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Abstract: In physical Human–Robot Interaction (pHRI), forces exerted by humans need to be
estimated to accommodate robot commands to human constraints, preferences, and needs. This paper
presents a method for the estimation of the interaction forces between a human and a robot using
a gripper with proprioceptive sensing. Specifically, we measure forces exerted by a human limb
grabbed by an underactuated gripper in a frontal plane using only the gripper’s own sensors. This is
achieved via a regression method, trained with experimental data from the values of the phalanx
angles and actuator signals. The proposed method is intended for adaptive shared control in limb
manipulation. Although adding force sensors provides better performance, the results obtained
are accurate enough for this application. This approach requires no additional hardware: it relies
uniquely on the gripper motor feedback—current, position and torque—and joint angles. Also, it is
computationally cheap, so processing times are low enough to allow continuous human-adapted
pHRI for shared control.

Keywords: physical Human–Robot Interaction; force estimation; underactuated grippers; adaptation

1. Introduction

Recent trends in robotics pursue the incorporation of robotic systems among people. Social
robots are taking on increasing importance, mostly for healthcare applications, i.e., helping patients [1]
or elderly people [2]. Collaborative robots (i.e., cobots) are expected to cooperate in physical tasks
with them (e.g., moving large objects [3]). Cooperation requires adaptation on both sides. Hence,
cobots must be safe [4–6] and include force-sensing capabilities to better adapt to people’s feedback
and constraints.

Force sensing is particularly important in physical Human–Robot Interaction (pHRI), where
robots are expected to physically manipulate a person, e.g., during rehabilitation [7], or when
using exoskeletons [8] or prosthesis [9]. In these cases, dependability and safety become a major
concern [10,11], especially when it is up to the robot to intentionally touch and/or manipulate people
using grippers [12]. These applications include assistive robotics [13], search and rescue missions [14]
and healthcare applications [15] among others. These robots need to accommodate to humans’
constraints and needs via shared control. To achieve continuous, transparent adaptation, low level
shared control must rely on blending the robot commands with human intention. Although accuracy
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in force estimation is not critical at low level, as no high precision is required and constant feedback
and adaptation tend to correct minor errors, it is at least necessary to assess human force direction and
magnitude, so the robot can comply with the person’s input.

There are several methods to estimate human/robot interaction forces. The most common ones
are industrial force/torque sensors, current-controlled cobots and sensitive manipulators with joint
torque sensors. Industrial sensors are accurate and provide Cartesian external forces, but they are
usually bulky, heavy and expensive. Manipulators with joint torque sensing can be implemented using
elastic joints, which can be easily developed using the position error and the arm inverse Jacobian [16],
but provide poor performance. Motor current-based force estimation depends on an accurate model
of the arm dynamics with frictions [17]. Some other robots include rigid joints with torque sensors
integrated with the controller, used to provide impedance control. Those robots are expensive and
require complex control [18], and they are used mostly for research purposes. Some experimental force
sensors for robot arms are based on lightweight pressure sensors such as piezoresistive sensors [19],
MEMS barometric sensors [20], or optical sensors [21], which are still under development.

Alternatively, force estimation could be performed on end effectors instead of on the robot arm.
The actual choice of the end-effector is important for safe human manipulation. Although there are
many different grippers [22], safe, reliable and autonomous grippers, sensitive enough to manipulate
human limbs are still under research. Soft grippers are receiving a growing interest in this field [23],
but precise manipulation often requires an adaptive but more controllable solution. Gripper-based
proprioceptive sensing has already been used in pHRI and can provide a more controllable solution.
In [24], variations on the forearm perimeter have been used to estimate hand postures. Some
studies [25] propose estimating forces using uniquely proprioceptive sensors in an arm to estimate the
position of a surgical instrument carried by an underactuated arm (continuous flexible or made of rigid
serial links) based on the actual positions of the intermediate stages, and also the interaction forces.

The authors have already published works in the field of force sensing in pHRI [26] and intelligent
tactile perception in robotics [27]. Specifically, in [28] they have suggested using additional joint angle
sensors to obtain shape estimation on grasped objects for limb manipulation planning. In this work
we propose extending the capacities of the gripper in [28] to also assess forces exerted by the human
forearm with no further modifications, i.e., additional sensors. Rather than building an analytic model,
given the complexity of these problems, many of these methods rely on machine learning techniques.
For example, in [29], interaction forces between a human and a cobot were measured using an external
industrial 6-axis force sensor. In [30], the interaction force is predicted by using flexible joints with
integrated force sensors, to perform an estimation of the arm global friction, but the approach requires
additional functional and fully calibrated force sensors in the gripper.

In this work, we propose a regression model to detect interaction forces in a gripper with two
underactuated fingers with two-phalanx using uniquely its own proprioceptive joint sensors, namely
servo and one passive joint angle. Specifically, the gripper is expected to manipulate the forearm of a
person in a frontal plane. The gripper adapts to the human’s forearm by design, flexing fingers and
shifting forces to keep the grip. As the person moves to either comply with the robot motion or resist,
finger angles and applied torque keep adapting, implicitly providing information on the direction and
magnitude of human forces on the grip, as illustrated in Figure 1. The ultimate goal of our proposal is
to obtain information on human intention and interaction force in a continuous way so that the robot
may adapt to human needs and constrains in a transparent way via shared control in applications
involving pHRI. The main novelty of our proposal is that it relies on information that grippers can
provide without any additional hardware. Hence, we avoid any extra weight, cost and/or complexity
in the system. Due to the non-rigid properties of the human forearm and the use of machine learning
methods, proprioceptive sensor information (servo and passive articulation positions) is related to
forces. Hence, we can train a model using data from tests with volunteers where forces are measured
using independent sensors. Thus, inexpensive underactuated grippers with different number of fingers
can be used to estimate human intention for efficient, low level shared control in assistive robotics.
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Figure 1. The proposed approach estimates the forces applied by a human in a frontal plane when
the forearm is grasped by a robot (a) with an underactuated gripper using only the proprioceptive
information from servos and passive joint angles (b).

The paper is structured as follows. Section 2 presents the design of our gripper and its control
system, as well as its kinematic and dynamic analysis. Section 3 describes the tests done and the results
obtained. Section 4 presents the experimental setup of the system. Finally, these results are discussed
in Section 5, and conclusions and future work are provided in Section 6.

2. The Underactuated Gripper

This section presents our gripper design along with a kinematic and dynamic analysis. Moreover,
the experimental prototype and the sensing and control systems are described.

2.1. Design

The design proposed in this paper consists of a gripper with two independent underactuated
fingers, with two phalanxes and a single actuator each as shown in Figure 2. Actuators can be
implemented using tendons or rigid linkages. The use of tendons (e.g., Yale OpenHand) as in [31]
has been discarded here due to the displacement of the internal contact surfaces of the fingers when
pinching the human skin. Hence, our gripper relies on a transmission system based on rigid linkages,
which also provides a more human-friendly contact.
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Figure 2. Kinematic design of the gripper for pHRI showing the parameters and joint angles. For clarity,
every finger has been partially labeled.
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A special feature of this design is the addition of a joint angular sensor that provides information
on the values of the passive joints. This allows us to evaluate how the grip adapts to a human’s forearm.
A prototype has been manufactured using FDM 3D-printers, and the CAD files have been released
openly in a public repository (https://github.com/TaISLab/umahand).

2.2. Forward Kinematics

As the value of the joint positions in the adaptive fingers depends on the interaction forces with
the environment, they provide information about the shape of the contact surfaces. The value of θ2 (θ2l
and θ2r for left and right fingers, respectively) is obtained by miniature potentiometers that measure
the relative angle between the two phalanxes. The values of θa are obtained from the smart servo
controllers. Knowing both values, the five-bar mechanism, with fixed-length links, can be solved using
trigonometric methods, so the angle of the first phalanx θ1 can be computed.

Solving the trigonometric equations and using the auxiliary angles α1 = θ1 + γ, α2 = π − ψ + θ2

and αa = π − θa − γ, the forward kinematics model is presented in Equation (1).

θ1 = asin
(

d
f

sin (θa + γ)

)
+ asin

(
b
g

sin (ψ− θ2)

)
+ acos

(
f 2 + g2 − c2

f g

)
− γ (1)

where f and g are the non-adjacent vertex distances indicated in Figure 2, computed as (2) and (3).

f =
√

d2 + e2 + d e cos (θa + γ) (2)

g =
√

a2 + b2 + a b cos (ψ− θ2) (3)

2.3. Dynamic Model

The general dynamic model for each of the rigid linkage-driven underactuated fingers, with
multiple DOFs is given by

M(θ) θ̈+ C(θ, θ̇) θ̇+ G(θ) + F(θ̇) = TT(θ) τa + JT
1 (θ) Fext1 + JT

2 (θ) Fext2 (4)

where θ = [θ1 θ2]
T is the 2× 1 joint vector for each finger composed by the values of joint 1 and 2.

θ̈, θ̇ denote its acceleration and velocity vectors respectively. M(θ) represents the 2× 2 symmetric
positive definite inertia matrix, C(θ, θ̇) the Coriolis and centripetal torques matrix, and G(θ) and F(θ̇)
the 2× 1 gravity and friction vectors. τa is the scalar actuator torque, TT(θ) is the 2× 1 transposed
transfer matrix that relates the velocities of the actuators to the joint velocities, JT

1 (θ) and JT
2 (θ) are

the 2× 2 transposed Jacobian matrices of the contact points on phalanx 1 and 2 respectively, where
the corresponding Cartesian forces Fext1 and Fext2 are considered. As all the motion axes are parallel,
forces in other directions are rejected by the planar kinematic constraints. This way, Cartesian forces
are expressed as a 2× 1 vector of two coordinates along the finger plane.

The actuator torque τa is provided by a servomotor that has its own dynamics (5) and follows a
proportional position control law with torque limitations, as in (6), which renders the finger compliant.

τa = τm − Jm θ̈a − Bm θ̇a (5)

| τm |= min{| (θclosed − θa)Kp | , τmax} (6)

where the actual position actuator is θa, and Jm and Bm are the moment of inertia and frictions of the
servomotor respectively, which have to be taken into account, as its gear box has four spur gears with
a 350:1 ratio. The motor torque τm is computed at the embedded controller based on the following
fixed parameters: reference value for the closing position θclosed, proportional gain Kp that defines the
compliance, and maximum torque τmax that limits the grasping force.

https://github.com/TaISLab/umahand
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3. Force Estimation Method

To overcome the difficulty of obtaining an analytic model, we propose using regression methods.
The proposed method adapts better to imperfections, sensor and mechanical errors and can be
extensible to other similar grippers via training. A schematic of the method is showed in Figure 3,
where the symbol (ˆ) represents measurements, and F̃ are the estimated external forces.

Force

Sensors

Smart 

Actuators

Underactuated

Joint Encoders

Interaction 

Forces 

Estimator

Learning

Figure 3. Representative schematic of the intelligent perception system. The regression model uses the
measurements from the proprioceptive sensors of the smart actuators and the underactuated joints
to estimate external forces. The dotted line represents the supervised learning process, which uses
ground-truth forces measured with force sensors for training.

The inputs of the smart actuators’ current-based controllers are the desired position (θd) and
maximum current (Imax). Current positions (θ), velocities (θ̇) and accelerations (θ̈) of the joints are
considered inputs of the estimator, along with the current (Î) and the PWM of the control signal (P̂).
The position is measured from the encoders of the smart actuators (θ̂a) and the sensors integrated in the
passive joints θ̂2. Velocities and accelerations are computed from the position with discrete derivatives
according to the sample time (∆T). P̂ and Î variables present low correlation in our actuators (Pearson
coefficient equal to 0.4379) due to dynamic behavior of the DC motors. Hence, they are kept as
input parameters in our model. All the signals are defined for the two-finger gripper as defined in
Equation (7), where sub-index r and l refer to right and left actuator, respectively.

P̂ =

[
p̂r

p̂l

]
; Î =

[
îr
îl

]
; θ =


θar

θ2r
θal
θ2l

 ; θ̇ =
∆θ

∆T
; θ̈ =

∆θ̇

∆T
; F̂ =

[
f̂x

f̂y

]
; F̃ =

[
f̃x

f̃y

]
(7)

Thus, the goal is to find a non-linear function (L ). According to Equation (8), this function
estimates external forces from input parameters. We propose two regression methods to obtain L :
(i) Support Vector Regression (SVR) [32]; and (ii) Random Forest Regression (RFR) [33].

F̃ = L
(
P̂, Î, θ, θ̇, θ̈

)
(8)

SVR relies on fitting the error rate within a certain threshold rather than minimizing it (Principle
of Maximal Margin). The main advantages of SVR is that it is a non-parametric technique, i.e., it does
not depend on distributions of the underlying dependent and independent variables. Additionally, it
allows for construction of a non-linear model without changing the explanatory variables, helping in a
better interpretation of the resultant model. RFR is a type of additive model that makes predictions by
combining decisions from a sequence of base models (ensemble learning), where each based classifier
is a decision tree. Unlike linear models, RFR can capture non-linear interaction between the features
and the target. Both methods are appropriate to work with non-linearity and outliers, so they are good
candidates to solve our problem.



Sensors 2020, 20, 2863 6 of 13

4. Experimental Setup

By adding proprioceptive angular sensors, the angles θ2l and θ2r can be measured (we use l and
r subscripts for left and right fingers). Thus, given the position information provided by the servos
(θal and θar), the position of the remaining phalanxes (θ1l and θ1r) can be computed. As a result, the
position of the gripped objects can be estimated using θ2r and the shape of the grasped object can be
inferred with the positions of the two fingers θl and θr.

Two potentiometers (muRata SV01 10 kΩ linear) have been used for the measurement of the distal
joints. They have been added to the gripper as a DAQ with a 50 Hz sample rate. The actuators are
Dynamixel XL450-W250 servos featuring a 12-bit digital magnetic encoder (0.088◦ resolution), and
an advanced position-based controller with torque limits to provide a sort of force control. This
capability is essential to control the grasping force. Their internal position PID loops have been set to
Proportional-only control to get compliance to the user interaction forces. The servos provide real-time
feedback of the positions (θa), the electrical current (I), and the PWM output (P) of the controller.

A microcontroller board (Arduino Mega 2560) has been used as gripper interface and DAQ that
periodically samples the analog values with 10-bit ADC (0.26◦ resolution), from the potentiometers,
and queries the status of the servos at a rate of 10Hz. A serial port over USB communicates with the
main computer to provide the above information and receives simple Open/Close commands.

The actual values of the parameters for the kinematics shown in Figure 2 can be found in Table 1.
It has been designed to grasp an upper forearm with a perimeter between 16.2 and 19.3 cm and a
median of 17.7 cm, according to the anthropometrics from [34].

Table 1. Values of the parameters of the kinematic model of the underactuated gripper described in Figure 2.

Parameter Value Parameter Value

a 40 mm e 27.8 mm

b 20 mm ψ 90◦

c 60 mm γ 56◦

d 25 mm w 10 mm

The joint ranges present different mechanical limits. In particular, 0 ≥ θ2 ≥ π/2. The position of
the phalanxes depends on the balance between external forces F1, F2, the actuator torque θa and the
extension springs (164 N/m) used to make the finger stable when no external forces are applied.

To use machine learning techniques to estimate forces using the gripper, we need to capture
all the problem instance parameters simultaneously. Also, we need a test environment that ensures
repeatability. Hence, we have designed the structure in Figure 4 to obtain a ground-truth for our
regression methods. It can be observed that the gripper is physically attached to six load cells used to
estimate Cartesian forces. Thus, when the gripper is closed around a moving forearm, we can record
its force and all gripper parameters at the same rate of 20 Hz.

Force sensors in our structure (see Figure 5a) have been calibrated using a dummy forearm section
and a force meter to obtain ground-truth values. Different forces at different angles have been applied
(Figure 5b) and recorded together with its corresponding load-cell readings. Then, a matrix that relates
the six readings from the load cells has been adjusted using a least squares method. The inverse of this
matrix will then be used to provide output forces in kg f units from load-cell readings.
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Microcontroller

Smart 
actuators

Human 
forearm
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Figure 4. Illustration of the data collection process with the experimental force-sensing system (left side
visible only) to record ground-truth data and gripper readings to train the regression methods. Please
note that only three load cells (left finger) are visible in this picture as the other three (right finger) are
hidden by the human forearm.

DAQ modules
HX‐711

DAQ modules
HX‐711

Potentiometers

Load Cells
(X1, Y1, Z1)

Support frame

Serial bus 
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X2Y2
Z2X1 Y1

Z1
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Figure 5. Experimental setup (a) and calibration process for Y-axis (b) and X-axis (c) forces. A dummy
forearm section is used to calibrate the force sensor used to get ground-truth values for the force
estimation methods.

After the calibration of the force sensor, the positions of the fingers were controlled—proportional
control—to maintain the person’s forearm as close as possible to the center of the gripper.
We purposefully kept a low gain in our control loop to make it more sensitive to external perturbations.

5. Experimental Protocol and Results

To test our system, five volunteers were asked to get their forearms gripped and pull in a frontal
plane (X and Y movements) to obtain a training data set. Each volunteer performs 2-min circular



Sensors 2020, 20, 2863 8 of 13

motion and 2-min cross motion Forces and gripper parameters were captured in a continuous way
with a common time reference at 20 Hz (generating more than 20,000 samples).

Figure 6 shows forces measured in the X and Y axes by the load cells in the structure, the
corresponding joint and servo positions and the current and PWM provided by the servo controller for
the left gripper side. Signals may be positive or negative depending on the motor direction. In this
example, the person first moves his forearm 3 times right and 3 times left (X-axis) and then 2 times up
and 2 times down (Y-axis) in a sequence. Forces during the sequence can be clearly observed as peaks
in the X axes in Figure 6. It can also be observed how θa and θ2 evolve with the forces. Similarly, the
current and PWM also present changes depending on forces. It can be observed that in general, forces
in the x-axis (e.g., seconds 1 to 3.5) are more correlated with the gripper parameters than forces in the
y-axis (e.g., seconds 3.5 to 5). This was expected because the gripper is aligned with the Y-axis in our
tests, so the gripper fingers tend to slip when forearms move in vertical.

-2

-1

0

1

2

Fo
rc

e 
(k

gf
)

Fx
Fy

-0.8

-0.6

-0.4

-0.2

0

Jo
in

t A
ng

le
(d

eg
)

2

a

-200

-100

0

100

200

C
ur

re
nt

 (r
aw

)

I

-50

-40

-30

-20

PW
M

 (r
aw

)

-2

-1

0

1

2

Ve
lo

ci
ty

  (
de

g/
s)

2

a

0 0.5 1 1.5 2 2.5 3
Time (s)

-20

-10

0

10

20

Ac
ce

le
ra

tio
n 

(d
eg

/s
2 )

2

a

Fx
Fy

2

a

I

2

a

2

a

X+ X- X+ Y+ Y- Y+

Figure 6. Excerpt from the data collected during experiments: exerted forces (Fx, Fy) and the input
parameters position (θ2, θa), current (I), PWM (P), velocity (θ̇2, θ̇a), and acceleration (θ̈2, θ̈a), for left
finger. Right finger data are analogous.

As commented in Section 2.3, dynamic parameters are required for force estimation. We can
obtain angular velocities and acceleration extracting the first and second derivatives of θa, θ2. To reduce
noise in these new features, we use a moving average filter (size 3). Figure 6 shows these first and
second derivatives, which present similar trends with exerted forces.

It can be observed that the derivatives obtained are centered in zero, whereas θa, θ2 are not. This
happens because these angles depend on the gripped forearm shape. To avoid this shape dependence, we
propose using the initial forearm angles θa, θ2, obtained when the gripped initially closes, as an offset.
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5.1. Data Modelling

Our problem requires multi-variable analysis as we need to estimate forces on the X and Y-axis.
The first decision before modelling was consequently whether to work with forces independently or
together. We have decided to model them independently; otherwise, any motion patterns in training
sets presenting casual relationships in X and Y, e.g., users doing circular motion or favoring one side
against the other, would be acquired in the model.

As commented, we have tested RFR and SVR to create our model. Both techniques are appropriate
to deal with non-linearity (e.g., Figure 6). RFR is particularly fit to cope with problems where
parameters have different importance depending on the situation. For example, when forces in
the x-axis are low, the current parameter (I) does not provide much information, whereas θ2 still
correlates with the force (Figure 6). However, SVR deals better than RFR with sparse data, which are
present in boundaries—i.e., large forces—in our data set.

MATLAB (Version used: R2019b by The MathWorks, Natick, MA, USA) has been used to create
RFR and SVR models. RFR has been created using the TreeBagger function. The best hyperparameter
set for our data was: NumTrees = 40, MinLeafSize = 5. SVR was created with the f itrsvm function.
Kernel radial with standard parameters outperforms linear and polynomial kernel for our data.
Automatic parameter optimization (OptimizeHyperparameters) has been used to select the best values
for BoxConstraint, KernelScale and Epsilon parameters.

5.2. Performance Evaluation and Discussion

In this section, we analyze force estimation results in the frontal plane (X and Y), both for RFR
and SVR. To do so, we acquired information from 5 volunteers using the described system. Each
volunteer performed two tests: (i) exerting forces in a cross pattern (only X or Y direction at a given
time), and (ii) exerting forces in a circular pattern (forces both in X and Y at all times), as shown in
Figure 7. Volunteers were trained to use constrained forces, although no mechanism was applied to
keep them in a constrained interval. Ten tests were recorded per volunteer in a total testing time of
2 min after training. Afterwards, a k-fold cross-validation technique per volunteer (k = 5) was used to
evaluate the accuracy of the models. Finally, the Mean Absolute Error (MAE) was calculated for all
tests of each regression model in X and Y.
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Figure 7. Estimated vs. measured forces for two types of interaction experiments: (a) vertical and
horizontal forces during 4 s, and (b) circular forces trying to describe a circle for 2.8 s.

Figure 8 shows the resulting Force X and Force Y estimates versus the measured force values for
all tests using both methods (SVR and RFR) in terms of MAE. RFR outperforms SVR slightly for our
data set. It can be observed that in the middle range both models behave similarly but in all cases RFR
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provides a better fit for low and high force values. This confirms the importance of input parameters
depends on the force ranges. To understand this dependence, we can observe the importance of
those input parameters using the OOBPermutedPredictionDeltaError variable from the TreeBagger
RFR function in MATLAB (Table 2). It can be observed that current I and the servo speed θ̇a are the
most relevant parameters to estimate forces in the X-axis. However, to estimate forces in the Y-Axis
the second passive joint angle θ2 and its variation become more relevant. This is most likely due to
slippage in fingers when users pull their forearm up and/or down, meaning that variations in the grip
become more important than forces in the servoes in these cases.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Force X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
st

im
at

ed
 F

or
ce

 X

(a) RFR. MAE: 0.1643.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Force Y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
st

im
at

ed
 F

or
ce

 Y

(b) RFR. MAE: 0.1851.
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(c) SVR. MAE: 0.2009.
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Figure 8. X (left) and Y (right) real Cartesian forces versus estimated forces using RFR (top) and
SVR (bottom) methods.

Table 2. Parameter importance in RFR. The parameters with higher importance are in bold.

θ2 θa I P θ̇2 θ̇a θ̈2 θ̈a

Force X 1.0921 0.9185 1.3562 0.9050 0.8265 1.3502 0.7936 0.8949

Force Y 1.6341 0.7029 0.7296 0.9385 1.5958 0.8571 0.7358 0.7156

Figure 7 shows estimates versus real force values for a single test over time. It can be observed
that the force module tends to be underestimated. This effect is higher in the Y-axis compared to
the X-axis (see Figure 7b), due to slippage in the grip. It can be observed that the motion pattern is
correctly estimated. Hence, the user’s intention can be estimated from these forces estimation to be
used in a shared-control approach, i.e., to adapt emergent motion patterns to the user’s preferred
direction. Typically, users’ intention in shared control in pHRI has been obtained in different ways.
In [35] intent is defined in a binary way (e.g., motion or not, left or right, up or down, etc.). Also, it
is defined within a set of discrete intents (e.g., predefined poses) or using continuous variables (e.g.,
steering angles). Our approach provides Cartesian X and Y forces. These forces can be transformed
into polar coordinates—error module (ρε) and angle (θε)—to calculate the classification accuracy and
estimation error in all three typical user intent estimations: binary intent (left or right, i.e., 180 degrees
clustering), discrete intents (left, right, up and down, i.e., 90 degrees clustering) and continuous intent
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(module and angle). Table 3 shows the results. It can be observed that the classification accuracy
remains high in binary and discrete cases (above 90%), with values similar to the ones presented
in [36]. On the other hand, continuous values provide a granularity below 20 degrees on average in
direction, so applications that need to know the user’s intention to collaborate with them in tasks with
some degree of freedom—e.g., repositioning a limb vs. (precise) assistive surgery—can rely on the
proposed approach.

Table 3. User intent estimation depending on the desired shared-control output.

Intent Classification Accuracy/Estimation Error

Binary 99.08% (Right) 98.78% (Left)

Discrete 96.34% (Right) 97.69% (Up) 94.03% (Left) 95.87% (Down)

Continuous 19.2 degrees (θε) 0.22 kgf (ρε)

6. Conclusions

In this work, we have presented a method to estimate interaction forces with an underactuated
gripper grasping a human forearm. These forces are related to human intention and, hence, critical for
pHRI. The intention is typically used in shared-control approaches to ensure that human constraints,
goals, and comfort are taken into account while their forearms are being manipulated.

We use only the gripper proprioceptive sensors to estimate the forces. Specifically, we work with a
gripper with two underactuated fingers to achieve an adaptive, robust, and precise grasping of human
limbs operating in a closed control loop. Its proprioceptive sensors provide information about the
servo and passive joint positions—using uniquely two inexpensive potentiometers—, plus the motor
PWM and current. The analytical model of the gripper may already produce limited information
about human forces in the gripper, but the model is only valid for certain conditions and it does not
take into account limb slippage or artifacts. Instead, we propose using machine learning to estimate
human forces.

We have designed a platform to capture the required learning data set that includes a fixed gripper
and a force-measurement structure to get training data. When volunteers are moving their gripped
forearms, we gather all the gripper parameter values as well as the load-cell readings. We tested SVR
and RFR to predict forces using the acquired data set. RFR provides slightly better results because it
adapts better to the nature of our data: depending on the force range, some input parameters provide
more information than others. Specifically, we observed that force in X is better estimated using I and
θ̇a and force in Y is better estimated using θ2 and θ̇2. After training, the method is computationally
cheap and resulting trees can be run in parallel.

The proposed method does not require any additional sensor except the gripper proprioceptive
ones. Additionally, the proposed proprioceptive sensors are cheap, robust, and do not require
calibration for each different gripped object. The gripper has two fingers in the same plane, so
only two-dimensional forces (in a frontal plane) are considered because the forces in other directions
are rejected by the kinematic constraints of the fingers.

Results prove that the proposed methodology provides satisfactory results in all our tests with
different people and changing forces. Future work will focus on developing a gripper with a higher
number of non-parallel fingers to consider forces in the full Cartesian space. Also, we will work
on implementing shared control based on estimated forces to prove that task efficiency and human
comfort improve using the proposed method to estimate user’s intention.
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