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Abstract: Grip force control during robotic in-hand manipulation is usually modeled as a monolithic
task, where complex controllers consider the placement of all fingers and the contact states between
each finger and the gripped object in order to compute the necessary forces to be applied by each finger.
Such approaches normally rely on object and contact models and do not generalize well to novel
manipulation tasks. Here, we propose a modular grip stabilization method based on a proposition
that explains how humans achieve grasp stability. In this biomimetic approach, independent tactile
grip stabilization controllers ensure that slip does not occur locally at the engaged robot fingers.
Local slip is predicted from the tactile signals of each fingertip sensor i.e., BioTac and BioTac SP by
Syntouch. We show that stable grasps emerge without any form of central communication when
such independent controllers are engaged in the control of multi-digit robotic hands. The resulting
grasps are resistant to external perturbations while ensuring stable grips on a wide variety of objects.

Keywords: in-hand manipulation; modular control; reactive control; tactile feedback; independent
finger control; slip prediction

1. Introduction

Robotic grasping and in-hand manipulation are traditionally viewed as monolithic planning and
control problems. As such, control policies determine the approach strategy and finger placement
(contact forces and contact locations) for the entire hand, while considering finger trajectories, force and
contact profiles throughout the entire manipulation task [1]. This monolithic formalization requires
accurate kinematic, dynamic and contact modeling for the hand, object and contacts between the
two along with precise sensing of hand and object position as well as interaction forces. To relax
these requirements, several approaches for in-hand manipulation reduce the problem complexity
by considering only pinch grasps and manipulating objects by using externally applied forces [2],
exploring gravity and arm acceleration effects in conjunction with a passive gripper that ensures that a
constant amount of grip force is applied [3] or by exploring gravity while making assumptions about
the contact between the gripper and the object [4]. With even stronger assumptions about the contacts
between the fingers and the object, trajectory optimization approaches can be used to manipulate
objects with more dexterous hands [5]. In practice, in order to find general solutions for more complex
tasks, control eventually becomes largely data-driven as accurate models are rarely available and
due to the uncertainty associated with addressing all the aforementioned problems through a single
controller [6].

Data-driven approaches do not come for free. They either require large training data sets [7–9],
restrict the tasks to sufficiently similar scenarios [6,10], or rely on low-dimensional representations
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such as synergies [11] and motion primitives [12] that encode the considered manipulation task. Recent
approaches rely on even larger amounts of data to learn tasks in simulation environments where the
physical parameters are sampled randomly at the begging of each trial such that the learned policies
are transferable to the corresponding real platforms [13,14]. Even with the increase of available data,
learned polices still inherently couple the employed degrees of freedom, resulting in solutions that are
task- and platform-specific. Furthermore, incorporating tactile feedback from all fingers into a control
policy quickly becomes intractable given the dimensionality of the feedback signals. In short, low-level
control policies that both deal with uncertainty (e.g., in contact locations and forces) and generalize
well beyond a limited set of cases, need to be both data-driven and modular.

Ensuring grip stability is central to both stabilizing an object in the hand and moving an object
between stable grip configurations. Classical robotics approaches often rely on measures such as form-
or force-closure for assessing grip stability—but with imperfect models and contact/force sensing,
using such measures is very challenging. As a result, many researchers have proposed alternative grasp
stability measures [15–19] and developed accompanying control strategies. Learning-based approaches
for grasping are also abundant with some relying on large amounts of robot trials [20] or synthetic
data [21] while others combine learning with analytic grasp metrics [22] or use lower-dimensional
sub-spaces to find appropriate hand grasping postures [23]. For a more extensive overview of the
grasping and manipulation fields we refer the reader to [24,25].

Human grasping and manipulation appears to be largely data-driven [26] despite relying on
feedback signals of huge dimensionality and relatively low control precision when compared to robots.
As deduced from several behavioral studies [27–30], human grasp control strategies seem to be modular
and based on local sensing and actuation, rendering the control of the fingers largely independent
from each other, i.e., Independent Finger Control [27]. Specific grasps and force distributions appear to
emerge from tactile feedback as the fingers interact with objects. Clearly, such an approach would be
desirable for robotic grasping and manipulation.

In [31], it is suggested that humans can explore objects with a varying number of digits and that
the exploratory procedures used are quickly adapted once the number of available digits changes. On
the robotics side, early studies suggested that using tactile feedback on one active finger while having
the other fingers remain passive, allows the robot to quickly adapt its grip force [32]. Nonetheless, it is
also suggested that when increasing the number of active fingers, the complexity of the controllers
would have to increase to be able to manage the force interactions between the fingers. Inspired by
progression from one finger over two fingers to the whole hand proposed by [31], by early studies of
grasp stability using tactile feedback [32] and by the independent control hypothesis in human grip
control by [27,28], we have developed independent control policies based on tactile feedback for each
finger that in conjunction generalize grip force regulation from one finger to five fingers.

To achieve this, we equipped the robotic fingertips of two hands with multimodal fingertip
sensors (BioTac and BioTac SP for the four-finger Allegro and five-finger Wessling Hand, respectively;
Figure 1), each with a learned predictive model of future slips based on the tactile feedback acquired
during finger-object interactions. The local control laws in each finger counteract future slips, ideally
preventing them.

The resulting distributed control approach ensures that objects remain withing the grasp. Since
the fingers are controlled independently, grasps can be maintained between a finger and other objects
(such as a table or a wall), between several robotic fingers (as in in-hand object stabilization or gripping)
or between a robotic and a human finger (human-robot joint stabilization). In addition, this approach
reproduces findings in human motor control where the absolute amount of force applied by single
digits will always settle just above the minimal amount of forces to prevent slip in static settings [26,27].
In more dynamic scenarios, this approach can also facilitate in-hand manipulation by decoupling grip
force management from the generation of manipulation trajectories. Manipulation trajectories can also
be simplified by considering them as a set of perturbations imposed by one or more fingers while the
remaining fingers keep the object stable. While for the static cases, the necessary coordination between
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independent finger controllers occurs implicitly through the tactile signals observed by each finger,
in the dynamic cases some form of explicit coordination may be required. For the latter, the modular
nature of the approach is expected to enable higher-level planning systems to operate with less object
knowledge while requiring simpler models for control than analytical approaches. This relaxation
of model requirements potentially allows for generalization across multiple tasks, across a variety of
objects and across different robotic platforms.

Figure 1. The proposed independent finger grip stabilization controller was successfully evaluated on
the four-finger Allegro Hand (right) and on the five-finger Wessling Hand (left). The fingertips of both
hands are equipped with Syntouch’s BioTac or BioTac SP sensors, respectively.

2. Modular Tactile Sensing-Based Grip Stabilization

As foundation for our modular grip stabilization approach, we start by introducing our previous
work on tactile-based slip prediction, validated in the context of single-finger tactile control for
stabilizing objects pinned against other objects. Subsequently, we describe how we use the slip
prediction information in the multi-finger setting, i.e., fingers of one robot or those of several agents,
while also considering potential dynamic scenarios where we wish to reposition the object in-hand.

2.1. Slip Prediction

Formulating slip prediction as a classification problem [33], a solution is achieved by training a
classifier f (·) that predicts the slip state at time t + τf , with τf representing the prediction horizon.
Here, we use τf = 10, corresponding to a prediction of the occurrence of slip 10 time steps or 100 ms
prior to its onset. To achieve these predictions, features φ(·) of the raw sensor signals xt ∈ RN were
extracted for a time window T = (t− τH) : t, where τH is the tactile history and N is either 44 or 49
depending on the BioTac version. The feature vector as the form [xt, ∆x] where ∆x = xt − xt−1. This
form of the feature vector considers only the immediate history, corresponding to a value of τH = 1.
The slip predictor, i.e., f (φ(xt), was trained to correctly label the slip state, c, at time t + τf

ct+τf = f (φ(x(t−τH):t)) (1)

as one of the classes in the set ct+τf ∈ {slip, contact,¬contact}. We used random forests [34] for
learning the classifier, achieving good classification rates with a moderately sized data set. Three
fingers were made to slide along the surface of a fixed object, while maintaining a specified value of
fingertip pressure. Four different objects and nine values of pressure were used, with three repetitions
for each object-pressure combination. The data from all three fingers was then merged onto a single
data set that was used for each classifier that was trained. A more detailed description of the data
acquisition procedure is provided in Section 3.3. For an in-depth study of how the feature function
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affects the detection and prediction of slip, how each of the individual tactile signals contributes to the
detection and prediction accuracies and how such forms of feedback influence the effectiveness of a
naive stabilization controller, the reader is referred to our previous work [33].

By learning how to predict slip from the tactile information provided by the BioTac sensors we
are able to project valuable information from a 44 or 49-dimensional space onto a one-dimensional
discrete variable. As shown in our previous work [33], this form of information generalizes well across
objects. These generalization capabilities coupled with the low dimensionality of the classifier outputs
will greatly benefit the design of the control approach described in the following section.

2.2. Grip Force Control

Human ability to perceptually discriminate forces applied by their fingertips is limited (Weber
fractions typically 5–10%, [35]). Accordingly, tactile information types other than those directly related
to fingertip force or pressure seem to be employed in human force adjustment strategies during object
grasping. As slipping is directly connected to the stability of the interaction with the environment, it is
considered crucial for human manipulation [26]. Considering the previously introduced slip prediction
approach, grip force management is accomplished through a control law that converts the predicted slip
state, c, at time t + τf into adjustments in the applied normal force. Most robotic hands are controlled
in joint or end-effector positions rather than applied forces. To make the controller applicable across a
range of robotic hands, our controller therefore adjusted the desired task space velocities, ṡt, rather
than controlling force explicitly. Hence, whenever slip was predicted, we increased the normal
force, FN , alternatively slowly decreasing the force while keeping the object stable, in line with what
has empirically been found during human grasping. This behavior was achieved by using a leaky
integrator

yt = αyt−1 + (1− α)L (2)

to control the task space velocity in the contact normal direction, i.e.,

ṡt = Ntyt. (3)

Here, α is the leakage at each time step, yt and yt−1 are respectively the current and previous states
of the integrator, ṡt is the task space velocity and Nt is a unit vector pointing in the contact normal
direction that is estimated every time step from the tactile signals using an heuristic introduced in [36].
The integrator input signal L changes with the predicted contact state ct+τf , increasing the accumulated
response when slip is predicted and allowing the integrator to leak if contact is predicted, i.e.,

L =

{
1 if ct+τf = slip,

0 otherwise
(4)

This integrator thus operates as a smoothing filter which is important given the discrete nature of the
slip predictor outputs. In multi-fingered scenarios, any oscillations in the controller response would
propagate to other fingers engaged in the grasp and cause instability. While still allowing the fingers
to react to all oscillations, the integrators manage the intensity of the response, slightly changing the
applied force for instantaneous perturbations or greatly increasing the applied force for more persistent
perturbations.

Finally, a minimum integrator response ymin is required to avoid oscillations around low integrator
responses values where slip is imminent. However, instead of specifying ymin, each finger estimates its
minimum response by observing the first slip transient following a first stable period. The minimum
response is then defined as a 10% increase of the response yt where the first transition from contact to
slip occurs

ymin = 1.1yt if ∆c = contact→ slip. (5)
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This minimum response implicitly defines the minimum fingertip normal force necessary to prevent
slips and makes the controller responsive to the prevailing friction at its digit-object interface.

With this control formalization, each finger is able to regulate its own applied force without
requiring any prior information about the object, any reference force value or any explicit information
about the force applied by other fingers. In addition, the controllers are able to automatically find
the minimal amount of force that the finger has to apply in order to avoid the occurrence of slip by
iteratively adjusting the minimum integrator response ymin every time a transition from contact to
slip occurs.

2.3. From Single-Finger to Multi-Finger Grip Force Control

When progressing towards multi-finger grip stabilization, the complexity of the tasks quickly
scales accordingly with hand dexterity. Generally, the increase in degrees of freedom can be coped
with either by identifying a lower-dimensional manifold for the problem or by decomposing the
problem. Following the core insight in [27,28] suggesting that human multi-finger grip stabilization
appears to be accomplished by separate neural circuits that interact through the object instead of via the
central nervous system, we hypothesize that multi-finger robot grip stabilization can be accomplished
using the same single-finger stabilization controller on each finger independently. In [28], three grip
scenarios are compared using human subjects: (i) a grip between the index and thumb of one of the
subjects hands, (ii) a grip between the two index fingers of a single subject and (iii) a grip between
two index fingers belonging to two different subjects. Each of the grips was achieved with the same
apparent ease, with the underlying neural control appearing to be unaffected by the specific task
conditions. The latter of these three scenarios is similar to the human-robot joint stabilization that
was performed in our prior work [33], with one of the human subjects replaced by a robot. As in the
scenario involving the two human subjects, the object is jointly stabilized by the human and the robot
without any issues.

To fully use the dexterous capabilities of a multi-fingered hand, we propose that each hand should
be considered to be set of independently controlled fingers when pertaining specifically to stabilization.
This independent control approach assumes that the object has been grasped in a manner in which
opposition between the thumb and the remaining digits is ensured. Through this assumption, our
approach obviously still requires a planning approach for grasping the object, but since no assumptions
are made regarding the quality of the grasps, this planning can be reduced to a set of simple grasping
policies. The same policies are used for every object, being selected only with regards to the type
of grasp that is desired (two, three, four or five fingered grasp), and consist of simple movements
beginning with a grasp pre-shaping, where the thumb is centered with respect to the remaining fingers.
With the thumb centered, the grasp pre-shaping is concluded, and all fingers are flexed until contact
with the object is achieved. Once contact between all the fingers and the object has been established,
the proposed independent stabilizers are enabled, adjusting the grip on the object to ensure that it
remains stable.

A set of independent fingers—in contrast to a fully connected manipulator—allows decomposing
the object stabilization control problem such that each finger separately predicts future slip based on
tactile sensing, counteracting it by independently adjusting the applied forces. While synchronization
only through the tactile feedback may appear counter-intuitive, it actually greatly reduces the
dimensionality of the control problem while ensuring that the fingers affect each other only when
necessary for object stabilization. As a result, it not only becomes more straightforward to design
stabilizing control laws, but the synchronization becomes more robust.

3. Experimental Evaluation

The proposed independent finger control law (from Section 2) is evaluated both to constructively
verify the independent finger control hypothesis as well as to show that the proposed approach works
sufficiently well in practice. We begin by stabilizing several objects with a varying number of fingers,
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using the Allegro and the Wessling hands, without any external perturbations (Section 3.4.1), and
demonstrate that a control strategy working under the proposed hypothesis is able to re-stabilize objects
in-hand throughout sequences of externally applied perturbations (Section 3.4.3). The presentation of
the results is preceded by a detailed description of the experimental setup, i.e., robotic platform and
an account of the tactile sensors mounted on the platform as well as the sensors used to measure the
external perturbations (Section 3.1), and a detailed outline of the procedure used to acquire the ground
truth data for the slip classifiers (Section 3.3).

3.1. Experimental Setup: Testing Platform and Tactile Sensors

To demonstrate our independent finger control behavior, the control scheme was implemented
on two robotic hands with different dynamic and kinematic properties: The four-finger Allegro Hand
and the five-finger Wessling Robotic Hand.

The Allegro Hand (Wonik Robotics, www.simlab.co.kr; Figure 1), is a lightweight four fingered
hand with four joints per finger, for a total of 16 actuated degrees of freedom. The thumb has an
abduction joint, two metacarpal joints (rotation and flexing) and a proximal joint. The remaining
fingers do not have abduction joints and instead have a distal joint. A PD controller was used to
control the robot joint positions. One end-effector was defined for each fingertip and their positions
were controlled by estimating the desired joint velocities, by means of the Jacobian Pseudo-Inverse,
and integrating the estimations to acquire the desired joint positions.

The Wessling Robotic Hand has five modular fingers, each with four joints where two of these four
joints are coupled and cannot be moved independently (Wessling Robotics, www.wessling-robotics.de;
Figure 1). A PD controller is used for joint position control and a Pseudo-Inverse Jacobian controller is
used for controlling the end-effector position of each finger. The control signals are sent to a real-time
machine where the conversion to torque is performed by a joint impedance controller from Wessling
Robotics [37].

While the Allegro Hand has one finger fewer than the Wessling Robotic Hand, it is more compliant,
and its workspace is larger than that of the Wessling Hand. The base control loops of each hand
operate at different frequencies, i.e., 300 Hz and 1 kHz for the Allegro and Wessling Hand, respectively.
However, despite these differences, the slip prediction-based controllers were the same, operating at
a frequency of 100 Hz. Please note that each controller used slip predictors specifically trained on
data from the respective fingertip sensors, the BioTac and BioTac SP respectively for the Allegro and
Wessling Hands.

The BioTac and the BioTac SP tactile sensors (SynTouch Inc., www.syntouchinc.com; Figure 1)
were mounted on the Allegro and Wessling Hand, respectively, and served as fingertips. Both
provide multimodal responses composed of low and high frequency pressure (Pdc and Pac), local skin
deformations (E), temperature and thermal flow (Tdc and Tac). The sensor consists of a conductive fluid
captured between a pliable skin and a rigid core. The core surface is covered with impedance sensing
electrodes (19 for BioTac; 24 for BioTac SP). The pressure signals are acquired by a pressure transducer,
skin deformation is measured through local impedance changes measured by the electrodes and
temperature is regulated by a thermistor. All data channels of the sensor are sampled at a rate of
100 Hz. The high frequency pressure signal is acquired internally by the sensor at a rate of 2.2 kHz,
but is available for readout at 100 Hz, producing batches of 22 values every 10 ms. Considering
all channels and the Pac batch data, the sensors output a total of 44 or 49 values every 10 ms. As
previously mentioned, this difference in output prevents the same slip predictors to be used on both
platforms, requiring slip predictors trained for each specific sensor.

Finally, the Optoforce OMD-D20 3D (Optoforce Ltd., www.optoforce.com) is an optical force
sensor (insets of Figure 6) that was used to measure the magnitude of external perturbations applied
on the objects during in-hand re-stabilization experiments. The Optoforce reconstructs the magnitude
and direction of the applied force from the values of four light sensitive photodiodes that detect the
amount of reflected light by interior surface diodes. The sensor has a nominal sample rate of 100 Hz.

www.simlab.co.kr
www.wessling-robotics.de
www.syntouchinc.com
www.optoforce.com
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3.2. Test and Training Objects

Our set of 38 test objects belonged with two exceptions (a tea box and a plastic cup) to the YCB
object set [38], and are shown in Figure 2. Among the test objects, the weight varied from 10 g to more
than 400 g and grasp width from less than 10 mm to more than 100 mm. Specifically, the plastic cup
was included to assess the performance of the control system when faced with highly deformable
objects.

Figure 2. Test objects. Most of the objects were from the YCB object set [38] where only the tea box
and the white plastic cup are not in the original set. The training set (indicated by the white arrows)
included 4 objects only: a tuna can, a plastic cup, a ball, and a tea box.

Only 4 objects were used during training: a tuna can, a plastic cup, a ball, and a tea box (arrows
in Figure 2). Successful stabilization of all test objects thus implied that the method generalized across
grasps and object properties.

3.3. Tactile Training

As our independent finger stabilizers reacted to slip-based feedback, it was necessary to train the
classifiers responsible for slip prediction. This training required data collected on the real system and
ground truth labels for the slip events.

To start data collection, one of the training objects was fixated by a support in the hand’s workspace
(Figure 1). All fingers were positioned in an initial configuration and subsequently flexed until they
contacted the object. Then the pressure applied by each finger was adjusted by a PID controller until a
target pressure was reached on each finger. Finally, the fingers moved along the tangential contact
plane, surveying the object surface. Acquiring data from three sensors simultaneously reduced the
necessary number of training trials. All data from each of the fingers was concatenated into a single
data set that was used to train each of the individual slip predictors. The data collection setup is
exemplified in Figure 1.

Figure 3 shows a representative, single training trial with data from the index finger. Slip labels
were generated automatically from the finger’s end-effector location and the recorded pressure values.
The total shift in Cartesian position was calculated from the end-effector position. Since the object
was fixated during training, we defined slipping as the state when the finger was in contact (i.e., the
recorded pressure was above a certain threshold TContact) and the finger was moving (i.e., the finger
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velocity exceeded the movement threshold TMovement; both thresholds are indicated with dashed lines
in Figure 3).
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Figure 3. Data from the index finger during a single, representative training trial. The Cartesian
instantaneous velocity was calculated from differences in finger end-effector position between two
consecutive time steps. A pressure threshold, TContact, and a movement threshold, TMovement, both
indicated with red dashed lines, were used to generate the slip ground truth labels shown in the
bottom panel.

This procedure relied on randomly selected velocities in task space for the object surface
surveying. Target pressures were selected from 9 possible values in sensor grounded pressure units:
P = [20, 40, 60, 80, 100, 150, 200, 250, 300]. Spanning the data across multiple pressures in conjunction
with randomly selecting the velocity and having distinct contact locations across the three fingers
allowed for training slip classifiers that were not specifically correlated with certain pressures, contact
locations or fingertip velocities. In addition, all sensor values concerning pressure or finger deformation
were grounded before training, preventing parametric differences in the sensors (for example nominal
fluid pressure) from correlating with slip. Three trials were executed for each value of P on four training
objects (Figure 2) for a total of 108 trials. The resulting data set thus comprised 324 single-finger trials
across the three engaged fingers and was acquired in less than 15 minutes.

3.4. Grip Stabilization Evaluation

For the multi-finger grip stabilization scenarios, finger pressure was analyzed and used to make
behavioral comparisons across objects (reported in Section 3.4.1). In addition, we assessed the in-hand
re-stabilization capability of our approach as the grip was perturbed by an external agent (Section 3.4.3).

To evaluate our independence hypothesis in multi-finger grip stabilization scenarios, we begin by
comparing the finger pressure profiles and used these profiles to make behavioral comparisons across
objects in Section 3.4.1. We followed with an analysis of the expected stabilization success rates for a
subset of the objects that exhibit different shapes, sizes and material properties in Section 3.4.2. We
continued with an assessment of the in-hand re-stabilization capability of our approach as the grip
was perturbed by an external agent in Section 3.4.3. We showcased how the independent finger control
stabilization approach can facilitate manipulation actions via a master–slave manipulation paradigm
in Section 3.4.4. Finally, we describe the current limitations of the approach in Section 3.4.5.

Since each finger was controlled independently, the approach was scalable with respect to the
number of fingers. Hence, in our experiments we considered grip configurations involving two, three
and four fingers when using the Allegro Hand and two, three, four and five fingers when using the
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Wessling Hand. The possible configurations were evenly distributed across all test objects (Figure 2)
including the four objects used in the slip predictor training data collection experiments.

3.4.1. Multi-Finger Grip Stabilization with Independent Finger Control

To test the validity or our independent finger control hypotheses for grip stabilization, we
attempted to stabilize multiple objects with a varying number of fingers.

We place the robotic hand in an open-hand configuration with an object positioned such that
it could be held in an opposition grasp, and then closed two or more fingers (up to four with the
Allegro Hand and up to five with the Wessling Robotic Hand). Immediately after all fingers have
contacted the initially supported object, the grip stabilizers were activated and the independent finger
stabilization process began, while the object support was removed. To ensure that the object would
not be dropped during the activation transient of the grip stabilizers, each controller was initialized to
generate a predefined fraction of the maximum output. For deformable objects such as the white plastic
cup, this activation resulted in an initial surface deformation that was subsequently automatically
reduced. Please note that for the initial grasp configuration, more advanced grasp selection approaches
such as [21–23] could have been employed in order to increase the likelihood of the initial grasp
configuration being stable. The control based on independent finger control was able to reliably and
consistently stabilize all 39 test objects (Figure 4). For each object and grasp configuration (two-, three-
and four-finger grasps with the Allegro Hand and up to five-finger grasps with the Wessling Hand),
we recorded five trials each lasting 10 seconds with every object. A grasp was considered stable if the
object was not dropped.

Since no desired hand configuration was enforced, the hand adopted slightly different
configurations for each object and across repetitions. To study this variability in more detail, we
analyzed the grip forces applied by the fingers to different objects. Figure 5 shows the pressure
profiles and estimated forces for the Allegro and Wessling Hand, respectively, for trials with the
lightest and one of the heaviest objects, i.e., the white plastic cup and the cracker box. The pressure
profiles applied in the Allegro experiments were recorded directly from the BioTac sensors while
the estimated forces applied in the Wessling experiments were calculated from joint torques and
angles. The data illustrates two important emergent properties of the grasp control. First, finger
pressures and forces converged to lower values when gripping the lighter plastic cup than when
gripping the cracker box. Second, there was a substantial variability in force sharing between the
digits across trials, particularly obvious in the profiles recorded during trials with the cracker box.
Both observations can be explained straightforwardly through the design of the controller. Notably, an
uncountable number of grip force distributions could result in stable grasps, but the control system
did not explicitly enforce a specific distribution. Instead, pressure applied by each finger propagated
through the object to the other fingers, dynamically impacting the grip force distribution while each
controller minimized the risk of local slips keeping the fingertip forces low. The ability to adapt the
overall grip force by reactively changing the force applied by each finger contributed to the high
generalization (Video available online: www.youtube.com/watch?v=43uIwiFZ4I0) capability of our
approach, even though no specific object orientation, weight or weight distribution was expected by
the stabilizers.

www.youtube.com/watch?v=43uIwiFZ4I0
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(a) (b) (c) (d)

Figure 4. Stable grasps on a variety of objects. The specific grasp configurations varied from trial-to-trial
but always resulted in stable grasps. The figure shows (a) two-finger, (b) three-finger and (c) four-finger
grasps with the Allegro Hand and (d) two-finger, three-finger, four-finger and five-finger grasps with
the Wessling Robotic Hand respectively from the first to the bottom lines.
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Figure 5. Pressure and force profiles. A comparatively light object (plastic mug; blue lines) or a heavy
object (cracker box; red lines) was grasped five times with the Allegro Hand (first row) and the Wessling
Robotic Hand (second row). While all attempts resulted in stable grasps, the exact configuration varied
with the fingertip pressures and forces changing accordingly.

3.4.2. Stabilization Success Rates with Independent Finger Control

To evaluate the reliability of our proposed control scheme, we perform a quantitative analysis of
the stabilization success rates on a set of objects that greatly vary in shape, size and material properties.
To this end, a subset of 12 objects is selected from the full test set, and 10 stabilization trials are
performed on each of the objects. The trials are performed with the Allegro Hand and its respective
three possible grasp configurations. Hence, the 12 objects are split into three groups, one for each
of the grasp configurations. The stabilization trials follow the procedure described in Section 3.4.1,
where the stabilizers are triggered after an initial grasp and each finger attempts to find the minimum
fingertip force that keeps the object firmly gripped. If the object is firmly gripped for a duration of ten
seconds after the stabilizers are triggered the trial is considered a success, otherwise it is considered a
failure. The observed stabilization success rates are reported in Table 1.
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Table 1. Assessment of the stabilization success rates for several objects. Ten stabilization trials are
performed for each object and the rate of successful stabilization is reported.

Two-Finger Grasp
Card Orange Cube Plum Red Cup
90% 100% 80% 70%

Three-Finger Grasp
White Plastic Cup JELL-O Choc Banana Apple

90% 100% 50% 60%

Four-Finger Grasp
Glass Pringles Spatula Cheez-It
90% 80% 60% 100%

For objects with planar opposing surfaces such as the card, the orange cube, the JELL-O Choc box
and the Cheez-It box, we observed average stabilization rates consistently close to 100%, despite the
large differences in size and weight between the objects. On the other hand, while cylindrical objects
such as the red cup, the white plastic cup and the Pringles box display success rates in a similar range
as the planar objects, the stabilization process is harder, as the contact surfaces are smaller and the
elongated nature of the cylindrical objects causes rotational slips, which are not compensated by our
controllers. The effects of rotational slips become even more evident for spherical objects such as the
plum and the apple and for irregular objects such as the banana, the glass and the spatula. While
acquiring large contact surfaces is possible with the glass and the apple due to their sizes, only small
contact surfaces are achievable with the remaining spherical and irregular objects. These small contact
surfaces and the aforementioned rotational slip effects translate into lower stabilization success rates.
The limitations of the approach will be discussed in more detail in Section 3.4.5.

3.4.3. Grip Stabilization under External Perturbations

To further test the validity of our control hypothesis, we investigated responses to externally
applied perturbations (Figure 6). Once the object was stabilized in the robotic hand, the experimenter
held an Optoforce sensor and used it to disrupt the object state by applying sequences of irregular
disturbances (Video available online: www.youtube.com/watch?v=0wj3RWXyOCk), either to the
different surfaces of the objects or to the fingertips, during 30 second recording periods (insets in
Figure 6).

For the entire duration of these experiments, the stabilizers invariably counteracted the
perturbations successfully by adapting the finger pressures. With every perturbation, we observed a
change in the fingertip forces and an increase in the accumulated value of the integrator that regulated
the applied velocity. As a result, the individual fingers applied slightly different steady-state forces
after each perturbation. For instance, the 1st, 4th and 8th perturbation in Figure 6 were applied in a
similar fashion (i.e., from top) but in response, the independent finger controllers generated different
stable grip force distributions. Indeed, while the object was held in a similar position throughout
this trial, the pressure distributions across the fingers differed following each perturbation. Changes
in fingertip forces due to slip prediction noise or re-stabilization were also frequently observed (e.g.,
around 16 and 21 second mark). Nonetheless, the ability to predict slip, as opposed to detecting it
after its initial occurrence, allows each finger to start counteracting the perturbations as soon as they
are applied to the object. Coupled with the smoothness introduced by the integrator, the controllers
avoid large and instantaneous changes in force that could potentially render the multi-finger system
unstable, but are still able to prevent the loss of contact due to slip events.

www.youtube.com/watch?v=0wj3RWXyOCk
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Figure 6. The magnitude of the external perturbations (top panel), the resulting integrator responses
(second panel), changes in fingertip positions (third panel), and the fingertip pressures (bottom panel)
during a full 30 second experimental run. Early pressure changes represent the initial stabilization of the
object in-hand. Subsequently, the individual fingertip pressures dynamically and independently change
and the integrator response increases every time that the object was perturbed by the experimenter
(top panel), or, interestingly, by ’spontaneous’ changes in individual fingers (e.g., around 17 seconds).

3.4.4. Master–Slave Operation

From the perspective of the independent fingertip controllers, there was no conceptual difference
between external perturbations and those caused by the actions of other fingertips. This interaction was
further explored in a manipulation experiment, where using a master–slave manipulation paradigm,
the object is manipulated by having several fingers stabilize the object while other fingers disturb
the object position. To achieve this, an experimenter manually pushed or pulled a finger to increase
or decrease the force it applied, while the controllers of the remaining fingers jointly stabilized the
grasp. Indeed, two-, three- and four-digit grasps remained stable while the object position changed
(Video available online: www.youtube.com/watch?v=sEI3uud9wgw). In addition, for grasps with more
than two digits, even when one of the digits was lifted off the surface of a grasped object, the remaining
stabilizers kept the object stable by redistributing the force among the fingers that remained in contact.
In contrast to more traditional solutions for manipulation control, force sharing between the engaged
fingers varied substantially from trial-to-trial due to the emerging nature of the independent finger
control policy. Such variability is, however, typical in human manipulation [27–29,39]. While it could
be easily removed by additional regularization, it could actually be beneficial in practice as it allows a
wider range of potential solutions (e.g., for use in a manipulation planner). The disturbances applied
by the human experimenter in the master–slave manipulation experiments are shown in Figure 7.

www.youtube.com/watch?v=sEI3uud9wgw
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The results of this master–slave manipulation experiment suggest that an independent fingertip
control scheme could potentially be used as the base level of a hierarchical control framework.
Performing above such a lower-level scheme, could enable higher-level control policies to perform
complex manipulations by applying a set of perturbations that would move the object to the target
configurations while the independent stabilizers ensure that the object remains firmly gripped. In a
basic scenario, rotating an object that is held in a tripod grip between the index and middle fingers
and the thumb, would simply require an increase in the force applied by either the index or middle
fingers, depending on the desired rotation, while the remaining fingers simply rotate with the object,
keeping it stable. An illustrative example of a rotation where the index finger is the master is depicted
in Figure 8. In this example, an increase in normal force applied by the index finger, here considered
the master finger, causes the object to pivot along a tripod grasps center axis. Since the remaining
fingers only wish to prevent slip, they act as the slaves, keeping the object stably gripped throughout
the movement.

Figure 7. Experiments showcasing master–slave operation where the fingers stabilize the object
despite one finger introducing perturbations to change the object’s positions in-hand. The experiment
showcases how the independent finger grip stabilization controllers, paired with upper level control
policies, can enable in-hand object manipulation. Instead of an upper level controller, finger
perturbations were introduced by a human experimenter for a two-finger grasp (upper row) and
a three-finger grasp (lower row). In addition, in the three-finger grasp we show that fingers can be
removed from the object while it is re-stabilized by the remaining fingers.

Figure 8. An example of how a rotation can be achieved with a tripod grasp when relying on a
master–slave control approach. In this case, the index finger is the master, increasing the amount force
applied in its normal contact direction. This force increase forces the object to pivot around the center
of the grasp while the remaining fingers keep the object stable throughout the movement.

3.4.5. Current Limitations

In the previous sections we showcased several properties of our approach that are desirable for
in-hand grip stabilization and in-hand manipulation. Despite these properties, our approach still fails
in specific scenarios.

One of such scenarios is when stabilizing objects that due to their shape or weight distributions,
are susceptible to gravity induced torques that cause rotational slips between the object and the
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fingertips. Compensating for rotational slips not only requires larger normal forces, due to much
smaller rotational coefficients of friction, but currently our slip predictors are also not able to detect or
predict rotational slip. While collecting training data for rotational slip, and using it to training our
predictors could potentially alleviate this problem, rotational and translational slips are physically
correlated [40], and it is unclear if the current slip prediction approach is able to cope with these
correlations. The inability to compensate for rotational slips is particularly relevant when the contact
surface between the fingers and the object is small, with any form of slip causing the object to drop
immediately.

One other fail case is related to the current estimation of the contact normal, Nt. The current
normal estimation was proposed in [36], and while it is stable for quasi-static point contacts, it quickly
becomes unstable whenever contact shifts and the deformation of the fingertip surface completely
changes. This is particularly detrimental for the stabilization of irregular objects such as the banana,
where the irregular surfaces of the objects translate to large changes in finger deformation even for
small control actions. This is directly observable from the success rates reported for this object in
Table 1.

4. Conclusion and Discussion

The proposed independent finger grip stabilization control approach, inspired by findings of
human neurophysiological research, was able to stabilize a wide range of objects by taking advantage
of the generalization capabilities of the slip feedback signals and of the modular nature of the control
scheme. The approach not only produced grips that kept the objects stable within the hand and
were robust to perturbations but also displayed fairly high stabilization success rates across objects
of different sizes, shapes and material properties. Results from a manipulation experiment using a
master–slave paradigm also suggest that such a control scheme, when used as the lower-level of an
hierarchical control approach, could facilitate the design of higher-level control policies that are able to
manipulate objects in-hand.

4.1. Summary of the Contribution

We have corroborated the hypothesis that stable grips can emerge while using a control scheme
where a set of independent finger controllers is distributed among the available fingers. Indeed,
the synchronization between fingers emerge from the tactile feedback of each finger controller and
enable stable gripping despite disturbances caused by poor contact distribution on the fingertip
surfaces, introduced by other fingers action on the object, or external disturbances. Each finger thus
automatically compensated for changes that jeopardized grasp stability. Moreover, our modular control
approach was shown to be generalizable across multiple objects, even objects that were substantially
different from the objects in the training set.

4.2. Recognized Shortcomings

Using the low-dimensional slip signals defined in previous work [33], enabled the design of the
controller used in this paper. As the full tactile state is much richer than the slip signals, we may
potentially have discarded relevant information.

Additionally, in the proposed approach we focused on ’low-level’ control of grasp stability.
As such, the objects tested were provided to the hand in configurations where the stabilization
would be possible, requiring neither finger gating nor re-positioning. Despite not directly addressing
finger gating and finger re-positioning to transition from configurations where stabilization is not
possible, both were shown to be easily achievable from stable grip configurations in the master–slave
manipulation experiments.

The implemented controller is reactive, albeit that upcoming slips are predicted by the controller.
The temporal limitations in this respect have not been analyzed. For comparison, it takes human as
much as 60–80 ms to initiate force responses to incipient and overt fingertip slips and at least 50–100
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ms to generate substantial counteracting forces [41,42], i.e., these delays are too long for preventing the
loss of a stable grasp once overt slippage occurs.

4.3. Future Work

Partitioning the hand into a set of independent fingers allows the manipulation problem to be
viewed as a distributed problem where each finger solves the task locally and coordination only
emerges by interaction through the object. This setting invites simpler control models than when
considering a complete model for the full hand. Specifically, we consider it realistic to use data-driven
approaches that take into account a richer sensor space, as the dimensionality of the problem is
distributed across the fingers. Our future work will focus on exploring the high dimensionality of the
feedback signals and learning stabilization controllers using reinforcement learning approaches in
these high-dimensional spaces. Learning such stabilization controllers could potentially address the
fail cases reported in Section 3.4.5, by directly learning how to estimate the direction of the stabilization
action and also how to compensate for rotational slips.

Finally, for complex manipulations, we propose that independently controlling the fingers will
be necessary but not sufficient to achieve robust performance. Using the independent control as the
base level in a hierarchical control framework is expected to enable higher-level control policies to
perform these manipulations, effectively creating a robust control hierarchy, where the task complexity
is distributed across the several levels of the hierarchy. Building such a hierarchy is thus a potentially
interesting future work.
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