–values Bonferroni procedure for α = 0.05/27 (scenario 8)—best case C13.

Rank Case P Bonferroni

1 C3 3.440610 × 10−07

2 C21 4.698387 × 10−07

3 C20 2.317553 × 10−06

4 C12 2.163121 × 10−05

5 C2 6.472240 × 10−05

6 C1 1.987919 × 10−04

7 C11 1.210591 × 10−02

8 C15 6.087186 × 10−02

9 C10 7.063474 × 10−02

10 C24 2.317351 × 10−01

11 C5 7.865499 × 10−01

11 C19 7.865499 × 10−01

11 C27 7.865499 × 10−01

14 C4 1.000000 × 10−00

14 C6 1.000000 × 10−00

14 C7 1.000000 × 10−00

14 C8 1.000000 × 10−00

14 C9 1.000000 × 10−00

14 C14 1.000000 × 10−00

14 C16 1.000000 × 10−00

14 C17 1.000000 × 10−00

14 C18 1.000000 × 10−00

14 C22 1.000000 × 10−00

14 C23 1.000000 × 10−00

14 C25 1.000000 × 10−00

14 C26 1.000000 × 10−00

The results of the multi-objective optimization are illustrated in Figure 18, where three trajectories
corresponding to individuals from the final accumulated non dominated front optimization (Figure 19)
are shown. As explained previously, trajectories 1 and 3 are presented for illustrative purposes, while
trajectory 2 shows the closest to safety radius solution.

Compared to scenario 1, the optimization process is more restricted here, and the level of
significant differences between algorithm variants results is reduced.

Figure 18. Selected trajectories for scenario 8 (1: best distance to end; 2: best distance to end,
and obstacle; 3: best distance to obstacle.)
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Figure 19. Selected individuals for scenario 8.

The optimized variable values (incremental headings) corresponding to the individuals and
trajectories previously illustrated for this scenario are detailed in Table 11.

Table 11. Optimized glider headings for scenario 8.

Headings 1 2 3 4 5 6 7 8 9 10

Indiv-1 101.843 3.475 −2.828 3.576 1.797 −7.925 4.228 5.304 −7.232 2.118
Indiv-2 115.325 2.387 3.369 2.691 −14.945 −8.553 −8.460 12.263 −1.276 1.708
Indiv-3 −105.884 129.065 19.088 −9.868 −6.821 55.787 −11.275 17.250 8.822 −7.443

4.2. Grouped Scenario Analysis

4.2.1. Overlapped vs. Separated Obstacles

Selecting the object configuration as grouping factor, overlapping scenarios 1, 2, 3, and 4, on one
side, and scenarios 5, 6, 7, and 8, on the other, have been compared. The mult-compare graphs are
shown in Figure 20. Configuration 16 is the top ranked, producing better statistically significant results
for all other alternatives, except 13, 14, 15, 17, 18, and 22 in overlapped group, and 13, 17, 18, 22, 25,
and 26 for separated group.

Figure 20. Mult-compare (Tukey–Kramer) results for overlapping scenarios 1–4 (left) and separated
scenarios 5–8 (right).
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4.2.2. Favourable vs. against Ocean Currents

Selecting the ocean currents direction as grouping factor, favourable currents scenarios 1, 2, 3,
and 4, on one side, and scenarios 5, 6, 7, and 8, on the other, have been compared. The mult-compare
graphs are shown in Figure 21. Configuration 16 is the top ranked, producing better statistically
significant results for all other alternatives, except 13, 17, 18, 22, 25, and 26 in favourable group, and 13,
14, 17, and 18 for against group.

Figure 21. Mult-compare (Tukey–Kramer) results for favourable currents scenarios 1, 4, 5, and 8 (left)
and against scenarios 2, 3, 6, and 7 (right).

4.3. Overall Comparison

Considering all group simulations combined, the mult-compare test produces the results
presented in Figure 22. Again, configuration 16 dominates significantly all other alternatives except 13,
17, and 18.

Figure 22. Comparison of all scenarios.

5. Discussion

From the analysis of the HV evolution (Figures 5 and 6), the trend is to reach a steady state. This
means that the resulting trajectories cannot be much more improved without prejudice of the global
solutions. In practical terms, obtained trajectories will not have significant improvements regarding
the distance to the target point versus the distance to the obstacles even if the optimization process
kept being executed.

Considering all the configurations of both cases, configuration 16 (PS 100, NG 200, CP 1, MP
0.15) provided the best global results, closely followed by 13 (PS 100, NG 200, CP 1.0, MP 0.10) and
17 (PS 100, NG 200, CP 0.9, MP 0.15) (Figure 22). The population size of 100 is a good balance for
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exploration–exploitation equilibrium of the search in these 10 variable tested scenarios. It provides
a faster convergence than the 160 population size case, while a highly elitist algorithm as NSGA-II
favours a high crossover rate (1.0) and slightly higher mutation rate (0.15) than the general rule 1/n
(0.1), enhancing the population diversity by those operators. Second and third configurations also
keep either the crossover rate of 1.0 with mutation rate of 0.1 or a slightly lower crossover rate (0.9)
with mutation rate of (0.15), confirming the appropriateness of the operators.

As for the parameter values, when keeping PS and MP, results worsen with the decrease of CP,
meaning that resulting trajectories, overall will present worse results for the fitness functions, either by
ending far from the target point and passing too close to the obstacles, two undesirable situations.

If CP is kept constant, results get better with the increasing of MP, except for PS 160, CP 0.8,
and MP 0.15, meaning better balanced distances both to target and to the obstacles. Also, increasing
the MP and decreasing CP for each PS results in less dispersion of the results except for PS 50 and
MP 0.1.

Considering the cases of separated versus overlapping obstacles, results show a bigger dispersion
on the overlapping cases. Also, although configuration 16 (PS 100) presented the best results on both
cases, on overlapping cases some configurations with PS 160 presented closer results to 16 than on the
separated case, on which is evident that cases with PS 100 (except 22) are the best ones.

Another aspect that impacts the results is the direction of ocean currents. In scenarios with
favourable currents, cases with PS 160 presented results closer to configuration 16, opposite to
unfavourable currents, on which cases with PS 100 are closer to configuration 16.

Specific scenario analysis—e.g., scenarios 1 and 8 in this paper—could be performed to select the
most convenient configuration depending on the particular environmental characteristics, instead of
applying the global solution. The results of the post-hoc procedures indicate that there is evidence
of statistically significant advantages among the different configurations. Particularly, compared to
Bonferroni’s the more powerful Bergmann–Hommel procedure is able to identify a higher number of
cases surpassed by the best performing combination; 9 more cases in scenario 1 (Tables 6 and 7) and 12
in scenario 8 (Tables 9 and 10).

Apart from pure numerical evaluation, the algorithm configuration selection could also depend
on additional factors such as available computational resources or time restrictions.

6. Conclusions and Future Work

Overall, a useful methodology/tool was built and can be applied to multi-objective underwater
glider path planning, obtaining a set of non-dominated solutions simultaneously minimizing the
distance to target and maximizing the minimum distance to one or more obstacles. Multiple simulations
were performed in the geographic region of Canary Islands, demonstrating the suitability of the
methodology. Those tests included favourable, side, and against ocean currents, different obstacle
locations and different start and target points, all of them possible situations that can occur during a
glider mission.

The system described here can now be easily configured and tuned to be used as a planning
tool for glider pilots, to help determine, together with their expertise and knowledge, which are the
best trajectories to pursue during a specific mission. Obviously, the results are conditioned by the
quality of the ocean currents data and/or forecast, due to the uncertainty associated to forecasts.
In any case, higher skill rank predictors are continuously proposed, with better spatial and temporal
resolution characteristics.

The proposed methodology was able to produce satisfactory trajectories using the genetic
algorithm NSGA-II. It is worth mentioning that the optimizations include well spread solutions
that go from one extreme to another. This means that solutions include results that, in this case, crossed
the safety radius to obtain a better distance to target point (through a straight line) or move away from
the safety radius, increasing safety at the expense of worse target distances.
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From the results obtained and discussed previously, it is possible to state that the described
system, through the usage of the genetic based evolutionary algorithm NSGA-II, is able to produce
usable paths, being the best ones obtained using configuration 16 (PS 100 NG 200 CP 1.0, and MP 0.15)
for all simulated cases.

The main contributions seek with this work were also achieved: NSGA-II can be used to
optimize multi-objective glider path planning, an innovative and challenging engineering problem,
never addressed this way. The best parameter combination was found for the designed scenarios
(configuration 16), but the system can be adjusted to other locations, to benefit control teams, in need
of valuable information for critical decision making situations, potentially extending the vehicle
operational potential and thus increasing the mission productivity.

Future works include considering aspects like battery consumption to accomplish the mission,
areas of interest to intensify sampling or marine traffic that represent real obstacles to glider navigation.
These aspects can be included as additional fitness functions with more parameters to be taken into
account. Also, a comparison with other evolutionary algorithms could be done, to evaluate the
complexity and performance of the described system against other optimization techniques, on a more
extensive work. The usage of very high-resolution forecasts, with more outputs per day and additional
oceanographic/atmospheric variables can also be an interesting possibility to consider, as the solutions
are as accurate as the accuracy of the forecasts provided. With all these aspects to be considered on a
future work, as they increase the computational costs, the optimizations will need to be executed on a
computational cluster, in order to run even more optimizations simultaneously. Also, using a GPGPU
(general-purpose graphics processing unit) could be a relevant improvement, due to their ability to do
massive parallelism and speed up the optimization process. Progressively moving this infrastructure
to standard platforms like ROS is also planned to ease sharing results, provided that authors are able
to keep optimization times inside practical levels. As a final remark, it would be interesting to validate
the results obtained with real glider missions; something complicated in this moment since it would
require exclusive multi glider use for long periods.
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Abbreviations

The following abbreviations are used in this manuscript:

CP Crossover Probability
EA Evolutionary Algorithms
FES Fitness Evaluations
GA Genetic Algorithm
GPP Glider Path Planning
HF High-Frequency
MO Multi-Objective
MOEA Multi-Objective Evolutionary Algorithms
MOPP Multi-Objective Path Planning
MOOP Multi-Objective Optimization Problems
MP Mutation Probability
NG Number of Generations
NSGA-II Non-Dominated Sorting Genetic Algorithm
PS Population Size

References

1. Rudnick, D.L.; Davis, R.E.; Eriksen, C.C.; Fratantoni, D.M.; Perry, M.J. Underwater gliders for ocean research.
Mar. Technol. Soc. J. 2004, 38, 73–84. [CrossRef]

2. Wynn, R.B.; Huvenne, V.A.; Le Bas, T.P.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.;
Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future
contributions to the advancement of marine geoscience. Mar. Geol. 2014, 352, 451–468. [CrossRef]

3. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

4. Woithe, H.C.; Boehm, D.; Kremer, U. Improving slocum glider dead reckoning using a doppler velocity log.
In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–5.

5. Wang, P.; Singh, P.K.; Yi, J. Dynamic model-aided localization of underwater autonomous gliders.
In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany,
17 October 2013; pp. 5565–5570.

6. Garau, B.; Alvarez, A.; Oliver, G. Path planning of autonomous underwater vehicles in current fields with
complex spatial variability: An A* approach. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 194–198.

7. Inanc, T.; Shadden, S.C.; Marsden, J.E. Optimal trajectory generation in ocean flows. In Proceedings of the
2005 American Control Conference, Portland, OR, USA, 8–10 June 2005; pp. 674–679.

8. Petres, C.; Pailhas, Y.; Patron, P.; Petillot, Y.; Evans, J.; Lane, D. Path planning for autonomous underwater
vehicles. IEEE Trans. Robot. 2007, 23, 331–341. [CrossRef]
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