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Abstract: This study explores the relationship between the spatial distribution of relative transfer
location (i.e., the location of the transfer point in relation to the trip origin and destination points) and
the attractiveness of the transit service using smart card data. Transfer is an essential component of the
transit trip that allows people to reach more destinations, but it is also the main factor that deters the
smartness of the public transit. The literature quantifies the inconvenience of transfer in terms of extra
travel time or cost incurred during transfer. Unlike this conventional approach, the new “transfer
location” variable is formulated by mapping the spatial distribution of relative transfer locations
on a homogeneous geocoordinate system. The clustering of transfer points is then quantified using
grid-based hierarchical clustering. The transfer location factor is formulated as a new explanatory
variable for mode choice modelling. This new variable is found to be statistically significant, and no
correlation is observed with other explanatory variables, including transit travel time. These results
imply that smart transit users may perceive the travel direction (to transfer) as important, in addition
to the travel time factor, which would influence their mode choice. Travellers may disfavour even
adjacent transfer locations depending on their relative location. The findings of this study will
contribute to improving the understanding of transit user behaviour and impact of the smartness of
transfer, assist smart transport planning and designing of new transit routes and services to enhance
the transfer performance.
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1. Introduction

Smart, reliable and connected service has been a long-standing goal of transit agencies. Smart transit
network and service design must consider the service connectivity to allow users to travel to spatially
diverse destinations [1,2]. However, providing direct connectivity for all origin—destination pairs is
simply infeasible and impractical. Smart transfer is becoming an essential component of the transit
trip. The extra effort in making transfers efficient and convenient has deemed to be necessary to
expand service coverage and to provide competitive area-wide connectivity [1,2]. Ironically, transfer is
recognised by travellers as a significant impeding factor that disrupts the transit travel experience and
deters the use of transit [3–5]. The literature formulates the effect of transfer in terms of the extra travel
time such as the additional walking time, waiting time and in-vehicle travel time, incurred during
transfer [5–7]. Another type of transfer penalty encapsulates subjective and psychological factors
based on preferences, attitudes and perceptions of transit users [1,3,8].
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The literature formulates the effect of transfer in the scalar form such as the extra walking
time, waiting time, in-vehicle travel time and monetary transfer cost incurred during transfer [5–7].
Another type of transfer penalty encapsulates subjective and psychological factors based on preferences,
attitudes and perceptions of transit users [1,3,8].

This study builds on the hypothesis that transfer location (i.e., the relative location of the transfer
point to the trip origin and destination) has an impact on the attractiveness of the transit trip involving
the transfer for travellers. This variable is quantified by the level of deviation of the transfer point from
the straight path from the trip origin to destination. The deviation could be interpreted as intrinsic
factors that reflect subjective or psychological impedance imposed by the transfer location. Whereas the
burden of transfer has been quantified in terms of travel time and/or cost in the literature, we propose
a new “transfer location” variable to represent the deviation in the travel direction. We examine if transit
users tend to disfavour the transfer locations that deviate from a direct path to the trip destination
and test this hypothesis by incorporating this novel explanatory variable to represent its underlying
effect on the travel mode choice. To control the distance effect, this study proposes a combination of
transformation techniques to keep only the deviation of transfer points. Despite an extensive range of
research on transfer, the current literature has neglected the potential implication of transfer location
in the decision-making of mode choice.

In the present study, we aim to improve the smartness of transfer and the explanatory ability
of mode choice models by incorporating the transfer location variable. The findings of this study
could contribute to smart transport planning and designing of new transit routes and smart services
to enhance the transfer quality and to a more realistic assessment of transit service accessibility
and connectivity. The spatial distribution of transfer points is analysed by their relative location
with respect to the destination point. This study presents a transformation approach to convert the
actual coordinates of the transit journey itineraries (i.e., origin, destination and transfer points) on
a two-dimensional homogeneous geocoordinate. This approach may be useful for transit route choice
and further transfer location analysis.

2. Literature Review

Transfer is an essential and inevitable component of the transit journey (a chain of trips). It allows
passengers to reach more destinations by switching to different routes and modes, hence enhances the
smartness of the transfer. In major cities with a multimodal transit system, the role of the transfer is
more prevalent. In an integrated transit system, the focus is to provide seamless transfers between
different trips in a journey [2,9]. Smart transfers at strategic locations improve transit connectivity
and expand spatial coverage of transit systems [10]. Despite its essential role, transfers are often seen
as a burden in using transit [11]. Inconvenient transfers deter the use of transit for potential transit
users and reduce the satisfaction level of existing transit users, which ultimately leads to reduction
in the ridership.

The conventional way of quantifying the inconvenience of transfer has been by incorporating it
into a generalised cost term to account for the extra monetary costs, travel time and discomfort incurred
during the service transferring [5,12,13]. Transfer penalty can be measured as an equivalence of the
travel time or money saving by taking the ratio between the coefficients of transfer variables and time
or cost variables. This ratio shows how much further people are willing to travel (time without transfer)
or how much they are willing to pay (cost), to save one transfer, demonstrating the time and money
that must be saved in order to justify one transfer [3,5]. The literature suggests that out-of-vehicle
travel time is perceived as more onerous than in-vehicle travel time by transit users when making
transfers [14,15]. In practice, the general rule of thumb is that walking and wait times are valued twice
as much as the in-vehicle travel time [7,12]. Wardman, et al. (2001) suggest that bus users value the
wait time about 1.2 times higher than the in-vehicle travel time and the walk time 1.6 times higher than
the in-vehicle travel time [7]. Generally, the wait time during transfer is also valued higher than the
walking time during transfer [12,16].
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Operational factors such as service reliability, headways regularity, on-time performance and the
availability of adequate information affect the quality of transfers [5,12,17]. Providing a guaranteed
connection and a through ticket for transfer could significantly reduce the perceived penalty of
transfers [7]. An empirical study conducted in Haifa, Israel demonstrated that waiving a transfer fee
resulted in a significant increase in the transit ridership [6]. Another study conducted in metropolitan
Los Angeles showed that the users’ satisfaction with the transit service transfer has little to do with
the physical characteristics of the facility, but service frequency and reliability have more impact [18].
A study by Currie and Loader found that the volume of transfers could significantly increase along
a major transit route when the service headway is 10 min or shorter [2].

Physical environmental factors such as stop and station amenities may affect the smartness of
transfer services. Guo and Wilson reported that transit users are more likely to use the transfer service if
escalators are available at the transfer station to assist with changing of levels [11]. Providing amenities
such as benches, shades, water fountains and rest rooms would increase the comfort and convenience
of transit users while waiting and transferring [5,12]. Security and safety, such as the presence of
security staffs and the actual crime rates within the transit facilities would affect the perception of
transfer quality [19]. A case study of the London underground train found that the worst transfer
locations were the stations with the largest and most complex transfer environments, and the best
transfer locations perceived were those stations with simple transfer environments [20]. In the case
of whether to take a transfer or walk a longer distance to a destination, Guo and Wilson found that
the demand of transfer decreases if walking environments are improved [11]. For example, if wider
sidewalks exist along the non-transfer path, transit users are less likely to use a transfer service.

In an integrated transit system, more research seeks to understand and minimise the real cost of
transfer inconvenience [15]. Much effort has been devoted to understand and minimise the cost of
different time components (e.g., walk and wait time) during transfer, such as the timed transfer concept.
This concept optimises the slack time between the arrival of incoming vehicles with the departure
of outgoing vehicles [21–23]. Ceder et al. developed a synchronised timetable by maximising the
number of simultaneous bus arrivals at transfer nodes [14]. Shih et al. employed the heuristic model
for the design of a coordinated network with transfer centres [24]. Similarly, Ting and Schonfeld used
a heuristic algorithm to optimise the headways and slack times jointly for all coordinated routes, as the
optimised slack times vary with different variables such as headways, vehicle arrival time variance
and transfer volumes [25].

As much as minimising the transfer time is important, transit users could also consider the travel
direction towards the transfer point. Conventionally, the inconvenience to transfer caused by transfer
location is considered as an increase in transit travel time, in the scalar form. This concept is similar to
the “angular cost” concept presented by Raveau et al. to measure the directness of a chosen transit
route [26]. The conventional route choice models account for the service level of the route alternatives
and the socioeconomic and demographic characteristics of users [27]. Raveau et al. found that transit
users tend to penalise routes that deviate from a direct path to their destination [26]. The “angular
cost” is measured as a function of sin

(
θ
2

)
, where θ is the angle formed between the direct path to the

destination (OD) with the origin-transfer (OT) straight route, weighted by the Euclidean distance to
transfer point (d).

3. Study Area and Data

The city of Brisbane accounts for approximately 70% of the total daily weekday trips in South
East Queensland [28]. Brisbane has an extensive transit network of bus, rail and ferry systems,
covering more than 10,000 km2. The recent report by the Queensland Government revealed that from
January to March 2016, 27.38 million trips were conducted by bus, followed by 12.21 million trips by
train, 1.71 million trips by ferry and 1.93 million trips by tram [29]. Bus ridership consisted of more
than 63% of total transit ridership. This shows that the bus is the dominant transit mode in Brisbane.
The benefit of the bus, in comparison to the train, tram and ferry, is that it has the flexibility to access
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almost all locations where a road network is present. The nature of buses travelling on existing road
networks gives more feasibility of adapting to change, such as the addition of new bus routes to serve
more destinations. These considerations have steered the scope of this research towards bus ridership
in Brisbane.

Brisbane’s bus network may be characterised as a typical radial structure where more than 66% of
the bus services operating to the city centre [30]. There are many routes heading in the same direction
with very minor variations and no feeder or trunk services are currently provided. The CBD is the
central hub for the bus system, where three grade-separated bus only corridors (busways) provide
high-speed, high-capacity services to regional centres.

This study relies on two main data sources. First is the smart card data (big data), which is used
to develop the transfer map of bus users in the study area. The one-day “go-card” data of Brisbane
(24 November 2014, Monday) was used for the mapping. The data encapsulates the entire Brisbane
area. The go-card is an electronic ticket for use on transit services throughout the network and records
travel data when a traveller touches on at the start of any trip stage, and touches off at the end of the
trip stage. This dataset contains information such as go-card ID, date of service, route ID, service ID,
direction (inbound or outbound), boarding time and alighting time, boarding stop ID and alighting
stop ID, ticket type, journey ID and trip ID. If it is a transfer journey, it would have a consecutive trip
ID for each trip stage with the identical journey ID. According to TransLink, a journey is defined as the
set of trip stages taken under one fare basis, while a trip is a ride on a single transit vehicle. This study
adopts the same convention for the terms “journey” and “trip”.

The second dataset used in this research is the 2009 Southeast Queensland Household Travel
Survey (SQHTS). This single cross-sectional survey provides information on daily travel behaviour
of all members of participating households, from 20 April through 28 June 2009. This includes how
and why they travel, at what time of day journeys are made and the average journey distance and
duration [28]. Respondents were also asked to report a range of personal information (e.g., age, gender,
individual income, driver’s license, etc.), and household related information (e.g., household size,
number of vehicles, etc.).

4. Transformation Mapping of Transfer Coordinate

This section presents a transformation approach to project the transfer locations on a homogeneous
coordinate to examine the spatial distribution pattern of transfers. Travellers could be guided by the
geographical images formed in minds, rather than the external maps, especially when individuals are
familiar with the settings. These mental constructions suffice as the sole source of spatial information.
At instances when individuals are unfamiliar with the surroundings and need to rely on an external
map, they still have to transcribe the cartographic information into their minds before they can act on
the information [31,32]. In both instances, it is the spatial images in minds that best explain travellers’
spatial behaviours.

4.1. Processing for Single-Transfer Journey Itineraries

The smart card data was processed to filter out direct bus journeys and the journeys with two
or more service transfers. The single transfer bus journeys account for about 20% of the total bus
journeys. The journeys with two or more transfers are negligible less than 1% of the total bus journeys.
The analytical framework of the transfer impact in this paper was developed applicable to only
single-transfer journeys. The first step of the transformation mapping is to reconstruct travel itineraries
by combining related trips from each smart card holder to form complete journeys from origins to
destinations, including transfers. The data processing to construct single-transfer journeys is shown
in Figure 1.
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Figure 1. Process to construct single-transfer travel journeys.

The process starts by filtering out noise data such as the incomplete data of origin or destination
information. A threshold of 60-min time gap (from the time when travellers alight a stop, to their
next boarding time) is applied to identify whether two transactions are connected as a transfer
journey. A different threshold has been chosen differently in the literature, ranging from 30 to
90 min [33,34], or a set of thresholds for different transit modes [35]. The threshold of the 60-min time
gap is recommended in accordance with Brisbane’s transit authority, based on the observed transfer
behaviour and transit service characteristics [29]. If the transit user stays at a place for more than 60 min
before making the next trip, those two trips are counted as separate trips, rather than a continuous
journey through a transfer.

The next process is to distinguish return trips from single-transfer journeys. Studies have shown
that transit users are willing to walk on average 400 or 500 m to bus stops [36–39]. A maximum distance
threshold of 1 km from origin and destination was used to distinguish single-transfer journeys from
return trips. To illustrate, the first bus stop could be located 500 m to the left of the journey’s origin
(e.g., the residence) and the last bus stop could be located 500 m to the right of the journey’s destination
(e.g., the residence). If the first and last bus stops are located less than 1 km apart, for the purpose
of this study, it was assumed to be a return trip. This study was only interested in single-transfer
journeys, so if there was any journey that had more than one transfer, the whole journey was removed
from the dataset. After the reconstruction process, a total of 10,083 journeys were identified.

4.2. Transformation

The transit journey data may be illustrated as a triangle where each point of triangle represents
the coordinate of the trip origin, destination and transfer. The size of the journey triangles varies by
the actual trip distance and therefore the journey data needs to be converted into a homogeneous
coordinate system to analyse the spatial distribution pattern. The conversion is done by applying
a series of transformation techniques in this study. The first step of the transformation is to transform
the journey triangle OTD (origin–transfer–destination) on a spherical Earth’s surface to a 2D plan,
given the latitudes and longitudes of each point of interest, as shown in Figure 2.
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The great-circle distance between two points, which is the shortest distance over the Earth’s
surface, is calculated based on the spherical law of cosines. The spherical law of cosines states that,
for a spherical triangle,

cos OD = cos OT cos TD + sin OT sin TD cos T (1)

where,

O, T, D = Interest points of the journey triangle, OTD
OD = Distance between origin point and destination point
OT = Distance between origin point and transfer point
TD = Distance between transfer point and destination point

The location of any point on the earth can be defined by its latitude and longitude. In reference to
Equation (1), the OD distance can be calculated as the arccosine of cos OD, as shown in Equation (2).

cos OD = cos OT cos TD + sin OT sin TD cos T
OD (in rad.) = cos−1 [cos OT cos TD + sin OT sin TD cos T]

(2)

The unit used for angles is in radians, which gives the distance between origin and destination
in radians. Given the convenient mean radius of the earth to be equivalent to 6371 km, the distance
between origin and destination, in km, can be calculated by multiplying the OD distance (in radians)
with 6371 km, as shown in Equation (3).

OD (in km) = cos−1 [cos OT cos TD + sin OT sin TD cos T] ∗ 6371 km (3)

The same technique was applied to calculate the great-circle distance of OT and TD. With the
great-circle distance of OT, TD and OD, the respective angles of any triangle on a 2D plane could be
calculated using the law of cosines, as shown in Equation (4).

cos O = (OT2 + OD2
− TD2)/2(OT ∗OD)

O = cos−1
[
(OT2 + OD2

− TD2
)
/2(OT ∗OD)]

(4)

After the journey triangle OTD was obtained, it needs to undergo a series of Euclidean
transformations to display all the origin, destination and transfer points in a standardised Euclidean
space, as illustrated in Figure 3.
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The first step of Euclidean transformation is translation. Translation relocates the journey triangle
OTD to set the triangle’s origin point, O, at (0, 0). This transformation preserves the congruence and
distance of the journey triangle OTD. Applying the translation process to the single-transfer journeys
results in all the journey triangles originating from the same point at (0, 0). The notation for translation
(Th,k) is shown in Equation (5). The origin and destination points will undergo the same transformation.

Th,k
(
T′x, T′y

)
=

(
Tx + h, Ty + k

)
(5)

Preserving the congruence and distance, the journey triangle OTD is rotated at O (0, 0) until the
triangle plane, OD, rests on the x-axis. This transformation rotates all the journey triangles to lie along
the x-axis for the destination point, D, to have the coordinate of (x, 0). The notation for rotation is
shown in Equation (6). [

T′′ x
T′′ y

]
=

[
cosθ − sinθ
sinθ cosθ

][
T′x
T′y

]
(6)

At this stage, all journey triangles OTD lie on the same plane (x-axis). The next step of the
transformation is to loosen up the restriction to consider bijection, which preserves the shape and
angles of the triangle, but not distance. The aim of this step is to transform all journey triangles OTD
to have the same OD unit distance, as shown in Figure 4. The notation for compression and dilation
(CDk) is shown in Equation (7).

CDk
(
T′′′ x, T′′′ y

)
=

(
kT′′ x, kT′′ y

)
(7)
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4.3. Transfer Location Map

Figure 4 illustrates the transfer points of the single-transfer bus journeys, transformed to the scale of
OD unit distance for both the x and y axis. In the figure, the scale is not the actual distance, but is adjusted
through either compression or dilation. This study assumes that the plot represents the “acceptable” or
“viable” transfer locations in relation to the straight path to destination. Consequent analysis quantifies
and ranks the viability of transfer points and validates its impact on the travel mode choice.

The distribution of transfer points in Figure 4 may have been influenced by the availability and
quality of transit services in the area. They are chosen transfer locations possibly among multiple
alternatives, available to the travellers. The transit network structure must be an important determinant
of the distribution pattern. The transit network of Brisbane takes the typical radial structure, with no
trunk or feeder service. It is common that a transfer requires a significant deviation from the direct path
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to the destination or even in the opposite direction from the destination. The distribution pattern in the
figure may reflect the inconvenience factor of the service transfer under the existing network structure.

4.4. Grid-Based Hierarchical Clustering

To analyse the spatial distribution pattern of the transfer points, this study used the grid-based
hierarchical clustering method, which combines the grid-based clustering and hierarchical clustering
methods. Cluster analysis is a data reduction tool that partitions a sample dataset into clusters,
where objects within a specific cluster share many characteristics, but are very dissimilar to objects not
belonging to that cluster [40]. The grid-based clustering (also known as density-based clustering) is one
of the most efficient approaches for mining large data sets. Unsupervised clustering such as K-means
was inappropriate for this study because it clusters the data in similar sizes (i.e., point densities).
The underlying assumption of the choice modelling in the next step is that the cells with higher
point densities are considered as more viable transfer locations by travellers. This method adopts
algorithms that partition the data space into a finite number of cells to form a grid structure [41] as
shown in Figure 5.
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For grid-clustering, each grid is defined as 0.2 ×OD (origin to destination) unit distance increment.
These transfer points are plotted in reference to 1.0 × OD unit distance. Figure 5 shows the clear
concentration of transfer points in the cells, along with the direct path between the origin and
destination. For cell clustering, the cell density is calculated for each cell as follows:

Cell density =
Total number of transfer points in grid x

Total number of transfer points
(8)

The hierarchical clustering method was applied to sort the cells into clusters. Hierarchical clustering
is useful for finding relatively homogenous clusters of cases based on measured characteristics. It starts
with each case as a separate cluster. Next, these clusters are combined sequentially until only one
cluster is left. The algorithm for this clustering method uses the dissimilarities or distances between
objects when forming the clusters [40]. Figure 6 shows the cell-density for each cell, and to which
cluster each cell is assigned by the hierarchical clustering method.

Figure 6 presents the preferred transfer locations with relatively high cell densities. Figure 7
shows the result of hierarchical clustering. Some interesting results were observed in the travellers’
transfer selection. The majority of bus journeys conducted had made a transfer located in the cells F1
and J1. These two cells were identified to have the highest transfer point density at 13.78% and 15.47%,
respectively (Cluster A). These two cells may be regarded as the most preferred transfer location and



Sensors 2020, 20, 4418 9 of 17

by having a transfer service in those cell locations will increase the likelihood of making a transfer and
eventually taking a transit, compared to other cells.Sensors 2020, 20, x FOR PEER REVIEW 9 of 17 
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All the other cells are categorised into five different clusters by the cell’s grid density.
The hierarchical clustering uses the Ward’s method to measure the dissimilarity among clusters.
Ward’s method uses an analysis of variance approach, instead of distance metrics to evaluate the
distances between clusters, where cluster membership is assessed by calculating the total sum of
squared deviations from the mean of a cluster [42]. The dendrogram allows the tracing backward
and forward to any cluster at any level. It gives an idea of how great the distance is between clusters
in a particular step, using the 0–25 scale along the top of the chart.

Cluster B includes G1, H1 and I1. Transfer points in those five cells of Cluster A and Cluster B
account for 54.1% out of the total 150 cells in the map. This implies that most travellers prefer the
transfer point to be closely located along the direction to their trip destination. Cluster C consists of
seven cells, E1, F2 to J2 and K1. The average cell density significantly declined to 3.67%. Some bus
users travelled to transfer points in the opposite direction from their destination, but not too far from
their origination location. Similarly, some travellers made a transfer farther from their destination
location. The cell density further decreased for the cells in Cluster D with the average density value
at 1.37%. The transfer points located in the Cluster A to D groups accounted for 89.35% of the total
transfers. The average density value of the cells in Cluster E and Cluster F was negligible at 0.27% and
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0.02%, respectively although they accounted for more than 87.33% of the total map area (131 out of
150 cells).

In general, based on the transfer point density in each cell, it was observed that the majority
of transfers are conducted at the locations along the direct path to the destination. Transit users
occasionally travel to the opposite direction from the destination, or slightly farther away from
the destination to make a transfer. When a transit journey is required to make a transfer that is
deviated from the direct path between origin and destination, the realisation of such trips is unlikely.
This demonstrates the impedance of transfer location, and the interpretation must take into account
the transit network structure.

5. Mode Choice Analysis

Two binomial logistic regression models (base and expanded model) are drawn on two travel
modes: private vehicles and the bus. For a mode choice analysis, the information of mode specific
variables of the alternative (unchosen) mode is necessary. Information of the alternative mode only
can be inferred. This study used the GTFS (General Transit Feed Specification) data to infer the bus
journey information for those who have chosen a private vehicle as their travel mode; and Google
Maps to infer the private vehicle travel time for those who have chosen the bus as their travel mode.
This analysis considers only the home-based work journeys. If a traveller has used the bus as the mode
of transport, the journey must include one service transfer using the same travel mode (bus). Due to
the strict criteria, only 330 private vehicle journeys and 63 bus journeys were used for the analysis.
The 2009-10 SEQHTS is the most recent and detailed dataset available to demonstrate travellers’ travel
patterns and mode choice.

The dependent variables of the model are dichotomous, representing travel mode choice (transit
or private vehicle). The independent variables tested in this analysis include individual characteristics
(gender, age, individual weekly income, household size and number of cars in the household),
journey attributes (travel time, initial wait time, first mile walk time and last mile walk time) and
transfer attributes (proportion of in-vehicle bus travel time, proportion of transfer walk time, proportion
of transfer wait time, type of transfer and transfer location). Table 1 presents the list of independent
variables with brief descriptions.

Table 1. List of independent variables.

Variable Description

Socioeconomic Attributes

Gender Nominal variables: 0—male; 1—female
Age Age of individuals

Individual weekly income Individuals’ weekly income, given in different income bracket
Number of cars Total number of cars per household
Household size Number of persons in the household

Journey Attributes

Car travel time (minutes) Total time taken to travel from origins to destinations using private vehicle
Bus travel time (minutes) Total time taken to travel from origins to destinations using bus
Initial wait time (minutes) Total wait time for the next available bus service

First mile walk time (minutes) Walk time taken to access bus station from origination
Last mile walk time (minutes) Walk time taken from bus station to destination

Transfer Attributes

Proportion of in-vehicle bus travel time Proportion of a journey spent on two buses
Proportion of transfer walk time Proportion of a journey spent on walking for a transfer
Proportion of transfer wait time Proportion of a journey spent on waiting for a transfer

Type of transfer Nominal variables: 0—non-walking transfer; 1—otherwise

Transfer location Ordinal and nominal variables: The cluster developed using smart card data
(i.e., Cluster A–F encoded to 0–5), of which individual transfer location falls into

Two different models were developed to test the effectiveness of the transfer location variable.
The base model (Model I) takes the conventional approach to account for the effect of transfer by
incorporating the proportion of the in-vehicle bus travel time, proportion of transfer walk time and
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proportion of transfer wait time variables. The expanded model (Model II) used the same set of
independent variables and an additional the “transfer location” variable. The test results of those two
models are presented in Table 2.

Table 2. Binomial logit model results: transfer location as an ordinal variable.

Variables

Model I Model II

Base Model Expanded Model

Coefficient Std. Err. Exp. β Coefficient Std. Err. Exp. β

Constant −0.85 1.27 0.43 0.35 1.39 1.42

Socioeconomic Attributes

Individual weekly income −0.00 *** 0.00 1.00 −0.00 *** 0.00 1.00
Household size 0.43 *** 0.14 1.54 0.40 *** 0.14 1.49
Number of cars −1.22 *** 0.24 0.29 −1.31 *** 0.25 0.27

Journey Attributes

Car travel time (minutes) 0.04 *** 0.02 1.04 0.06 *** 0.02 1.07
Initial wait time (minutes) −0.03 0.02 0.97 −0.03 * 0.02 0.97

First mile walk time (minutes) −0.08 * 0.04 0.93 −0.09 ** 0.04 0.92
Last mile walk time (minutes) −0.07 * 0.04 0.93 −0.08 ** 0.04 0.92

Transfer Attributes

Proportion of in-vehicle bus travel time 3.90 ** 1.54 49.45 4.24 ** 1.59 69.27

Transfer location Not included −0.28 ** 0.13 0.75

Number of observation 393 393
Log-likelihood function value: Constant only model −172.99 −172.99
Log-likelihood function value: Parameterised model −122.40 −119.88

Goodness of fit (McFadden rho squared) 0.29 0.31

Model Improvement Test:
−2 *(log-likelihood of basic model—log-likelihood of expanded model) 5.04

Chi-critical based on 1 degree of freedom 3.84

Notes: ***: p < 0.01; **: p < 0.05; *: p < 0.1. Coefficients that are statistically insignificant (p ≥ 0.1) are not shown
in this table.

Table 2 shows only the variables that provided the best fitting model fit. For instance, gender, age,
network distance, transfer walking time, transfer wait time and transfer type were found not to be
significant. The best-fitting basic model (Model I) incorporated six independent variables including:
individual weekly income, household size, number of cars, car travel time, bus travel time, initial wait
time for the first bus service, first mile walk time, last mile walk time and proportion of in-vehicle bus
travel time. In Model II, the transfer location variable was found significant at the 0.05 level. This is
notable as the new variable was found to make substantial influence on the mode choice, significant at
the 0.05 level. As for socioeconomic variables, the household size had a positive effect on the utility of
transit, whereas the individual weekly income and number of cars in the household had a negative
effect on the transit utility. The car travel time factor was found significant (at the 0.01 level) among
other journey attributes. Other journey attributes such as the first mile and last mile walk time were
found significant at the 0.1 level for both the base and expanded models, which are consistent with the
literature. As the access and egress increases, the use of transit decreases [38,43]. The initial wait time
for the first bus service was found significant at the 0.1 level, only for the expanded models. If transit is
not available at the time when individuals needed to travel, it decreases the attractiveness of transit.

As for the transfer-related variables, only the proportion of the in-vehicle bus travel time factor
was found to be significant in both the base and expanded models (significant at the 0.05 level). Exp. β
shows the effect of the independent variable on the odds ratio. The Exp. β coefficient relating the
proportion of in-vehicle transit travel to the likelihood of using transit was 49.45 and 69.27 in the
base and expanded model, respectively. These results implied that travellers are more likely to use
transit as the proportion of in-vehicle bus travel time increases. This finding is consistent with the
literature that shorter in-vehicle transit travel times could lead travellers to perceive the walking and
wait times during transfer more onerous and eventually increases the relative attractiveness of a private
vehicle [1,20,44,45].
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The transfer location variable in the expanded model was found to be significant at the 95%
confidence level. The negative coefficient suggests that a transfer location farther from the OD path
will decrease the utility of bus and the probability to choose the bus mode. In fact, it turns out that the
transfer location factor is one of the most important determinants of travel mode choice. This variable
has the Exp. β (the odds ratio) value of 0.75, which shows that a change in the transfer location from
a more preferred cluster to a less preferred cluster (e.g., from Cluster A to Cluster B) would decrease
the probability of choosing the bus to 0.43, and increase the probability of choosing a private vehicle
to 0.57.

The prediction capability of Model I and Model II was compared using McFadden rho squared
to demonstrate the effectiveness of the new transfer location variable and its impact on the travel
mode choice. Model I resulted in the pseudo R-squared, ρ2 at 0.29, whereas Model II increased it to
0.31. McFadden suggested ρ2 values of between 0.2 and 0.4 should represent a very good fit of the
model [46]. The increase in ρ2 by Model II demonstrates that with the inclusion of the new variable,
Model II has a better explanatory power on mode choice as compared to Model I.

The chi-squared (χ2) test was conducted to investigate the statistical improvement between Model
I and Model II, by gauging the change in the log-likelihood function relative to the change in degrees
of freedom. The chi-squared, χ2 value of 5.04 exceeds the critical chi-squared of 1 degree of freedom
of 3.84, at the 0.05 significant level. This gives a sufficient evidence to reject the null hypothesis that
Model II is no better than Model I. With the inclusion of the transfer location variable into Model II,
it outperforms Model I (base model).

The transfer location variable in Table 2 is ordered from the most preferred cluster to the least
preferred cluster, in an ordinal-scale. This approach is effective to study the impact of transfer location
as a variable, based on the assumption that the distance between clusters is equal. To study the
relationship between the clusters, an additional binomial logistic regression model is conducted to
include the transfer location variable as nominal variables. The result is shown in Table 3.

Table 3. Binomial logit model results: transfer location as nominal variables.

Variables

Model I Model II

Base Model Expanded Model

Coefficient Std. Err. Exp. β Coefficient Std. Err. Exp. β

Constant 0.16 1.37 1.18 −0.98 1.53 0.38

Socioeconomic Attributes

Age −0.03 ** 0.01 0.97 −0.03 *** 0.01 0.97
Individual weekly income −0.00 *** 0.00 1.00 −0.00 *** 0.00 1.00

Household size 0.34 ** 0.14 1.41 0.32 ** 0.15 1.37
Number of cars −1.32 *** 0.24 0.27 −1.48 *** 0.26 0.23

Journey Attributes

Car travel time (minutes) −0.05 *** 0.02 0.95 −0.07 *** 0.02 0.94
Initial wait time (minutes) −0.02 * 0.01 0.98 −0.02 ** 0.01 0.98

Last mile walk time (minutes) −0.07 * 0.04 0.93 −0.08 ** 0.04 0.92

Transfer Attributes

Proportion of in-vehicle bus
travel time 4.00 *** 1.51 54.52 4.52 *** 1.59 91.84

Transfer Location
The reference category: Cluster F

Cluster A

Not included

1.79 * 1.05 5.99
Cluster B 2.34 ** 0.98 10.40
Cluster C 2.31 ** 0.96 10.04
Cluster D 1.99 ** 1.01 7.30
Cluster E 1.21 0.95 3.36
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Table 3. Cont.

Variables

Model I Model II

Base Model Expanded Model

Coefficient Std. Err. Exp. β Coefficient Std. Err. Exp. β

Number of observation 393 393
Log-likelihood function value: Constant only model −172.99 −172.99
Log-likelihood function value: Parameterised model −121.58 −116.20

Goodness of fit (Nagelkerke R Square) 0.39 0.43
Goodness of fit (McFadden R Square) 0.30 0.33

Model improvement test (Chi-squared test, χ2):
−2 *(log-likelihood of basic model—log-likelihood of expanded model)

10.76

The critical chi-squared value with 5 degrees of freedom at the 0.10 α-level 9.24

The critical chi-squared value with 5 degrees of freedom at the 0.05 α-level 11.07

Notes: ***: p < 0.01; **: p < 0.05; *: p < 0.10. Coefficients that are statistically insignificant (p ≥ 0.10) are not shown
in this table.

The result from Tables 2 and 3 did not differ much. The age of the travellers became significant
at the 0.05 confidence level, with a negative effect on transit utility. Having the transfer location as
nominal variables, Cluster F was assigned to be the reference category. The exponential β coefficient
shows that if a transfer location is in Cluster A, it will have 5.99 times more chance to use the bus over
Cluster F. Transfer locations located in Cluster B, C and D were found to be significant at the 0.05 level,
but not Cluster E. This implies that as the transfer location changes from a less preferred cluster to
a more preferred cluster (e.g., from Cluster F to Cluster A), it will increase the probability of choosing
the bus over an automobile.

Transfer Location and Transit Travel Time

The analysis results indicate that the chance to make a transit trip was likely to decrease if the
trip involves a transfer at the location that deviates from the direct path to the destination. In the
conventional mode choice analysis, the level of deviation is quantified in terms of travel time incurred
during the transfer. The new variable was created to capture the impact of deviation in the travel
direction. We take two approaches to examine the potential collinearity between transfer location and
transit travel time. Firstly, the Spearman’s correlation coefficient (ρ) was calculated between the bus
travel time (continuous variable) and the transfer location (categorical variable) of the Household Travel
Survey bus trip data. A weak correlation (ρ = −0.211) was found between two variables, which implies
that the location of transfer may play as an independent factor for the travel mode choice.

The second approach presents three plots of the transfer point distribution by the length of the bus
journey time (less than 30 min, between 30 and 45 min and more than 45 min), as shown in Figure 8.

The level of deviation of transfer points was derived using Equation (9). An arbitrary cell length
of 4 was used—for example, the deviation of a transfer point (x, y) was calculated as the sum of the
distance from the origination point (0, 0) and the distance from the destination point (20, 0).

Level of deviation =
√

x2 + y2 +

√
(x− 20)2 + y2 (9)

The average level of deviation of a short (less than 30 min), medium (between 30 and 45 min)
and long journey (longer than 45 min) was found at 24.7, 24.3 and 25.7, respectively. Although more
deviation was found among the longer bus trips, the distribution pattern is largely unchanged
regardless of the length of travel time. This suggests that the preference for transfer location was
not affected by the travel time (or distance) and travellers might disfavour adjacent transfer services
depending on their relative location with respect to destination. The conventional approach of using
door-to-door travel time to capture the transfer cost is not sufficient. Transit travel time may be able
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to capture the effect of deviation in the travel distance, but it is not capable to capture the effect of
deviation in the travel direction towards transfer services.
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6. Conclusions

This paper proposed a new approach to take into account the smart distribution of the transfer
location impact on travel mode choice. A transformation method was proposed for mapping of the
transfer locations on a two-dimensional homogeneous geocoordinate. Transformed transfer locations
were grouped into six classes by the level of point density. The novel transfer location variable was
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included in a mode choice model to demonstrate its underlying effect. The new variable was found
as one of the driving determinants of mode choice. The study revealed that the transfer services
in the “preferred locations” are likely to increase the smartness of the transit journey including the
transfer. The transfer location and the in-vehicle travel time variables were found to be significant
and uncorrelated to each other. This implies that travel direction towards transfer points may be
an important factor pertaining to mode choice in addition to the travel time factor. The conventional
approach of using door-to-door travel time may be not sufficient to capture the real cost of transfer.

This study provides a new approach to analyse the spatial distribution of transfer locations
in relation to trip origin and destination points. This new geocoordinate technique may be useful for
many applications in smart transport research including transit accessibility and connectivity studies.
The conventional methods define the transit service accessibility and connectivity using a travel time
constraint, where accessible areas by transit are simply defined as the travel boundary within a specific
travel time period (e.g., 45 min). In a radial transit network structure, travelling to neighbouring
suburbs often require a transfer at the opposite direction from the destination if there is no direct
transit route connecting two suburbs, which is not so smart. For choice users (a private vehicle is
available), such locations may be deemed as inaccessible by using transit. Integrating the transfer
location variable to the traditional accessibility and connectivity measures may provide a more realistic
representation of the service coverage of transit systems.

The findings of this study may contribute to improving the smartness of the public transit and
the prediction capability of the mode choice analysis for the future transport demand. The findings
presented in this study should be viewed as an exploratory effort to developing a new approach to
account for the smartness of transfer and to test is effect on mode choice. The main findings will
assist the transit service and performance assessment to identify service gaps and underserved areas.
Identifying convenient and strategic transfer locations is essential so that scarce resources can be
channelled effectively to improve the quality and smartness of transit service. Minimising the perceived
transfer penalty will assist in increasing the competitiveness of public transport, and eventually the
transit ridership. In this study, the emphasis is only given to bus journeys with a single transfer.
Future research could build upon this concept to consider multimodal transit journeys and those
journeys with more than a single transfer.
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